PUBLISHED FOR SISSA BY @ SPRINGER

RECEIVED: September 15, 2017
REVISED: February 5, 2018
ACCEPTED: March 18, 2018
PUBLISHED: March 27, 2018

Search for electroweak production of charginos and
neutralinos in multilepton final states in proton-proton
collisions at /s = 13 TeV

CMS

§

The CMS collaboration

E-mail: cms-publication-committee-chair@cern.ch

ABSTRACT: Results are presented from a search for the direct electroweak production
of charginos and neutralinos in signatures with either two or more leptons (electrons or
muons) of the same electric charge, or with three or more leptons, which can include up
to two hadronically decaying tau leptons. The results are based on a sample of proton-
proton collision data collected at /s = 13TeV, recorded with the CMS detector at the
LHC, corresponding to an integrated luminosity of 35.9 fb~!. The observed event yields are
consistent with the expectations based on the standard model. The results are interpreted
in simplified models of supersymmetry describing various scenarios for the production and
decay of charginos and neutralinos. Depending on the model parameters chosen, mass
values between 180 GeV and 1150 GeV are excluded at 95% CL. These results significantly
extend the parameter space probed for these particles in searches at the LHC. In addition,
results are presented in a form suitable for alternative theoretical interpretations.

KEYWORDS: Hadron-Hadron scattering (experiments), Supersymmetry

ARX1v EPRINT: 1709.05406

OPEN Access, Copyright CERN, https://doi.org/10.1007/JHEP03(2018)166
for the benefit of the CMS Collaboration.
Article funded by SCOAP3.


mailto:cms-publication-committee-chair@cern.ch
https://arxiv.org/abs/1709.05406
https://doi.org/10.1007/JHEP03(2018)166

Contents

1 Introduction 1
2 Supersymmetric models 2
3 The CMS detector 5
4 Event selection and Monte Carlo simulation 5
5 Search strategy 8
5.1 Two same-sign dilepton category 8
5.2 Three or more leptons 9
5.2.1 Three light leptons (signal regions A and B) 10

5.2.2  Three leptons with at least one 7, (signal regions C to F) 11

5.2.3 More than three leptons (signal regions G to K) 12

5.3 Aggregated signal regions 14

6 Backgrounds 14
7 Systematic uncertainties 16
8 Results 19
9 Interpretations of the searches 31
10 Summary 38
The CMS collaboration 44

1 Introduction

The standard model (SM) describes the vast majority of particle physics phenomena. So
far, it has withstood a multitude of challenges from precision measurements. Searches for
physics beyond the SM carried out by various experiments also have not revealed con-
vincing evidence for the existence of such phenomena. A recent triumph of the SM is the
2012 discovery of a Higgs boson (H) by the ATLAS and CMS Collaborations at the CERN
LHC [1-3]. However, there are several open challenges that cannot be explained by the SM,
such as the hierarchy problem [4-6] (and fine tuning), and the absence of a dark matter
candidate. Supersymmetry (SUSY) [7-15] is an extension of the SM that introduces an
additional symmetry between bosons and fermions, and predicts superpartners, or “sparti-
cles”, to the SM particles. This extension offers a solution to several limitations of the SM,



including those cited above. In particular, in the case of conserved R-parity [12], SUSY
particles are created in pairs, and the lightest SUSY particle (LSP) is stable, making it a
possible dark matter candidate. Furthermore, the existence of relatively light superpart-
ners can lead to the cancellation of the large quantum corrections to the Higgs boson mass,
addressing the hierarchy problem.

Thus far, no evidence for such new particles has been found. Constraints have been
placed on the masses of the colored superpartners (squarks and gluinos) ranging from sev-
eral hundred GeV to about 2 TeV, depending on the assumptions entering into the models
used for the interpretation of the results [16, 16-20]. The cross sections associated with
electroweak production of SUSY particles are far lower than those for strong production.
This directly translates into significantly lower exclusion limits, ranging from about 100
to 700 GeV [21-24] on the masses of sparticles produced exclusively via the electroweak
interaction. This would be the dominant production mechanism of sparticles if the colored
superpartners are too heavy to be produced.

This paper describes a search for direct production of charginos and neutralinos, mix-
tures of the SUSY partners of the electroweak gauge and Higgs bosons, decaying to two,

miss) . In

three, or more charged leptons, and significant missing transverse momentum (pf
events with two light leptons (electrons or muons), the leptons are required to have the
same charge; in events with three or more leptons, up to two may be hadronically decaying
tau leptons (7,). We use a data sample of pp collisions recorded during 2016 with the CMS
detector corresponding to an integrated luminosity of 35.9 fb~!. Similar searches have been

reported by the CMS and ATLAS collaborations for the lower-energy LHC Run 1 [21-23].

2 Supersymmetric models

This search targets scenarios of direct electroweak production of charginos ﬁc and neu-
tralinos X3, which decay into final states containing two, three, or four charged leptons
(e®, uT, 7F). The results are interpreted using simplified models [24, 25]. In such models,
the masses and the decay modes of the relevant particles are the only free parameters.

In the case of ﬁ[%g production, the )Zf and X3 are assumed to be mass-degenerate and
wino-like, i.e. superpartners of the SU(2);, gauge fields, and the X! is set to be bino-like, i.e.
a superpartner of the U(1)y gauge field [26]. The masses of the pure wino-like and bino-like
gauginos are governed by two complex gaugino Majorana mass parameters, Mo and M,
and can assume any values. In this scenario, the X! is the lightest SUSY particle (LSP).

For the effective X)X} production, the X3, )ﬁc, and X! are assumed to be higgsino-like,
i.e. are superpartners of the Higgs doublets. In this case, scenarios in which the ! is
next-to-LSP (NLSP) are considered.

Production of )Zit%g with 2-body decays through sleptons. In the first scenario
considered, the charginos and neutralinos decay to leptons via intermediate sleptons or
sneutrinos, the SUSY partners of charged leptons and neutrinos, as shown in figure 1.
The combination of gauge eigenstates that make up the neutralinos, charginos, and their
masses, will determine whether their decays through sleptons and sneutrinos (which are
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Figure 1. Chargino and neutralino pair production with decays mediated by sleptons and sneu-
trinos.

assumed to be mass-degenerate) lead to all three lepton flavors with equal probability, or if
they prefer to decay to 7 leptons. Three different scenarios for the decays are considered:

° jac)“{g production with l, r-mediated decays: the chargino and neutralino decay via
sleptons or sneutrinos to all lepton flavors with the same branching fraction (“flavor-
democratic” scenario). As the decay through sleptons or sneutrinos happens with
equal probability, only 50% of the decays will lead to three-lepton final states.

° ﬁcig production with ‘ r-mediated decays: in this case, because the ZR couples to
the chargino via its higgsino component, chargino decays to ‘, r strongly favor the
production of a 7 lepton (“7-enriched” scenario). The neutralino still decays to all
three flavors. In this model, both left-handed sleptons and sneutrinos are considered
to be heavy and decoupled; they do not participate in this process.

° )fog production with 7-mediated decays: the first- and second-generation sleptons
and sneutrinos are decoupled and the chargino and neutralino only decay via a Trg.
We will refer to this model as the “7-dominated” scenario. Left-handed sleptons and
sneutrinos are considered to be heavy and decoupled; they do not participate in this
process.

In these simplified models, the slepton mass is assumed to lie between the common
)Zf and Y masses, and that of the X{. In addition, the branching fraction to leptons
is taken to be 100%. Three different mass assumptions are considered: my = my =

mgo +x (m%g — m%(lj), with z = 0.05, 0.5 and 0.95. When z = 0.05 or 0.95, one of the three
leptons is very soft and may escape detection. The same-sign (SS) final state is used in these

cases to recover some of these events without the penalty of increasing the SM background.

Production of iitjzg with 2-body decays to W, Z, and Higgs bosons. In the
second scenario, we assume that the sleptons are too heavy and that the )A{ic and )Zg undergo
direct decay to the LSP via the emission of a W boson, Z boson, or Higgs boson as depicted
in figure 2. The chargino decays to a W and the XY, while the neutralino can decay either
to a Z or a Higgs boson and the Y¥. The Higgs boson is expected to have SM-like properties
and branching fraction if all the other Higgs bosons are much heavier [15]. If the Higgs
boson decays to WW, ZZ, or 77, and each W or Z decays leptonically, one can expect
multiple leptons in the final state. However, compared to the other models included in this
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Figure 2. Chargino and neutralino pair production with the chargino decaying to a W boson and
the LSP and the neutralino decaying to (left) a Z boson and the LSP or (right) a Higgs boson and
the LSP.

