химический ФАКУЛЬТЕТ

ВЛИЯНИЕ ИЗОТОПНОГО H-D ЭФФЕКТА НА РАДИАЦИОННО-ИНДУЦИРОВАННЫЕ ПРЕВРАЩЕНИЯ ВОДНЫХ РАСТВОРОВ ГЛИЦЕРИНА

Д. И. Бобров

Белорусский государственный университет, химический факультет; dmitrybobrovig@gmail.com;

науч. рук. – О. И. Шадыро, д-р. хим. наук, проф., Р. Л. Свердлов, канд. хим. наук, доц.

Было проведено сравнение радиационно-химических выходов гидроксиацетона (ГА), глицеринового альдегида (ГлиА), дигидроксиацетона (ДГА) и 3-гидроксипропаналя (ЗГП) для γ -радиолиза деаэрированных 1,0 М и 0,10 М водных растворов глицерина и глицерина-2-d1 (ДГ). Установлено, что важную роль в образовании ГА и ЗГП играют цепные процессы с участием углерод-центрированных радикалов. Впервые показано, что введение дейтерия в положение С-2 глицерина подавляет протекание радикальных реакций у данного атома углерода. Так, для 1,0 М растворов ДГ выход ГА снижается в 4,3, а для 0,10 М — в 2,5 раза по сравнению с растворами глицерина. Данная работа показывает перспективность исследования влияния атома дейтерия в остатке глицерина на устойчивость природных липидов к радикальным превращениям, что может иметь терапевтическое значение при лечении ряда заболеваний.

Ключевые слова: у-радиолиз, глицерин, глицерин-2-d1, изотопный H-D эффект.

ВВЕДЕНИЕ

Все больше и больше работ подтверждают, что свободнорадикальные превращения в клетке играют существенную роль в развитии ряда серьезных патологий. Наиболее важными с эпидемиологической точки зрения являются атеросклероз [1], инфаркт миокарда [2], онкологические заболевания [3], болезнь Альцгеймера [4] и другие нейродегенеративные заболевания [5], при которых наблюдается повреждение липидов.

Также было показано, что гидроксилсодержащие глицерофосфолипиды (ГГФЛ), в том числе и кардиолипин (КЛ), основной липид мембран митохондрий, вступают в ·ОН-индуцированные процессы деструкции, нехарактерные для остальных липидов [6].

Puc.1. Радикальные превращения КЛ [6]

Особый интерес к радикальным превращениям КЛ (рис. 1) вызывает тот факт, что их основной стабильный продукт, фосфатидная кислота, регулирует участие ряда белков в контроле прогрессии клеточного цикла и роста клеток [6]. Избыточные радикальные превращения ГГФЛ и КЛ, скорее всего, играют определенную роль в развитии ряда заболеваний, в связи с чем подавление этих процессов может иметь терапевтический эффект.

Потенциально введение дейтерированных аналогов биомолекул в организм не повлияет на их биологические функции, но сможет подавить побочные радикальные процессы, приводящие к развитию патологий, за счет наличия более прочных связей С–D. Теоретически, введение дейтерия в остаток глицерина способно замедлить радикальные превращения, как минимум, ГГФЛ и КЛ, а возможно и других липидов. Простейшей модельной системой для изучения влияния дейтерия на радикальные превращения ГГФЛ и КЛ является чистый глицерин и его дейтерированный аналог, глицерин-2-d₁ (ДГ).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Все растворы, включая как системы для радиолиза, так и стандарты для хроматографического определения, были приготовлены путем взвешивания точных навесок (чистота не менее 95%) на аналитических весах (точность до 0,1 мг) с последующим разбавлением в мерной посуде (2 класс точности) 50 мМ ($KH_2PO_4 + Na_2HPO_4$) фосфатным буфером ($pH 7,10 \pm 0,10$).

Paduoлиз. Инициирование радикальных процессов — γ -излучением изотопа 60 Со (установка MPX- γ -25M). Мощность дозы — $0,105\pm0,003$ Гр/с. Интервал поглощенных доз: 0,0 (контроль) — 756 Гр (использовались партии, состоящие из 5 ампул с \sim 400 мкл раствора глицерина или глицерина-2- d_1 с концентрацией 1,0 М или 0,10 М, в которой каждая ампула облучалась разное время: 0,30,60,90 и 120 мин). Удаление кислорода из растворов осуществлялось продуванием высокочистого аргона (99,993%) в течение 50 мин., с последующей запайкой ампул.

