НОРМАЛЬНЫЙ ЗАКОН РАСПРЕДЕЛЕНИЯ В ОКРУЖАЮЩЕМ НАС МИРЕ

А. П. Севрюк

ГУО «Институт бизнеса Белорусского государственного университета», г. Минск; sasha.sevryuk.01@mail.ru; науч. рук. – И. И. Кондратенко

В статье рассматривается суть нормального закона распределения. На основе проведенного исследования приводится доказательство тому, что нормальное распределение действительно существует в окружающем нас мире и находит применение в различных отраслях науки и техники.

Ключевые слова: нормальное распределение; нормальный закон распределения; случайная величина; закон распределения.

Нормальный закон распределения без преувеличения можно назвать философским законом. Наблюдая за различными процессами и объектами в окружающем нас мире, мы часто сталкиваемся с тем, что существует «основная масса», которая соответствует тому или иному признаку и существуют отклонения в обе стороны.

Изучение этого распределения является **актуальным**, потому что такие базовые вещи как рост, вес, физическая сила людей, время вскипания чайника или забега стометровки, все это распределяется в соответствии с данным законом распределения.

В этой связи мною были определены следующие **цели** – изучить суть нормального закона распределения и проверить действительно ли он существует на примерах из окружающего нас мира.

Для достижения целей были использованы следующие **методы:** поиск информации в различных источниках, таких как научные статьи, книги, интернет ресурсы и ее анализ, проведение соцопроса и математических расчетов на его основе.

Формула функции распределения для нормального распределения имеет следующий вид $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$ ($\sigma > 0$). Стоит отметить, что она зависит всего лишь от двух параметров: **математического ожидания** (μ) и д**исперсии** (D) [1]. Чтобы рассчитать эти параметры можно воспользоваться двумя способами. Первый: рассчитать эти значения теоретически, на основе знания о процессе. Второй: рассчитать на основе бесконечной выборки, но получить выборку бесконечной длины мы не можем, поэтому мы пользуемся оценками параметра. **Оценка** — это число, вычисляемое на основе наблюдений, которое предположительно близко к оцениваемому параметру. Математическое ожидание равно

среднему арифметическому бесконечного количества значений случайной величины, однако, мы будем пользоваться оценкой, которую будем рассчитывать просто как среднее значение всей выборки $\mu = \frac{\sum_{i=1}^{N} Xi}{N}$. Математическое ожидание показывает расположение кривой нормального распределения на графике. Дисперсия характеризует разброс случайной величины относительно ее математического ожидания. Значение дисперсии очень сложно интерпретировать, поэтому часто пользуются значением среднеквадратичного отклонения (σ) , которое равно корню из

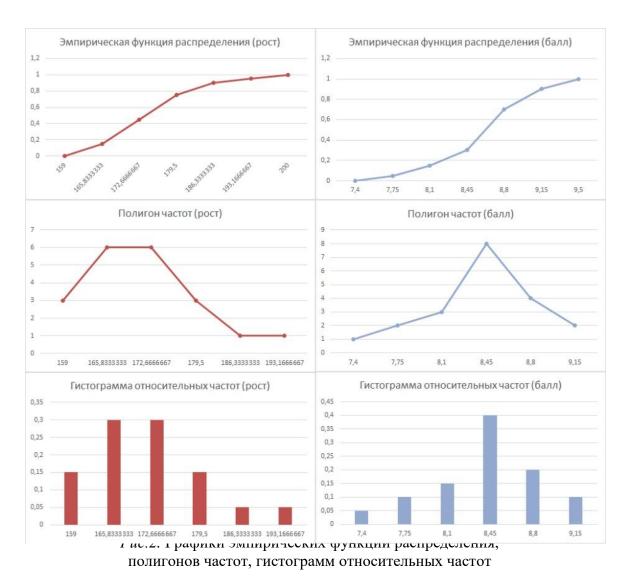
дисперсии и находится по следующей формуле $\sigma = \sqrt{\frac{\sum_{i=1}^{N}(Xi-\mu)^2}{N-1}}$ и показывает степень приплюснотости или заостренности пика кривой нормального распределения, чем больше σ , тем шире пик, чем меньше σ , тем уже пик. Если мы отложим интервалы равные среднеквадратическому отклонению на графике с нормальным распределением, то тогда в интервал математическое ожидание \pm среднеквадратическое отклонение попадет 68 % всех измерений, в интервал математическое ожидание ± 2 среднеквадратических отклонения попадет 95 % всех измерений, а в интервал математическое ожидание ± 3 среднеквадратических отклонения попадет 99,7 % всех измерений [2].