Figure 3. A GMSB model with higgsino pair production. The X3, ﬁ[, and ! are nearly mass-
degenerate with Y9 decaying to Z or Higgs bosons and G LSP.

analysis, the leptonic branching fractions are rather small, namely 3.3% for WZ to three
leptons and 2.9% for WH to three leptons, including taus.

Production of )2(1’)2(1) in models with four higgsinos. Finally we consider the pro-
duction of pairs of neutralinos that decay via a Z or a Higgs boson. As for the pair of
neutralinos (Y9x5 or Xix}) the production cross section is vanishingly small [27-29], we
consider a specific gauge-mediated SUSY breaking (GMSB) model with four higgsinos (X9,
)Zli, X)) and an effectively massless gravitino G as the LSP [30—-32].

The cross sections for higgsino pair production are computed at NLO plus next-to-
leading-log (NLL) precision in a limit of mass-degenerate higgsino states X3, Sﬁ, and XY,
with all the other sparticles assumed to be heavy and decoupled. Following the convention
of real mixing matrices and signed neutralino masses [33], we set the sign of the mass of
XY (X9) to +1 (=1). The lightest two neutralino states are defined as symmetric (anti-
symmetric) combinations of higgsino states by setting the product of the elements N;3 and
Niy of the neutralino mixing matrix N to +0.5 (—0.5) for i = 1 (2). The elements U;2 and
V12 of the chargino mixing matrices U and V are set to 1.

Since the X9, )ﬁc, and \) are nearly mass degenerate, the heavier higgsinos )ﬁt and
X9 decay to the X9 via soft particles which escape detection. Therefore the sum of the
various possible production processes of higgsinos (ﬁcig, XY, ﬁcif, ﬁcjz(l)) describes
an effective X%} production mechanism at the LHC. In the considered scenario, each X!
promptly decays to a Z or a Higgs boson and the gravitino LSP. Different final states
depending on the assumptions on the NLSP are possible, as shown in figure 3.



3 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal
diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon
pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass
scintillator hadron calorimeter, each composed of a barrel and two endcap sections. For-
ward calorimeters extend the pseudorapidity (1) [34] coverage provided by the barrel and
endcap detectors. Muons are measured in gas-ionization detectors embedded in the steel
flux-return yoke outside the solenoid. The first level of the CMS trigger system, composed
of custom hardware processors, uses information from the calorimeters and muon detectors
to select events of interest in a fixed time interval of less than 4 us. The high-level trigger
processor farm further decreases the event rate from around 100 kHz to around 1 kHz, before
data storage. A more detailed description of the CMS detector, together with a definition
of the coordinate system used and the relevant kinematic variables, can be found in ref. [34].

4 Event selection and Monte Carlo simulation

The events are recorded if they satisfy the requirements of the CMS two-level trigger
system. As we consider different lepton multiplicities in the final state, a combination
of several trigger algorithms is required to cover all possible cases and to maximize the
acceptance. Events with at least two light-flavor leptons (e or p) rely mostly on dilepton
triggers with transverse momentum (prt) >23 (17) GeV for the leading electron (muon) and
pr > 12(8) GeV for the subleading electron (muon). For events with at least two leptons,
the double lepton triggers are not fully efficient. Single lepton triggers are used to increase
the acceptance for these events.

For the final state with two m,s and one electron or muon, we use single lepton triggers
requiring an isolated e (u) with pp > 27(24) GeV. Typical trigger efficiencies for leptons
satisfying the offline selection criteria described below are 98% (92%) per electron (muon).
In final states with three or more leptons, the total trigger efficiency is close to 100%.

In the offline analysis, the information from all subdetectors is combined by the CMS
particle-flow algorithm [35]. The particle flow algorithm provides a global interpretation of
the event and reconstructs and identifies individual particles. The particles are classified
into charged hadrons, neutral hadrons, photons, electrons, and muons.

We require electrons to have |n| < 2.5 to ensure that they are within the tracking
volume, and pt > 10GeV. The particle flow algorithm for electrons uses a multivariate
discriminant, built from variables that characterize the shower shape and track quality [36].
To exclude electrons from photon conversions, we reject candidates that have missing mea-
surements in the innermost layers of the tracking system or are matched to a secondary
conversion vertex candidate [36].

Muon candidates are reconstructed by combining the information from the silicon
tracker and the muon spectrometer in a global fit [37]. An identification selection is per-
formed using the quality of the geometrical matching between the tracker and the muon



system measurements. Only muons within the muon system acceptance |n| < 2.4 having a
minimum pt of 10 GeV are considered.

Light lepton candidates are required to be consistent with originating from the primary
vertex, defined as the one with the largest p% sum of the tracks pointing to that vertex [38].
The transverse impact parameter dy of a lepton track with respect to this vertex must
not exceed 0.5 mm, and the longitudinal displacement d, of that impact point must not
exceed 1.0 mm. Additionally they must satisfy a requirement on the impact parameter
significance Sipsp = |dsp|/o(dsp) < 8, where dsp is the three-dimensional displacement
with respect to the primary vertex and o(dsp) is its uncertainty as estimated from the track
fit. Furthermore, leptons are required to be isolated. An isolation variable Iin; [39, 40]
is computed as the ratio of the scalar pr sum of charged hadrons, neutral hadrons, and
photons within a cone around the lepton candidate direction at the vertex to the transverse
momentum pr(¢) of the lepton candidate. The cone radius AR = /(An)? + (A¢)? (where
¢ is the azimuthal angle in radians) depends on pr(¢) as:

10 GeV
AR (pr(0)) = min [max (pr(£), 50 GeV) , 200 GeV]’ (41)

The varying isolation cone definition takes into account the increased collimation of
the decay products of a particle as its pr increases, and it reduces the inefficiency from ac-
cidental overlap between the lepton and other objects in an event. Loosely isolated leptons
are required to have I < 0.4. Electrons and muons that pass all the aforementioned
requirements are referred to as loose in this analysis.

In order to discriminate between leptons (“prompt” leptons) originating from decays of
heavy particles, such as W and Z bosons, or SUSY particles, and those produced in hadron
decays or in photon conversions, as well as misidentified hadrons (“nonprompt” leptons),
we use a multivariate discriminator based on a boosted decision tree (BDT) [41, 42]. This
BDT takes the following variables as inputs: dy, d,, Stpsp, and Imini; variables related to
the jet closest to the lepton, such as the ratio between the pr of the lepton and the pt of

ratio

the jet (pHf¥°), the b tagging discriminator value of the jet, the number of charged particles

in the jet, and the p‘”Tel variable:

el |(et) — 7(0) x 50|
B pGet) — ()]

Other identification variables, such as the muon segment compatibility and the elec-

(4.2)

tron identification multivariate discriminant are also included. The BDT is trained using
simulation with prompt leptons from ttZ and with nonprompt leptons from tt processes.
Leptons satisfying a requirement on this discriminant in addition to the loose requirements
are referred to as tight leptons. Two working points are defined, one with higher efficiency
for the three or more lepton channel and one with high nonprompt background rejection
for the SS dilepton channel. The identification efficiency measured in data for electrons
passing tight criteria varies between 40 (20)% for tracks with pr < 20 GeV in the barrel
(endcap) region and the plateau efficiency of 90 (80)% for those with pr > 50 GeV in the
barrel (endcap) region, while the misidentification rate for non-prompt electrons is between



3% and 7% depending on the pr. For muons, the efficiency is between 82% for pr < 20 GeV
and 100% for pt > 40 GeV, the misidentification rate for non-prompt muons goes from 2%
up to 10% depending on pr.

The 7, candidates are reconstructed with the hadron-plus-strips algorithm [43]. They
are required to pass the “decay mode finding” discriminator [43], selecting one- or three-
prong decay modes, with or without additional 7° particles. In addition, they must fulfill
pr > 20GeV, |n| < 2.3, and isolation requirements computed in a cone defined by AR = 0.5
centered on the 7, direction. The typical 7, identification efficiency of these selection
requirements is 50%, while the jet misidentification rate is well below 0.1% [44].

Particle-flow candidates are clustered into jets using the anti-kr algorithm [45] with
a distance parameter of 0.4, as implemented in the FASTJET package [46, 47]. Jets are
required to satisfy quality requirements [48] to remove those likely arising from anomalous
energy deposits. Charged hadrons are not considered if they do not originate from the se-
lected primary vertex. After the estimated contribution of neutral particles from additional
pp interactions in the same beam crossing (pileup) is subtracted by using the average pp
in the event per unit area [49], jet energies are corrected for residual nonuniformity and
nonlinearity of the detector response using simulation and data [48, 50]. Only jets with
pr > 25GeV, |n| < 2.4, and separated from any lepton candidate by AR > 0.4 are retained.