Методика дериватизации. К исследуемому раствору (облученный глицерин, растворы стандартов) объемом 200 мкл прибавляли 200 мкл

раствора 2,4-динитрофенилгидразина (ДНФГ) в метаноле ($C_{\text{ДНФГ}} = 1,5$ мМ, $C(\text{H}^+) = 0,7$ М, 4,7% $H_2\text{O}$ по объему), интенсивно перемешивали и выдерживали перед анализом пробы в течение 15 минут в темном месте во избежание фоторазложения продуктов дериватизации. Большинство производных карбонильных соединений с ДНФГ имеют максимум поглощения в диапазоне 350-390 нм, в связи с чем определение площадей пиков соответствующих гидразонов проводилось на длине волны 365 ± 7 нм [7, 8].

Количественный анализ. Для проведения количественного анализа использовался жидкостный хроматограф Shimadzu LCMS-2020 с колонкой VP-ODS (150 мм, в. д. 4,6 мм, диаметр частиц 4,6 мм, диаметр пор 12 нм) при температуре 40 °C и скорости потока 0,8 мл/мин. Градиентный режим элюирования, смесь метанол-вода (линейное увеличение доли метанола от 40% до 60% в течение 10 мин, 60% МеОН с 10-ой по 26-ю мин). Объем задаваемой пробы – 3 мкл.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Механизм образования основных продуктов радиолиза водных растворов глицерина приведен на рис. 2 и рис. 4.

OH HO OH
$$\frac{\Gamma^{\bullet}}{-\Gamma H}$$
 OH $\frac{\Gamma^{\bullet}}{-\Gamma H}$ OH $\frac{\Gamma^{\bullet}}{-\Gamma}$ OH

Рис.2. Механизм образования основных продуктов радиолиза растворов глицерина

Помимо процессов, изображенных на рис. 1, протекают реакции рекомбинации радикалов ${\bf C1}-{\bf C4}$ друг с другом.

Результаты радиационно-химического эксперимента (усредненные данные трех независимых экспериментов) приведены в таблице ниже.

Данные по радиационно-химическим выходам (молекул/100 эВ) основных продуктов радиолиза 1,0 М и 0,10 М растворов обычного (Н) и дейтерированного (D) глицерина.

Веще-	1,0 М глицерин		0,10 М глицерин	
ство	H	D	H	D
ГА	2,129 ±	$0{,}497~\pm$	0,795 ±	0,313 ±
	0,390	0,112	0,137	0,058
ДГА+	$0,\!559 \pm$	0,537 ±	0,359 ±	0,383 ±
ГлиА	0,095	0,066	0,054	0,049
3ГП	$1,728 \pm 0,724$	$3,063 \pm 0,716$	3,016 ±	5,071 ±
			0,163	0,227
ДГА	_	_	$0,0374 \pm 0,0076$	$0,0410 \pm 0,0052$
ГлиА	_	_	$0,322 \pm 0,054$	0.342 ± 0.049

Для объяснения полученных результатов была выдвинута гипотеза (рис. 3), суть которой состоит в том, что радикалы Н и ОН взаимодействуют примерно с одинаковой скоростью как с глицерином, так и с ДГ своей высокой активности, TO время ввиду В как углеродцентрированные радикалы (УЦР) медленнее отщепляют водород от связи С-D, чем от связи С-Н.

Рис.3. Изменение в скорости превращений при введении дейтерия ($R \cdot - Y \coprod P$).

Значение $G(\Gamma A) > 2$ для 1,0 M раствора и $G(3\Gamma\Pi) > 2$ для 1,0 M и 0,10 М растворов глицерина свидетельствуют о протекании цепных процессов в ходе радиолиза (рис. 4).