Примеры нормального распределения встречаются нам повсюду, выборы, процент проголосовавших «за» по всей стране распределен по нормальному закону распределения; износ травяного покрытия спортивных полей, который имеет определенную структуру: отметины находятся в обе стороны от центра поля и по бокам возле лавки тренера; погрешность измерительных приборов; залы ожидания, а именно, вокруг наиболее излюбленных или удобных мест общественного пользования, в особенности возле мест, откуда видна информация о прибытии и отправке транспорта, на полу всегда видны следы износа, которые напоминают кривую нормального распределения; рост людей; клин перелетных птиц; плиты дорог, тротуаров и пеших зон, которые чаще всего изнашиваются по краями многое другое. Что касается практического применения закона нормального распределения, то он широко используется во многих отраслях науки и техники. Например, с показателями надежности сельскохозяйственных машин и их элементов закон используется в случае определения характеристик рассеивания, например, времени и стоимости восстановления работоспособности машины и ее элементов.

В рамках написания данной статьи был проведен опрос 20 студентов, обучающихся в одной учебной группе. Студентам необходимо было указать свой рост и средний балл за прошлый учебный год. Результаты опроса представлены в таблице.

T)		
Результаты (опроса	стулентов

Рост	159	163	165	167	168	170	172	172	172	173	173	173	173	176	178	182	184	186	193	200
Средний балл	7,4	7,8	7,9	8,2	8,2	8,3	8,4	8,4	8,5	8,5	8,6	8,7	8,7	8,8	8,9	9,1	9,1	9,1	9,3	9,5


По полученным результатам были проведены математические расчеты с целью получения необходимых данных, таких как математическое ожидание, дисперсия и прочих для построения графиков, наглядно демонстрирующих результаты исследования. Результаты математических расчетов представлены на рис.1.

рост	Xi	Xi+1	Xi'	ni	wi	Xi' * ni	Xi'^2	Xi'^2 * ni	Zi	Zi+1	Φ(Zi)	Ф(Zi+1)	Pi	ni'	ni-ni'	(ni-ni')^2	((ni-ni')^2)/ni'
1	159	165,8333	162,41667	3	0,15	487,25	26379,17	79137,52	00	-1,009	-0,5	-0,3413	0,1587	3,174	-0,174	0,030276	0,009538752
2	165,8333	172,6667	169,25	6	0,3	1015,5	28645,56	171873,4	-1,009	-0,23285	-0,3413	-0,091	0,2503	5,006	0,994	0,988036	0,197370356
3	172,6667	179,5	176,08333	6	0,3	1056,5	31005,34	186032	-0,23285	0,543305	-0,091	0,2054	0,2964	5,928	0,072	0,005184	0,000874494
4	179,5	186,3333	182,91667	3	0,15	548,75	33458,51	100375,5	0,543305	1,319456	0,2054	0,4066	0,2012	4,024	-1,024	1,048576	0,260580517
5	186,3333	193,1667	189,75	1	0,05	189,75	36005,06	36005,06	1,319456	2,095606	0,4066	0,4821	0,0755	1,51	-0,51	0,2601	0,172251656
6	193,1667	200	196,58333	1	0,05	196,5833	38645,01	38645,01	2,095606	00	0,4821	0,5	0,0179	0,358	0,642	0,412164	1,151296089
Сумма				20	1	3494,333		612068,5					1	20			1,791911864
	Xi	W. 4	Xi'		wi	Xi' * ni	Xi'^2	Xi'^2 * ni	Zi	****	A/903	4/91.41	Pi	ni'	-1-11	/-! -!!! AO	//! WAON-#
балл		Xi+1		ni						Zi+1	Ф(Zi)	Ф(Zi+1)			ni-ni'	(ni-ni')^2	((ni-ni')^2)/ni'
1	7,4	7,75	7,575	1	0,05	7,575	57,38063	57,38063	00	-1,90332	-0,5	-0,4713	0,0287	0,574	0,426	0,181476	0,316160279
2	7,75	8,1	7,925	2	0,1	15,85	62,80563	125,6113	-1,90332	-1,11027	-0,4713	-0,3665	0,1048	2,096	-0,096	0,009216	0,004396947
3	8,1	8,45	8,275	3	0,15	24,825	68,47563	205,4269	-1,11027	-0,31722	-0,3665	-0,1255	0,241	4,82	-1,82	3,3124	0,687219917
4	8,45	8,8	8,625	8	0,4	69	74,39063	595,125	-0,31722	0,475831	-0,1255	0,1915	0,317	6,34	1,66	2,7556	0,434637224
5	8,8	9,15	8,975	4	0,2	35,9	80,55063	322,2025	0,475831	1,268883	0,1915	0,398	0,2065	4,13	-0,13	0,0169	0,00409201
6	9,15	9,5	9,325	2	0,1	18,65	86,95563	173,9113	1,268883	00	0,398	0,5	0,102	2,04	-0,04	0,0016	0,000784314
Сумма				20	1	171,8		1479,658					1	20			1,44729069
	рост									балл							