To identify jets originating from b quarks, the combined secondary vertex algo-
rithm [51, 52] is used. Jets with pr > 25GeV and || < 2.4 are considered b quark
jets (“b jets”) if they satisfy the requirements of the medium working point of the al-
gorithm. These requirements result in an efficiency of approximately 63% for tagging a
bottom quark jet, and a mistagging rate of 1.5% for light-flavor jets, as measured in tt
events in data. Simulated events are corrected for the differences in the performance of
the algorithm between data and simulation. Events with at least one identified b jet are
rejected in the analysis to reduce the tt background.

The missing transverse momentum p?BiSS is obtained as the magnitude of the negative

vector sum ﬁ%‘iss of the transverse momenta of all reconstructed particle-flow candidates
consistent with originating from the primary vertex and is further adjusted to account for
jet energy corrections applied to the event [53]. This quantity is used in the definitions of
the search regions presented in the following sections.

The Monte Carlo (MC) simulated samples, which include the effects of pileup, are
used to estimate the background from SM processes with prompt leptons (see section 6)
and to calculate the selection efficiency for various new-physics scenarios. The samples
are reweighted to match the pileup profile in the data. The SM background samples
are produced with the MADGRAPH5_aMC@NLO v2.2.2 or v2.3.3 generator [54] at leading-
order (LO) [55] or next-to-leading-order (NLO) [56] accuracy in perturbative quantum
chromodynamics, including up to one or two additional partons in the matrix element
calculations. The exceptions are the diboson samples, which are produced with the
POWHEG v2.0 [57, 58] generator without additional partons in the matrix element cal-
culations. The NNPDF3.0LO [59] parton distribution functions (PDFs) are used for the
simulated samples generated at LO and the NNPDF3.0NLO [59] PDFs for those generated
at NLO. Parton showering and hadronization are described using the PYTHIA 8.212 gener-



ator [60] with the CUETP8MI1 tune [61, 62]. A double counting of the partons generated
with MADGRAPH5_aMC@QNLO and those with PYTHIA is removed using the MLM [55] and
the FXFX [56] matching schemes, in the LO and NLO samples, respectively. The CMS
detector response for the background samples is modelled with the GEANT4 package [63].

Signal samples are generated with MADGRAPH5_aMC@NLO at LO precision, including
up to two additional partons in the matrix element calculations. The NNPDF3.0LO [59]
parton distribution functions (PDFs) are used. Parton showering and hadronization are
modelled with PYTHIA as described above. SUSY particles, are also modelled with PYTHIA,
while the detector simulation is performed with the CMS fast simulation package [64].
Any residual differences in the detector response description between the GEANT4 and
fast simulation are corrected for, with corresponding uncertainties in the signal acceptance
taken into account.

5 Search strategy

This search is designed to target the scenarios described in section 2 of direct electroweak
production of charginos ﬁc and neutralinos X3 leading to final states with either two, three,
or four leptons and little hadronic activity. The specific strategy of the analysis is guided
by the assumption that R-parity is conserved, hence leading to the presence of particles in
the final states that evade detection, yielding a sizable p%liss.

The small cross section of the electroweak production drives the analysis design, which
includes all the possible final states to enhance the discovery potential. Therefore, the
analysis is subdivided into several categories defined by the number of leptons in the event,
their flavors, and their charges. Each of these categories is further subdivided into bins
defined by the kinematic variables that enhance the discrimination against SM backgrounds
and the sensitivity to possible mass hierarchies of new particles.

Among the SM processes yielding the same final states as those targeted in this search
there are WZ production, nonprompt leptons, external and internal (where the emitted
photon is virtual) conversions, rare SM processes (i.e., multiboson production or single-
boson production in association with a tt pair), and charge misidentification. The dominant
source of background varies depending on the considered category and thus the search
strategy is tailored accordingly.

5.1 Two same-sign dilepton category

Although most of the targeted models naturally yield three charged lepton final states, for
compressed-spectrum scenarios, e.g. when the mass splitting between the next-to-lightest
SUSY particle and the LSP is small, one of the leptons from the decay chain of a neutralino
can be very soft, such that it may not fulfill the selection requirements. By accepting
events with two SS leptons, we recover some of these missing events while keeping the SM
background under control.

We require two SS leptons with py > 25 (20) GeV for the leading and pp > 15 (10) GeV
for the trailing electron (muon), no third lepton with pr > 20, 10,20 GeV (e,u,7) passing the
tight identification criteria, and p%liss > 60 GeV. To suppress the dominant WZ background,



Niets | Mt (GeV) | p¥ (GeV) | piis < 100GeV | 100 < piis < 150 GeV | 150 < pitis < 200 GeV | piiss > 200 GeV
SS02 (++
<50 $s01 (++) SS04 SS05
$S03 (——)
<100 Ssor
+
0 >50 $S06 (++) SS09 SS10
SS08 (——)
SS12
>100 SS11 (++) SS14 SS15
SS13 (——)
SS17 (++
<50 $S16 (++) SS19 $S20
SS18 (——)
<100 S5
+
1 >50 $s21 (++) SS24 SS25
SS23 (——)
Ss27
>100 $S26 (++) $529 SS30
$S28 (——)

Table 1. Search regions for events with two SS light-flavor leptons.

events are vetoed if they contain an opposite-sign same-flavor (OSSF) pair formed from
loose electrons or muons within a +15 GeV window around the Z boson mass, taken to be
91 GeV. To reduce the contribution from the processes with low-mass resonances, events
are vetoed if they contain an OSSF pair with an invariant mass below 12 GeV.

The events are first divided into two categories: with and without a jet of pp > 40 GeV.
Signal processes would populate the one-jet category when accompanied by initial-state
radiation (ISR). In compressed scenarios where the electroweak production and decay of
sparticles produces limited p%iss, the compensating boost to the sparticle system may raise

the laboratory prrfliss above the selection threshold. Further binning is done in p%iss, the min-

imum transverse mass (Mp = V' 2pRisspl[1 — cos(A@)]) computed for each lepton, and the
pr of the dilepton system (péTg). The bins with enough events are also split by charge to help
constrain charge-asymmetric backgrounds. This categorization is summarized in table 1.

5.2 Three or more leptons

Most of the targeted models described in section 2 and depicted in figures 1 and 2 yield
three isolated leptons and significant p%iss in the final state.

Events are selected on the condition that they have p%iss > 50 GeV and contain at least
three leptons, of which at most two are 7, candidates. The leading electron (muon) must
satisfy pp > 25(20) GeV, while the subleading electron (muon), if present, must satisfy
pr > 15(10) GeV. These criteria are driven by the pr thresholds of the dilepton triggers
used in the analysis. If the leading lepton is a muon and the other leptons are electrons or
7, candidates, the muon threshold is increased to pp > 25 GeV. For events with one e or
p and two 1y, all leptons are additionally constrained to have |n| < 2.1, and the electron
(muon) must have pp > 30(25) GeV. These requirements are imposed to ensure that the
selected events have a high efficiency with respect to the required triggers. To reduce the
contribution from processes with low-mass resonances, events are vetoed if they contain an
OSSF loose-lepton pair with an invariant mass below 12 GeV. Additionally, in events with
exactly three leptons containing an OSSF pair of two e or u, the invariant mass of three



leptons is required not to be consistent with the mass of a Z boson (|Msy — Myz| > 15GeV)
in order to suppress contributions from asymmetric photon conversions.

These events are then classified according to the number of identified leptons and their
flavor. We distinguish between final states with three and more than three leptons and
among final states with differing 7, content as follows:

e Events with three light-flavor leptons (electrons or muons).

e Events with two light-flavor leptons and a 7y,.

Events with one light-flavor lepton and two ms.

Events with at least four light-flavor leptons and no 7,.

Events with at least three light-flavor leptons and one ,.
e Events with at least two light-flavor leptons and two 7,.

These categories are then further subdivided according to their kinematic properties
to define the different signal regions. Further binning of the events in the aforementioned
categories is described in detail in the remainder of this section.