Рис. 4. Цепные процессы в ходе радиолиза водных растворов глицерина

Снижение величины $G(\Gamma A)$ при радиолизе растворов ДГ с концентрацией 1,0 M (4,3 раза) и 0,10 M (2,5 раза) по сравнению с растворами глицерина аналогичной концентрации, а также подавление цепных процессов в случае 1,0 M раствора говорит о том, что дейтерированные атомы углерода менее склонны к участию в радикальных реакциях. Можно сделать вывод, что константы скоростей реакций УЦР по положению С-2 ощутимо меньше для ДГ, чем для глицерина.

Утилизация радикалов C1 - C4 путем отщепления атома дейтерия от положения C-2 замедлена в случае растворов ДГ, что ведет к более высокой их стационарной концентрации и, как следствие, ускорению остальных путей утилизации этих радикалов (в том числе и взаимодействие по положению C-1). В связи с этим выход $3\Gamma\Pi$ в случае радиолиза растворов ДГ по сравнению с глицерином увеличивается.

Увеличение выхода $3\Gamma\Pi$ в 0,10 M растворе по сравнению с 1,0 M можно объяснить тем, что в разбавленном растворе процессы диспропорционирования и рекомбинации радикалов **C1** друг с другом (бимолекулярные реакции) протекают значительно медленнее, чем в концентрированном, в результате чего больше радикалов **C1** успевает превратиться в **C3**, что приводит к увеличению **G**($3\Gamma\Pi$) (**C1** \rightarrow **C3** \rightarrow $3\Gamma\Pi$).

Наличие атома дейтерия в положении C-2 Д Γ не влияет на величину $G(\Gamma$ лиA) и $G(Д\Gamma A)$, что говорит о высокой склонности радикалов C1 и C2 к отщеплению воды с образованием C3 и C4.

На основании экспериментальных данных можно предположить, что липиды и лизолипиды, содержащие атом (-ы) дейтерия в остатках глицерина, будут более устойчивы к воздействию радикальных процессов, протекающих *in vivo*, что может иметь серьезное биологическое значение. Например, ожидается, что превращения ГГФЛ и КЛ (рис. 1), содержащих атом дейтерия в положении С-2 остатка глицерина, будут значительно замедлены.

Библиографические ссылки

- 1. *Bonomini F. [et al.]*. Atherosclerosis and oxidative stress // Histology and histopathology. 2008. Vol. 23, № 3. P. 381–390. DOI: 10.14670/HH-23.381.
- 2. Ramond A. [et al.]. Oxidative stress mediates cardiac infarction aggravation induced by intermittent hypoxia // Fundamental & Clinical Pharmacology. 2013. Vol. 27, № 3. P. 252–261. DOI: 10.1111/j.1472-8206.2011.01015.x.

- 3. *Halliwell B*. Oxidative stress and cancer: have we moved forward? // Biochem J. 2007. Vol. 401, № 1. P. 1–11. DOI: 10.1042/BJ20061131.
- 4. *Pohanka*, *M*. Alzheimer's Disease and Oxidative Stress: A Review // Current Medicinal Chemistry. 2014. Vol. 21, № 3. P. 356–364(9). DOI: 10.2174/09298673113206660258.
- 5. Farooqui A. A., Horrocks L. A., Farooqui. T. Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders // Chemistry and Physics of Lipids. 2000. Vol. 106, № 1. P. 1–29. DOI: 10.1016/S0009-3084(00)00128-6.
- 6. *Shadyro O., Samovich S., Edimecheva I.* Free-radical and biochemical reactions involving polar part of glycerophospholipids // Free Radical Biology and Medicine. 2019. Vol. 144. P. 6–15. DOI: 10.1016/j.freeradbiomed.2019.02.033.
- 7. *Shigehisa Uchiyama, Yohei Inaba, Naoki Kunugita*. Derivatization of carbonyl compounds with 2,4-dinitrophenylhydrazine and their subsequent determination by high-performance liquid chromatography // Journal of Chromatography B. 2011. Vol. 879, № 17–18. P. 1282–1289. DOI: 10.1016/j.jchromb.2010.09.028.
- 8. *Zwiener C., Glauner T., Frimmel F.* Method optimization for the determination of carbonyl compounds in disinfected water by DNPH derivatization and LC–ESI–MS–MS // Analytical and Bioanalytical Chemistry. 2002. Vol. 372. P. 615–621. DOI: 10.1007/s00216-002-1233-y.