20		1/1,8		14/9,058					1	
	рост			1			балл			
		n=	20					n=	20	
Размах	к варьирова	ния w =	41		P	азмах ва	рьировани	я w =	2,1	
Кол	л-во интерв	алов I =	6			Кол-во	о интервал	ов I =	6	
Д	лина интері	вала h =	6,833333			Длин	а интервал	na h =	0,35	
F*(159) =		0			F*(7,4) =					
	F*(1	65,84) =	0,15				F*(7	,75) =	0,05	
	F*(1	72,67) =	0,45				F*(8,1) =	0,15	
	F*(179,5) =	0,75				F*(8	,45) =	0,3	
	F*(186,3) =	0,9				F*(8,8) =	0,7	
	F*(1	93,17) =	0,95				F*(9	,15) =	0,9	
	F	*(200) =	1				F*(9,5) =	1	
Средн	нее выбороч	чное <u>х</u> =	174,7167		3	Среднее	выборочно	oe <u>x</u> =	8,59	
		<u>x^2</u> =	30525,91					x^2 =	73,7881	
Выборочн	ная дисперс	ия Ов =	77,51278		Выб	борочная	дисперсия	DB =	0,194775	
Ср. квадр	р. выборочн	ное ов =	8,804134		Cp.	. квадр. в	ыборочное	е σв =	0,441333	
	оценка явля						енка являет			
	й генерально			-		_	неральной	-		
	ная дисперс		81,5924		_		дисперсия	_	0,205026	
Испр. Ср.	квадр. Выб		9,032851		Исп	р. Ср. ква	др. Выбор.		0,452798	
		Хнабл =	1,791912					абл =	1,447291	
		Хкр =	11,34					Хкр =	11,34	
Ct	тепень своб	оды k =	3			Степе	ень свобод	цы k =	3	
		χλ=	0,01					χλ=	0,01	
		amma =	0,95	4				nma =	0,95	
	t(ga	emma) =	2,093			t(gam			2,093	
Довер. Инт	т. Для мат. (Ожид. =	170,4892		Дове	ер. Инт. Д	ля мат. Ож	ид. =	8,378086	8,80191
овер. Инт.	Для ср. кв.	Откл. =	5,690696	12,37501	Довер.	. Инт. Для	ср. кв. От	кл. =	0,285263	0,62033

Рис. 1. Результаты математических расчетов

На основе полученных данных были построены графики эмпирических функций распределения, полигоны частот и гистограммы относительных частот для роста и среднего балла учащихся (рис. 2). Благодаря полигону частот мы можем посчитать моду распределения — это самое наиболее часто встречающееся значение (например, положение пика). Нормальное распределение является унимодальным, т.е. у него мода равняется математическому ожиданию.

Полученные распределения с вероятностью 62 % (рост учащихся) и 69 % (средний балл учащихся) в соответствии с таблицей распределения Пирсона, являются нормальными.

Таким образом, по результатам проведенного исследования было доказано, что полученные данные стремятся к нормальному распределению. А также, исходя из всего вышесказанного, можно сделать вывод, что из случайности и непредсказуемости, приходит порядок, при достаточном количестве попыток или объектов, таким образом, это значит, что, хотя наша вселенная определенно полна непредсказуемых и случайных событий особенно на квантовом уровне, большие вещи вроде нас довольно предсказуемы и стабильны, а разнообразие повсеместно встречающихся примеров нормального распределения вокруг нас подтверждает его актуальность. Об этом также свидетельствует использование законов нормального распределения в различных отраслях науки и техники.

Библиографические ссылки

- 1. Высшая математика просто и доступно! [Электронный ресурс] / Нормальный закон распределения вероятностей. Минск, 2005. Режим доступа: http://mathprofi.ru/normalnoe_raspredelenie_veroyatnostei.html. Дата доступа: 17.03.2020.
- 2. Моделирование систем [Электронный ресурс] / Лекция 25. Моделирование нормально распределенных случайных величин. Минск, 2005. Режим доступа: http://stratum.ac.ru/education/textbooks/modelir/lection25.html. Дата доступа: 17.03.2020.