5.2.1 Three light leptons (signal regions A and B)

In most of the cases two out of the three leptons (e or p) will form an OSSF pair. This is
signal region “A”. We further divide the events into three bins of invariant mass of the dilep-
ton pair, My, in order to separate processes that include a Z boson in the decay chain from
those that do not. One of the My, bins is defined to be below the Z mass (My < 75 GeV)
and the second one contains the events with My, above the Z mass (Mg > 105GeV),
which enhances the sensitivity to the scenarios with various mass splittings between the
X9 and X?. The third one is defined as the Z mass window (75 < M, < 105GeV), and
it is expected to contain the bulk of the standard model background events. In the case
of three same-flavor leptons, the OSSF pair with the invariant mass closest to the mass of
the Z boson is used. The transverse mass M+ of the third lepton in the event is computed
with respect to p%iss. For the SM WZ — 3/v process, the Mt variable computed in
this way is steeply falling around the W mass, and facilitates discrimination against the
dominant background from WZ production in the search. Both variables, Mt and p%ﬁss,
are used to further categorize the events with most of the standard model background
expected in low Mt and p%liss bins. These signal regions are summarized in table 2.
Signal region “B” contains the events in which no OSSF pair is found, further sorted
into two bins each for My, and Mp. The low Mt bins are then further subdivided into two
p%iss bins. Most of these events arise from a leptonic decay of Z — 77; therefore, the My,
is calculated from the opposite-sign (OS) dilepton pair whose invariant mass is closest to
the mean dilepton mass determined from Z — 77 simulation, which is 50 GeV. An event
lacking an OS pair (all three leptons have the same sign) most likely arises from Z — 77
with one lepton charge misidentified. In this case the event is assigned to the lowest My,
bin, and the M is taken to be the minimum M calculated from any of the three leptons

~10 -



M (GeV) p%iss (GeV) My, < 75GeV | 75 < My < 105GeV | My > 105 GeV

50 — 100 A01 A157 A32
100 — 150 A02 A16 A33
150 — 200 A03 A17 A34
0 — 100 200 — 250 A04 A18 A35

250 — 400 A19
400 — 550 A05 A20 A36

>550 A21
50 — 100 A06 A22 A37
100 — 150 A7 A23 A38

100 — 160
150 — 200 A08 A24 A39
>200 A09 A25 A40
50 — 100 A10 A26 Ad1
100 — 150 All A27 A42
150 — 200 A12 A28 A43
>160

200 — 250 A13 A29

250 — 400 A30 Ad4
Al4
>400 A31

Table 2. Search regions corresponding to category A, events with three electrons or muons that
form at least one opposite-sign same-flavor (OSSF) pair. Search region A15' overlaps with the WZ
control region of the analysis, and is not used in the interpretation.

My (GeV) | piss (GeV) | My < 100GeV | My > 100 GeV
50 — 100 BO1 B04
0— 120
>100 B02 B05
>120 >50 B03 B06

Table 3. Search regions corresponding to category B, events with three e or u that do not form an
opposite-sign same-flavor (OSSF) pair.

and the p%liss. These signal regions are summarized in table 3. For this category, the

dominant background arises from nonprompt leptons.

5.2.2 Three leptons with at least one 7, (signal regions C to F)

A third category “C” is built from events with two e or y forming an OSSF pair and a 7y;
it uses the same three My bins as in category “A”, again in order to separate off-Z and
on-Z regions. For these events, the two-lepton “stransverse mass”, Mty [65, 66], replaces
M for the further subdivision of the bins, as My is a more powerful discriminator with
respect to the dominant tt background containing two leptons and two neutrinos in the
final state. Mo is computed with the leptons that are most likely to be the prompt ones
from a W boson decay, and in case of tt processes it has an endpoint at the W boson mass;
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PSS (GeV) | 75 < My < 105GeV | Mro(£1,65) (GeV) | My < 75GeV | My > 105 GeV
50 — 100 C06 cot C12
100 — 150 o7 C02 C13
150 — 200 Co8 03 C14
200 — 250 0 — 100 Co4 C15

€09
250 — 300
300 — 400 C10 €05 C16
>400 Cl1
50 — 200 c17
>100
>200 C18

Table 4. Search region definition corresponding to category C, events with two e or p forming
an opposite-sign same-flavor (OSSF) pair and one 7, candidate. Regions where there is a Z boson
candidate are not split into Mo categories.

it is computed as:

MT2 = ) min ) |:
ﬁ!’%‘libs+ﬁi’%léss:p’¥llss

max{ Mr (9, 5¥E), Mr (52, 555} |, (5.1)
where the minimization is done over all possible momenta ﬁfT“iSS and ﬁ‘TnéSS summing to
the observed ﬁ%ﬁss. The probability to misidentify 73, is significantly larger than that to
misidentify an electron or muon; hence Mo is computed with a pair of light leptons in
this category. The Mty bins are defined so that the vast majority of the SM backgrounds
are at low Mo, especially the tt contribution. For the signal regions containing a Z boson
candidate, the categorization in terms of Mo is not performed. The complete set of
requirements defining the signal regions for events in this category is given in table 4.

For events with a 7, and two light leptons that do not form an OSSF pair (i.e., eTe®,
ptut, pteT, ,uiei), the OS pair, if present, with the invariant mass closest to the corre-
sponding dilepton mass expected from a Z — 77 decay (50 GeV for eu and 60 GeV for ery,
or umy) is used for the event categorization. If no OS pair is present, the event is counted
in the lowest My, bin. An additional splitting of the regions high in SM background with
My < 100GeV is introduced to enhance the sensitivity to various new-particle spectra.
Further categorization is performed depending on whether the e or p form an OS (category
“D”) or SS (category “E”) pair. The final search region binning is shown in tables 5 and 6.
The Mo variable is computed with a pair of the OS light leptons if it is present, otherwise
a light lepton leading in pr and a 7, is used.

The last category (category “F”) includes events with two m,s and an e or y, for which
the binning is shown in table 7. The Mro variable is computed with the light lepton and
the leading 7,. For all these categories ( “C” to “F”), the dominant source of background
arises from nonprompt leptons.

5.2.3 More than three leptons (signal regions G to K)

The remaining signal regions comprise events with at least four leptons. This category
benefits from much lower SM backgrounds compared to the three-lepton category, but
suffers from low branching fractions for the signals considered.
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Mro(l1,65) (GeV) | piiss (GeV) | My < 60 GeV | 60 < My < 100 GeV | My, > 100 GeV
50 — 100 DO1 D06 D11
100 — 150 D02 D07 D12
0 — 100 150 — 200 D03 D08 D13
200 — 250 D04 D09
D14
> 250 D05 D10
50 — 200 D15
>100
>200 D16

Table 5. Search region definition corresponding to category D, events with one e and one p of OS
and one 1, candidate.

Mrya(61,7) (GeV) | piiss (GeV) | My < 60GeV | 60 < My < 100GeV | My > 100 GeV
50 — 100 E01 E06
100 — 150 E02 E07
0— 100 150 — 200 E03 E08 Ell
200 — 250 E04 E09
>250 E05 E10
>100 > 50 E12

Table 6. Search region definition corresponding to category E, events with two e or u of same sign
and one 1, candidate.

Mro(£,71) (GeV) | pRiss (GeV) | My, < 100 GeV | My, > 100 GeV

50 — 100 FO01 FO7

100 — 150 F02 FO08

150 — 200 F03 F09

0 — 100

200 — 250 F04

250 — 300 FO05 F10
>300 F06

50 — 200 Fi1

>100

>200 F12

Table 7. Search region definition corresponding to category F, events with one electron or muon
and two 7, candidates.

The signal regions are formed according to the number of OSSF pairs (with any lepton
entering at most one pair) and the number of 7,s in the event. This separation is motivated
by the production of a Z or Higgs boson in the decay chain that would then decay into two
light-flavor leptons or two 7, candidates.

The data are further subdivided in intervals of p%iss so as to more efficiently discrimi-

nate between signal and background. The search region definitions and their notations are

summarized in table 8.
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miss 0, 1m, 2Th
P (GeV)
nOSSF > 2 | nOSSF < 2 | nOSSF > 0 | nOSSF > 2 | nOSSF < 2
0—50 GO1 HO1 101 JO1 KO01
50 — 100 G02 HO2 102 JO2 K02
100 — 150 GO03 HO03 103 Jo3
150 — 200 G04 K03
HO4 104 Jo4
>200 GO05

Table 8. Search region definition corresponding to categories G-K, events with four or more
leptons. Categorization is made based on the number of OSSF pairs (nOSSF).

Definition

0 jets, Mt > 100 GeV and p%liss > 140 GeV

1 jet , My < 100 GeV, p% < 100 GeV and piss > 200 GeV
Mr > 120 GeV and pi'ss > 200 GeV

PSS > 250 GeV

Mra(l1,7) > 50GeV and p%liss > 200 GeV

Mra(€, 1) > 50 GeV and prTIliss > 200 GeV

PSS > 75 GeV

PSS > 200 GeV

Bin | Final state

2 SS leptons

2 S8 leptons

3 light leptons

3 light leptons

2 light leptons and 1 tau
1 light lepton and 2 taus
1 light lepton and 2 taus

L N O Ot ks W N -

more than 3 leptons

Table 9. Definition of the aggregated regions for multilepton and two SS dilepton final states.

5.3 Aggregated signal regions

To facilitate the use of these results to test models not included in section 2 of this paper, we
provide a set of “aggregated signal regions” defined by much simpler selections. Typically,
the sensitivity to the signal models obtained by using the aggregate regions is weaker by
a factor of two compared with that of the full analysis. The definitions of all aggregated
regions are summarized in table 9.

6 Backgrounds

The SM backgrounds leading to the final states under consideration can be divided into
the following categories:

o WZ or W~* production: when both W and Z or v* bosons decay leptonically, these
events produce the same signature as the new physics scenarios targeted by this
analysis: three energetic and isolated leptons and a sizable p%iss due to a neutrino
from the W boson decay. This source is by far the dominant background in the

searches with three e or i, including an OSSF dilepton pair. A SS dilepton signature

may also be produced when the W boson is accompanied by a v* or off-shell Z boson,
when one of the leptons from the Z or v* decay fails the applied selection criteria (such
as a Z boson mass veto or a minimum pr requirement on a vetoed lepton), or when
the Z boson decays to 7 leptons yielding a semileptonic (one 7 decays hadronically

and one decays to leptons) final state.
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e Nonprompt e, , and 7 1: depending on the lepton multiplicity, this background is
dominated by W+jets (especially in the SS dilepton regions), tt, or Drell-Yan pro-
cesses. This category contributes the largest background contribution in the trilepton
search regions, either that contain a 7, candidate, or that do not contain an OSSF
pair.

e External and internal conversions: these processes contribute to the SS dilepton
or trilepton final state when the production of a W or a Z boson is accompanied by
radiation of an initial- or final-state photon and this photon undergoes an asymmetric
internal or external conversion in which one of the leptons has very low pp. This soft
lepton has a high probability of failing the selection criteria of the analysis, leading
to a reconstructed two- (in case of a W boson) or three-lepton (in case of a Z boson)
final state. This background mostly contributes to categories with an OSSF pair and
to final states with two SS leptons.

e Rare SM processes with multiple prompt leptons: rare SM processes that yield a
SS lepton pair or three or more leptons include multiboson production (two or more
bosons, including any combination of W, Z, H, or a prompt +), single-boson pro-
duction in association with a tt pair, and double parton scattering. Some of these
processes have a very small production rate, and are in some cases further suppressed
by the b jet veto. The contribution of such processes is estimated from MC simula-
tion.

e Electron charge misidentification: a background from charge misidentification arises
from events with an OS pair of isolated ep or ee in which the charge of one of the
electrons is misreconstructed. In most cases, this arises from severe bremsstrahlung
in the tracker material. This is a small background, manifesting itself in the SS
dilepton category or in the category with a SS dilepton pair and a 7, candidate.

The WZ background contribution is normalized to data in a dedicated control region
containing events with three light leptons: only events with an OSSF pair with an invari-
ant mass of 75 < My < 105GeV are selected. Additional requirements on these events
are: Mt < 100GeV and 35 < p?iss < 100GeV. The purity of this WZ selection is ap-
proximately 86%. This definition overlaps with the search region SR A15 of the trilepton
search category. As a consequence, the latter region is not used for the interpretation of
the results in terms of new-physics models.

A good description of the My distribution in our WZ simulation is crucial in this search,
especially in the tail where new physics may appear. The tail of the M distribution is a
result of, in order of importance, the accidental usage of a wrong pair of leptons to compute
the mass of the Z candidate and the Mt of the W candidate (“mispairing” of the leptons),
the p%liss resolution, and the W boson width. The prediction of lepton mispairing from
simulation is confirmed in a control sample in the data similar to the one described above
but only allowing events with an OSSF pair of different flavor than the third lepton and
using the OS pair of leptons of different flavor in the My, computation. More details on
these checks can be found in section 7.
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The background from nonprompt light leptons is estimated using the “tight-to-loose”
ratio method, which is described in detail in ref. [40]. The probability for a loosely defined
light lepton to pass the full set of selection criteria is measured in a multijet data sample
enriched in nonprompt leptons, called the measurement region. Once measured, this prob-
ability is applied in a sample of events that pass the full kinematic selection, but where at
least one of the leptons fails the nominal selection while passing the loose requirements, in
order to predict the number of events from nonprompt leptons entering each search region.
The contribution from nonprompt 7, leptons is estimated in a similar way. This time, the
“tight-to-loose” ratio is measured in a Z-+jets enriched control sample in data in which a 7,
candidate is required to be present in addition to an OSSF pair consistent with the Z boson
decay. The residual contribution from prompt leptons in the measurement and application
regions is subtracted using MC simulation. It is verified in both MC simulation and low-
p%liss data control regions that this method describes the background from the nonprompt
leptons entering the different search regions within a systematic uncertainty of 30%.

The modelling of the conversion background is verified in a data control region enriched
in both external and internal conversions from the Z+jets process with Z — £/ and
~*) = ¢¢, where one of the leptons is out of acceptance. This control region is defined
by |My — Mz| > 15GeV, |Mz; — Mz| < 15GeV, and pss < 50GeV. The expected
background yields are found to agree with the observed counts in data within the statistical
uncertainties. Scale factors are derived for the modelling of the asymmetric conversions
to electrons or muons in the Zy*) process after subtraction of the residual nonprompt
lepton and WZ backgrounds. The scale factors are found to be 1.04 +0.11 and 1.2540.24,
respectively, and are used to derive the systematic uncertainty on this process.

The charge misidentification background in the SS dilepton channel is estimated by
reweighting the events with OS lepton pairs by the charge misidentification probability. For
electrons, this probability is obtained from simulation and cross-checked on an on-Z ete®
control region in data, and is in the range 10~°~10~3 depending on the electron’s pt and
1. Studies of simulated events indicate that the muon charge misidentification probability
is negligible.

7 Systematic uncertainties

The systematic uncertainties in the background estimates and signal acceptance affect
both the overall normalization of the yields and the relative populations of processes in the
search regions. The systematic uncertainties considered in this analysis are summarized in
table 10.

Experimental uncertainties include those in the lepton selection efficiency, the trigger
efficiency, the jet energy scale, and the b tag veto efficiency.

Lepton identification efficiencies are computed with the tag-and-probe technique [36,
37], with an uncertainty of 3% per lepton. The 7, identification efficiency is similarly
determined with an uncertainty of 5% [44].

The trigger efficiency uncertainty is obtained from measuring efficiencies of all trigger
components with the tag-and-probe technique, and is estimated to be less than 3%.
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Source Estimated uncertainty (%) Treatment
e/p selection 3 normalization
T selection 5 normalization
Trigger efficiency 3 normalization
Jet energy scale 2-10 shape

b tag veto 1-2 shape
Pileup 1-5 shape
Integrated luminosity 2.5 normalization
Scale variations and PDF (ttZ and ttW) 15 normalization
Theoretical (ZZ) 25 normalization
Conversions 15 normalization
Other backgrounds 50 normalization
Monte Carlo statistical precision 1-30 normalization
Nonprompt leptons (closure) 30 normalization
Nonprompt leptons (W /Z bkg. subtraction) 5-20 shape
Charge misidentification 20 normalization
WZ normalization 10 normalization
WZ shape 5-50 shape
ISR uncertainty 1-5 shape
Scale variations for signal processes 1-2 shape
Lepton efficiencies 2 normalization
Signal acceptance (p2'*® modelling) 1-5 shape

Table 10. Summary of systematic uncertainties in the event yields in the search regions and their
treatment. Uncertainties are allowed to vary only the normalization of all the bins at once, or both
the shape and the normalization (allowing for different correlations across the bins). The upper
group lists uncertainties related to experimental effects for all processes whose yield is estimated
from simulation; the middle group lists uncertainties in these yields related to the event simulation
process itself. The third group lists uncertainties for background processes whose yield is estimated
from data. Finally, the last group describes uncertainties related to the extraction of the signal
acceptance in MC simulation.

The jet energy scale uncertainty varies between 2 and 10%, depending on the pt and 7
of the jet. This uncertainty affects other event quantities such as the b tag veto, p%ﬁss, M,
and Mo, and is computed by shifting the energies of all jets coherently and propagating
the variation to all of these kinematic variables. Correlation effects due to the migration
of events from one search region to another are taken into account. These variations yield
estimated uncertainties ranging from 2 to 10% in the simulated signal and background
yields in the different search regions. Similarly, the b jet veto efficiency is corrected for the
differences between data and simulation, and an associated uncertainty with this correction
is 1-2%, which takes into account the kinematic difference between signal events and those
used to measure such efficiency. The uncertainty in the modelling of pileup is computed by
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modifying slightly the pileup reweighting profile and is measured to be 1-5%, depending
on the search region. The uncertainty in the integrated luminosity is 2.5% [67].

The dominant source of background for most of the event categories described in sec-
tion 5 is WZ production. Systematic uncertainties are derived from detailed evaluation of
the modelling of this process. The uncertainty in the normalization of the WZ background
is 10%. This includes statistical uncertainties in the yields in the control sample used for
normalization, and in the subtraction of the non-WZ contributions to the sample. An
additional uncertainty stems from the modelling of the Mt shape in the simulation of the
WZ process. To estimate the effect of a potentially different p%iss resolution and W width
in data and simulation on the W boson Mt distribution shape, we verify the Mt shape
prediction from simulation in W~ and W+jets control samples in data. After applying a
threshold pt > 40 GeV on the photon to suppress the contribution of W+ events produced
by final-state radiation (FSR) which influences M, we find the W boson Mt distribution
shapes in simulated W~, W+jets, and WZ processes to be the same. We thus proceed to
measure the W~y and W+jets Mt shape in a dedicated control sample in which an energetic,
well-identified, and isolated photon passing the aforementioned pr threshold is required,
together with a lepton passing the same criteria as those selected in the trilepton search
regions, and prT“iSS > 50 GeV. A minimum separation of AR > 0.3 is required between the
lepton and the photon to further reduce the FSR contribution. The residual W+jets con-
tribution in this control sample is about 20%, and consists of events where a jet has very
high electromagnetic fraction, and thus is not subject to large mismeasurements that might
influence the Mt tail. Residual contamination from processes other than W~ or W+jets
is subtracted using MC, and the Mt shape measured in this control region is compared
to the one predicted by the WZ simulation. The measured shape is found to agree well
with the prediction from simulation within the statistical uncertainties, and the precision
of this comparison is used to derive systematic uncertainties on the high- Mt bins of the
trilepton search. This uncertainty is between 5 and 40%, from the comparison of the My
shape in the WZ simulation with the one measured in the W~ control region. The size of
this uncertainty increases for higher Mt values and is driven by the statistical uncertainty
of the W+ control sample. Systematic uncertainties on the modelling of My, are neglected
as lepton momentum scale and resolution effects are too small to have significant effects in
this analysis [51, 68].

Further uncertainties in background yields estimated from simulations arise from the
unknown higher-order effects in the theoretical calculations of the cross sections, and from
uncertainties in the knowledge of the proton PDFs. The uncertainties from the PDF's are
estimated by using the envelope of several PDF sets [69]. The effect of these theoretical un-
certainties is 15% for ttW and ttZ, and 25% for ZZ backgrounds. Theoretical uncertainties
are also considered for the remaining minor backgrounds estimated purely from simulation,
in which 15% uncertainty is assigned to processes with a prompt v modelled with NLO
accuracy corresponding to the precision of the scale factor measured in a dedicated control
region, and 50% to other rare processes.

Other sources of uncertainties are associated with the backgrounds that are derived
from, or normalized in, data control samples. The nonprompt background prediction has an
uncertainty of 30% assigned to both light-lepton and 7, cases. This uncertainty arises from
the performance of the method in the simulation (closure) in various regions of parameter
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space, and is given by the observed deviations between the estimated and observed yields
in the control sample.
The uncertainty in the measurement of the charge misidentification background is

* events in data and simulation.

derived from the difference between the yields of on-Z ete
This uncertainty is found to be 20%.

The MADGRAPH modelling of ISR, which affects the total transverse momentum (pot)
of the system of SUSY particles, is improved by reweighting the pIT$R distribution in MC
SUSY events. This reweighting procedure is based on studies of the transverse momentum
of Z events in data [70]. The reweighting factors range between 1.18 at plqu ~ 125 GeV
and 0.78 for plF’R > 600 GeV. The deviation of the reweighting factors from 1.0 is taken as
the systematic uncertainty on the reweighting procedure.

Additional uncertainties in the signal acceptance extraction are considered for the
renormalization and factorization scale variations by simultaneously varying them by a

miss

factor of 2 up and down [27-29], p'*** modelling and lepton efficiencies due to the differences

in simulations between signal and background samples.

8 Results

The estimation methods for the dominant background sources, WZ production and non-
prompt leptons, have been extensively validated. Such checks are based on both simulation
and data control regions as described in sections 6 and 7. In particular, the modelling of
the most relevant kinematic distributions used to define the signal regions is validated for
each category. Distributions in p?iss are shown in figure 4 for the SS dilepton channel
for events with 0 or 1 jet. Key kinematic distributions for the three-lepton channel are
displayed in figure 5 and for three lepton events with at least one 7y, in figure 6. Figure 7
displays the p%ﬁss for events with four leptons. An example signal mass point in the 5{{5—5{?
mass plane for which each category has sensitivity, is also shown in these figures.

The expected and observed yields are summarized in table 11 for the SS dilepton chan-
nel, in tables 12-17 for the trilepton channel, and in table 18 for the four-lepton channel.
The observed event counts are consistent with those expected from the SM backgrounds.

The comparisons between the expected and observed yields are presented in figure 8
for the SS dilepton channel, in figures 9-11 for the trilepton channel, and in figure 12 for
signal regions with at least four leptons. An example signal mass point in the %f—)}? mass
plane for which each category has sensitivity, is also shown in these figures. Finally, results
for the aggregated signal regions are presented in figure 13 and table 19.

This analysis is mostly statistically limited, as can be seen from the ratio plots of
figures 4-12. However, there are search regions for which other sources of uncertainties
are also relevant. Such is the case for the on-Z signal regions A, which is dominated by
the systematic uncertainty of the WZ normalization for the low-Mt bins and the WZ
shape uncertainty for the high- Mt bins. In regions that contain at least one 7, candidate,
the systematic uncertainty on the nonprompt background is comparable to the statistical
uncertainty. Finally, the uncertainty on the four-lepton signal regions G-K, is dominated
by the ZZ normalization uncertainty.
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Figure 4. Distribution of p2iss for events with 2 SS leptons and 0 jets (left) or 1 jet (right).
An example signal mass point in the flavor-democratic model with mass parameter x = 0.05 is
displayed for illustration. The numbers in the parentheses denote the ﬁ: and X! masses, namely
Mgt = Mgy = 500 GeV and mszo = 350 GeV. The last bin contains the overflow events.

Nigts | Mr (GeV) | pff (GeV) | piiss < 100 GeV 100 < piss < 150 GeV | 150 < piiss < 200GeV | pihiss > 200 GeV
(exp.) (obs.) (exp.) (obs.) (exp.) (obs.) (exp.) (obs.)
56 £ 9 50 ++
<50 1430 £ 180 1193 59+ 1.2 7 4.5+ 35 2
36+ 7 25 ——
<100
38+6 41 4+
0 >50 163 £ 19 143 14.4 + 3.2 11 6.3+0.9 6
23 + 4 24 ——
27+ 4 19 ++
>100 82+ 12 67 5.0 £ 0.8 9 5.1+ 2.6 3
18 + 4 18 —
98 £+ 14 116 ++
<50 603 £ 80 591 33+ 6 43 114+17 13
66 &+ 10 69 ——
<100
51 £ 7 52 ++
>50 264 + 31 232 29 £5 28 222+ 34 27
31+4 35 ——
16.4 + 2.9 18 ++
>100 4 +7 49 6.7+ 1.1 9 3.9+0.8 7
10.7+£19 13 —-

Table 11. SS dilepton category: expected and observed yields in events with two SS light-flavor
leptons. For each bin, the first number corresponds to the expected yield (exp.) and its uncertainty,
and the second denotes the observed yield (obs.). The uncertainty denotes the total uncertainty in
the yield.
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Figure 5. Distribution of kinematical observables used in the event selection for events entering
signal regions A: the transverse mass of the third lepton (upper left), the piiss (upper right) and
the My, of the OSSF pair (lower). Two signal mass points in the flavor-democratic model with mass
parameter = 0.5 are displayed for illustration. The notation is analogous to that used in figure 4.
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Figure 6. Distributions in the stransverse mass for events with two OSSF light leptons and one 7,
(left) and in piiss for events with one light-flavor lepton and two m,5. Two signal mass points in the
7-enriched (left) and the 7-dominated (right) scenarios with mass parameter x = 0.5 are displayed
for illustration. The notation is analogous to that used in figure 4.
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Figure 7. Distribution in pi for events with 4 or more leptons entering search categories G-K.
An example signal mass point in the Y{x9 production GMSB model is displayed for illustration. The
numbers in the parenthesis denote the ¥} and G masses, namely mzo =100 GeV and mg =1 GeV.
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My (GeV) | piss (GeV) | My < 75GeV | 75 < My < 105GeV | My > 105 GeV
(exp.) (obs.) (exp.) (obs.) (exp.) (obs.)
50 — 100 185 + 22 186 | 2180 +£ 260 2278 121 £ 14 123
100 — 150 356 34 440 £ 70 429 32+5 32
150 — 200 9.3 £ 22 11 129 £ 28 123 11.6 £ 2.6 4
0 — 100 200 —-250 | 3.3 £1.0 1 48 £ 10 37 29108
250 — 400 42+9 38
400 — 550 4.0=£1.0 5 8.5+ 21 5 3.7£1.0 5
>550 2.6 £ 0.8 2
50 — 100 50 £8 60 390 £ 50 391 32£5 17
100 — 160 100 — 150 15+ 4 19 72+19 61 9.6 +24 9
150 — 200 1.9 £ 0.6 1 10+ 4 9 24+0.7 0
>200 0.8 +04 3 49+19 8 1.0£04 2
50 — 100 13.0 &£ 2.8 16 37T+£9 35 94+ 24 9
100 — 150 | 11.9 £ 3.2 17 21 £8 17 6.6 + 2.1 3
> 160 150 =200 | 3.1 +£1.2 4 8.9 +£3.1 7 3.1+1.0 0
200 -250 | 2.1 £0.8 3 3.6+ 13 5
250 — 400 0.9 4 0.4 1 41+16 3 2.5+0.8 0
>400 1.0 £ 0.5 1

Table 12. Category A: expected and observed yields in events with three e or u that form at least
one OSSF pair. For each bin, the first number corresponds to the expected yield (exp.) and its
uncertainty, and the second denotes the observed yield (obs.). The uncertainty denotes the total
uncertainty in the yield.

My (GeV) | piiss (GeV) | My < 100GeV | My > 100 GeV
(exp.)  (obs.) | (exp.)  (obs.)
50 — 100 52 + 11 47 4.6 £ 1.6 2
>100 23+ 6 19 1.8 £ 0.8 3
>120 > 30 31+7 20 41+1.0 6

0—-120

Table 13. Category B: expected and observed yields in events with three e or p that do not form
an OSSF pair. For each bin, the first number corresponds to the expected yield (exp.) and its
uncertainty, and the second denotes the observed yield (obs.). The uncertainty denotes the total
uncertainty in the yield.
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PSS (GeV) | 75 < My < 105GeV | Mrpo(£1,62) (GeV) | My < 75GeV | My > 105 GeV

50 — 100 | 3700 £ 1100 3427 440 +£ 130 420 | 231 £ 65 223
100 — 150 83 + 14 97 30 £ 8 22 | 41 £11 32
150 — 200 194 £ 3.1 18 8.5 £ 2.6 2 11 +4 6
200 — 250 0—100 1.9+ 0.8 2 |27+x11 1
14.6 + 2.6 17
250 — 300
300 — 400 3.2+0.7 0 1.1+ 0.6 1 129£10 3
>400 1.5+ 0.6 1
50 — 200 8.8 £ 2.0 10
>100
>200 1.9 £ 0.7 1

Table 14. Category C: expected and observed yields in events with two e or u forming and
OSSF pair and one 7,. For each bin, the first number corresponds to the expected yield and
its uncertainty, and the second denotes the observed yield. The uncertainty denotes the total

uncertainty in the yield.

Mro(61,65) (GeV) | piss (GeV) | My < 60GeV | 60 < My < 100GeV | My > 100 GeV
50— 100 | 140 £40 126 | 117 £32 102 32410 21
100150 | 41+12 37 | 35+ 10 24 1m+4 7
0— 100 150 -200 |87+27 7 |78+25 4 37+15 7
200-250 [27+11 2 [29+12 1
30£12 0
>250 [23+09 1 |14+06 1
50 — 200 14407 1
>100
>200 0.06 + 0.05 0

Table 15. Category D: expected and observed yields in events with an opposite-sign ey pair and
one 7y,. For each bin, the first number corresponds to the expected yield and its uncertainty, and
the second denotes the observed yield. The uncertainty denotes the total uncertainty in the yield.

Mro(l1,71) (GeV) | pliss (GeV) | My < 60GeV | 60 < My < 100 GeV | My, > 100 GeV

50 — 100 40+£7 56 34£6 28
100 — 150 94+£22 12| 48+12 9
0—100 150 — 200 50+ 1.5 3 22+09 1 54+15 4
200—-250 [ 095+£032 O 0.7+ 0.4 1
>250 0.89 £0.32 1 |0.73 +£0.32 0
>100 > 50 49+14 4

Table 16. Category E: expected and observed yields in events with one SS e or p and one 7,. For
each bin, the first number corresponds to the expected yield and its uncertainty, and the second
denotes the observed yield. The uncertainty denotes the total uncertainty in the yield.
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Mrpsy(€,71) (GeV) | piiiss (GeV) | My, < 100 GeV My > 100 GeV
(exp.) (obs.) (exp.) (obs.)
50 — 100 170 + 50 146 42 = 11 34
100 — 150 24+ 7 21 7.0+ 21 6

0— 100 150 — 200 58 £ 2.0 2 1.9+ 0.8 3
200 — 250 1.8 £ 0.8 1
250 — 300 0.9 £ 0.6 1 1.3 £ 0.6 2
>300 0.23 £ 0.17 0
50 — 200 30+1.1 1
>100
>200 0.45 + 0.30 1

Table 17. Category F: expected and observed yields in events with one e or p and two 7,. For
each bin, the first number corresponds to the expected yield and its uncertainty, and the second
denotes the observed yield. The uncertainty denotes total uncertainty in the yield.
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Figure 12. Expected and observed yields comparison in signal regions with at least four leptons
(categories G-K). An example mass point in the Y% production GMSB model is displayed for
illustration. The notation is analogous to that used in figure 7.
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OTh lTh 27’},
PR (GeV)
nOSSF > 2 nOSSF < 2 nOSSF > 0 nOSSF > 2 nOSSF < 2
G H I J K
(exp.) (obs.) (exp.) (obs.) (exp.) (obs.) (exp.) (obs.) (exp.) (obs.)

0—50 460 £ 120 619 | 109 £ 2.2 14 42 £ 8 51 307 29 24 £ 8 30
50—100 | 45+14 51 | 77415 6 |164+35 14 | 57+£17 5 | 00779 1
100 — 150 2.7£08 2 2.7+ 0.6 0 4.7+ 14 4 0.9 £0.5 1
150 — 200 | 1.12 £ 0.33 2 0.6 +04 0

1.9 £ 0.6 1 29+09 5 0.63 £ 0.32 0
>200 0.97 £ 0.32 0

Table 18. Categories G-K: expected and observed yields in the 4¢ category of the analysis. For
each bin, the first number corresponds to the expected yield (exp.) and its uncertainty, and the
second denotes the observed yield (obs.). The uncertainty denotes the total uncertainty in the yield.

Final state Definition Event yield
(exp.)  (obs.)

1 2 SS leptons 0 jets, Mt > 100 GeV and pll’liss > 140 GeV 12,5 + 34 13
2 2 SS leptons 1 jets, M < 100 GeV, p& < 100 GeV and p&iss > 200GeV | 18 £ 4 18
3 3 light leptons Mt > 120 GeV and p%‘iss > 200 GeV 19+ 4 19
4 3 light leptons pa’«‘iss > 250 GeV 142 £+ 34 128
5 | 2 light leptons and 1 7, Mro(fy,7) > 50 GeV and p&iss > 200 GeV 22+5 18
6 | 1 light lepton and 2 ;s Mro(¢, 1) > 50GeV and p%iss > 200 GeV 1.2 £ 0.6 2
7 | 1 light lepton and 2 7,8 p%‘iss > 75 GeV 109 + 28 82
8 more than 3 leptons p%‘iss > 200 GeV 3.2+0.8 4

Table 19. Expected and observed yields in the aggregated signal regions defined in section 5.3.
For each bin, the first number corresponds to the expected yield (exp.) and its uncertainty, and the
second denotes the observed yield (obs.). The uncertainty denotes the total uncertainty in the yield.
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Figure 13. Expected and observed yields comparison in the aggregated signal regions. In this
plot, the charge misidentification background prediction from control samples in data (that is only
relevant in the first two bins due to the SS dilepton final state) are included in the nonprompt
background prediction.

9 Interpretations of the searches

No evidence of any significant deviation with respect to the SM prediction is observed.
The results of this search are interpreted in the context of the simplified models covering
the scenarios described in section 2.

We compute 95% confidence level (CL) upper limits on the new-physics cross sec-
tions using the CLg method [71-74], incorporating the uncertainties in the signal efficiency
and acceptance and the uncertainties in the expected background described in section 7.
Lognormal nuisance parameters are used for the signal and background estimate uncer-
tainties. Only the categories with the lepton flavor, multiplicity, and charge requirements
corresponding to the topology of the model under consideration are combined to maximize
sensitivity to the model in question.

The production cross sections are computed at NLO plus next-to-leading-log (NLL)
precision [27-29, 75] in a limit of mass-degenerate wino Y9 and )zli, light bino X9, and with
all the other sparticles assumed to be heavy and decoupled. Similarly, for the higgsino
models, production cross sections are computed in a limit of mass-degenerate higgsino Y9,
S{f, and X9 with all the other sparticles assumed to be heavy and decoupled.

The interpretations of the results are displayed in figures 14-19 for all of the models
described in section 2. Each plot shows the 95% CL upper limit on the chargino-neutralino
production cross section as a function of the relevant pair of sparticle masses. The observed,
+1 Otheory Observed, median expected, and &1 Gexperiment €xpected contours are also shown.
The assumed BR for each model is displayed in each figure. For each interpretation, a
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Model Categories used Figure
)Zli)zg production, flavor-democratic, m; = mso + 0.5- (m%g — mf(?) A 14

Xi X3 production, flavor-democratic, m; = Mo +0.05 - (mgg — mso) SS, A 15 (left)
ﬁtig production, flavor-democratic, m; = mgo +0.95 - (myg _ m;(g) SS, A 15 (right)
)Zli)zg production, T-enriched, m; = mgo +0.05 - (m%g — m)z?) A, C 16 (left)
ﬁtig production, T-enriched, m; = mgo + 0.5- (mig — mi(f) A, C 16 (center)
ﬁtig production, T-enriched, m; = mgo +0.95 - (m;(g — mill)) A, C 16 (right)
)Zli)zg production, 7-dominated, ms = mso +0.5- (m%g - mf(ﬁ’) B-F 17
ﬁgg production, heavy sleptons, yliyg — WZ A 18 (left)
%f%g production, heavy sleptons, ﬁtig — WH SS, A-K 18 (right)
XX production, Y{x9 — Z7ZGG A-K 19 (upper)
0%9 production, X9x? — HZGG AK 19 (middle)
X)) production, x9x) — HHGG A-K 19 (lower)

Table 20. Summary of the interpretations of the results using different models.

combined global fit is performed using only the signal region categories listed in table 20,
in order to consider all the correlations across different bins and to constrain the background
estimation and uncertainties. No systematic uncertainty gets significantly constrained by
the global fit. The figure displaying each interpretation is also cited in the table.

The sensitivity in the flavor-democratic and 7-enriched models, where the mass differ-
ence between the ili, X9 and the ! is large, is driven by the signal regions A (three e or p
with an OSSF pair) with large My, Mt and pi values (SR A42, SR A43, and SR A44).
As in these signal regions observed counts in data are below the expected SM background,
the observed upper limit on the chargino and neutralino masses with a light X9 is stronger
than the expected one in figures 14-16.

On the other hand, in the compressed scenarios of the flavor-democratic and 7-enriched
models with z = 0.05 or z = 0.95, where masses of the heavier )ﬁc, XY are close to the mass
of the XV, the analysis sensitivity is dominated by the SS dilepton signal regions with an ISR
jet, and large Mt and p%iss values. Since in these regions the observed yields in data are
slightly above the expected SM background, the observed upper limit close to the diagonal
is weaker than the expected one in figure 15. To enhance the sensitivity to the 7-dominated
model (figure 17), yields from signal regions B to F are used in the interpretation. Among
these regions, the ones contributing the most to the total result are signal regions F (one
e or p and two 7, candidates), E (two e or p of same sign and one 7, candidate), and D
(one e and one p of opposite sign, and one 7, candidate) in order of importance.

In the case in which )ﬁc and X3 decay via W and Z bosons, the constraints on the
chargino and neutralino masses are weaker (figure 18 left) due to the lower branching frac-
tion to a multilepton final state, and higher WZ SM background in the on-Z signal regions
A which drive the sensitivity in this model. In the region where the mass difference be-
tween the )Zf, the X9, and the X! is close to the Z boson mass, the analysis sensitivity drops
significantly. This happens because the ﬁ[ and X3 decay products are produced at rest,
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Figure 14. Interpretation of the results in the flavor-democratic model with mass parameter

z = 0.5 obtained with events of category A. The shading in the mgo versus msg (= mili) plane

indicates the 95% CL upper limit on the chargino-neutralino production cross section. The contours
bound the mass regions excluded at 95% CL assuming the NLO+NLL cross sections. The observed,
+1 0¢heory (£1 standard deviation of the theoretical cross section) observed, median expected, and
+1 Oexperiment €xpected bounds are shown.

and the XY does not carry large momentum, leading to low additional p%liss in the detector.
Such a final state is very similar to the SM WZ production, and Mj, variable becomes the
only discriminating variable in the signal regions A. In the case of the considered signals,
the My, has an upper cutoff at msg —mgo while the SM WZ process does not. This reduces
the overall analysis sensitivity in this region and leads to a structure in the mass limit in
figure 18 (left).

For the model with )ﬁc and Y9 decaying via W and Higgs bosons, all signal regions of
the analysis are used. This approach is motivated by the diverse decay modes of the Higgs
boson to leptonic final states (via an intermediate W or Z boson, or 7 leptons). The most
important signal regions in the order of their sensitivity are B (three e or p that do not
form an OSSF pair), A, and to a smaller extent signal regions F, E, D, and SS. The signal
regions with more than three leptons (G to K) do not bring any visible improvement to
the sensitivity in this scenario.

Finally, in the considered GMSB scenarios leading to the ZZ, HZ, and HH bosons in
the final states (figure 19) all trilepton and four-lepton signal regions are used for the inter-
pretation. The sensitivity in the model with two Z bosons in the final state is dominated
by the four-lepton signal regions; in the model with two Higgs bosons in the final state by
the trilepton signal regions; and in the mixed scenario four-lepton signal regions are more
sensitive when the higgsino masses are low, while the trilepton signal regions contribute
the most when higgsinos are heavy.
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the Z mass.
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Figure 19. Interpretation of the results in the X9%? — ZZGG model (upper), the YO%9 — HZGG
model (middle), and the Y959 — HHGG model (lower) obtained with events of all trilepton (A-F)
and all four-lepton (G-K) categories. The observed, median expected, 1 Texperiment €xpected, and
£2 Oexperiment €Xpected 95% CL upper limit on the neutralino pair production cross section are
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10 Summary

Results are presented from a search for new physics in same-sign dilepton, trilepton, and
four-lepton events containing up to two hadronically decaying 7 leptons in proton-proton
collision data at /s = 13TeV, recorded with the CMS detector at the LHC and corre-
sponding to an integrated luminosity of 35.9fb~!. The data are categorized based on the
number, charge, and flavor of the leptons, and are subdivided into several kinematic regions
to be sensitive to a broad range of supersymmetric particles produced via the electroweak
interaction.

No significant deviation from the standard model expectations is observed. The re-
sults are used to set limits on various simplified models of supersymmetry (SUSY) that
entail the production of superpartners of electroweak gauge or Higgs bosons (charginos and
neutralinos). Specifically, we consider chargino-neutralino pair production, the electroweak
process that is expected to have the largest cross section, and higgsino pair production in
a gauge-mediated SUSY breaking inspired SUSY scenario. The resulting signal topologies
depend on the masses of the lepton superpartners.

Models with light left-handed sleptons lead to enhanced branching fractions to final
states with three leptons. The results imply limits on the masses of charginos and neutrali-
nos up to 1150 GeV at 95% confidence level for the flavor-democratic scenario, extending the
reach of our previous search [21] by about 450 GeV. In these models, searches in the same-
sign dilepton final state enhance the sensitivity in the experimentally challenging region
with small mass difference between the produced gauginos and the lightest supersymmetric
particle (LSP) that is inaccessible with the trilepton signature.

Assuming light right-handed sleptons, we consider two scenarios, one in which the
chargino decays to 7 leptons while the neutralino decays democratically, and another in
which both chargino and neutralino decay to 7 leptons. For the former we exclude masses
of charginos and neutralinos up to 1050 GeV, while for the latter masses up to 625 GeV are
excluded.

We also consider scenarios that involve the direct decay of gauginos to the LSP via
W and Z or Higgs bosons. For the models with W and Z bosons, chargino masses up
to 475 GeV are excluded, improving the previous reach by 200 GeV. In the case of the
neutralino decay via a Higgs boson, masses up to 180 GeV are excluded.

In the case of the gauge-mediated SUSY breaking model with four higgsinos and an
effectively massless gravitino as the LSP, we exclude higgsino masses up to 450 GeV de-
pending on the assumed next-to-LSP branching fraction to Z or H boson. Finally, results
are presented in a form suitable for alternative theoretical interpretations.
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