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ABSTRACT: A search for supersymmetry (SUSY) is performed in final states comprising one
or more jets and missing transverse momentum using data from proton-proton collisions at
a centre-of-mass energy of 13 TeV. The data were recorded with the CMS detector at the
CERN LHC in 2016 and correspond to an integrated luminosity of 35.9fb~!. The number
of signal events is found to agree with the expected background yields from standard model
processes. The results are interpreted in the context of simplified models of SUSY that
assume the production of gluino or squark pairs and their prompt decay to quarks and the
lightest neutralino. The masses of bottom, top, and mass-degenerate light-flavour squarks
are probed up to 1050, 1000, and 1325 GeV, respectively. The gluino mass is probed up to
1900, 1650, and 1650 GeV when the gluino decays via virtual states of the aforementioned
squarks. The strongest mass bounds on the neutralinos from gluino and squark decays are
1150 and 575 GeV, respectively. The search also provides sensitivity to simplified models
inspired by split SUSY that involve the production and decay of long-lived gluinos. Values
of the proper decay length crg from 102 to 10° mm are considered, as well as a metastable
gluino scenario. Gluino masses up to 1750 and 900 GeV are probed for ¢rp = 1 mm and for
the metastable state, respectively. The sensitivity is moderately dependent on model as-
sumptions for ¢y 2 1 m. The search provides coverage of the ¢ty parameter space for mod-
els involving long-lived gluinos that is complementary to existing techniques at the LHC.
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1 Introduction

Supersymmetry (SUSY) [1-4] is an extension of the standard model (SM) of particle physics
that introduces at least one bosonic (fermionic) superpartner for each fermionic (bosonic)
SM particle, where the superpartner differs in its spin from its SM counterpart by one half
unit. Supersymmetry offers a potential solution to the hierarchy problem [5, 6], predicts
unification of the gauge couplings at high energy [7-9], and provides a candidate for dark
matter (DM). Under the assumption of R-parity [10] conservation, SUSY particles are
expected to be produced in pairs at the CERN LHC and to decay to the stable, lightest
SUSY particle (LSP). The LSP is assumed to be the neutralino X9, a weakly interacting
massive particle and a viable DM candidate [11, 12]. So-called natural SUSY models,
which invoke only a minimal fine tuning of the bare Higgs boson mass parameter, require
only the gluino, third-generation squarks, and a higgsino-like X to have masses at or



near the electroweak (EW) scale [13]. The interest in natural models is motivated by the
discovery of a low-mass Higgs boson [14-19]. The characteristic signature of natural SUSY
production at the LHC is a final state containing an abundance of jets originating from the
hadronization of heavy-flavour quarks and significant missing transverse momentum ﬁ%liss.

Split supersymmetry [20, 21] does not address the hierarchy problem — in contrast to
natural SUSY models — but preserves the appealing aspects of gauge coupling unification
and a DM candidate. In such a model, only the fermionic superpartners, and a finely
tuned scalar Higgs boson, may be realized at a mass scale that is kinematically accessible
at the LHC. All other SUSY particles are assumed to be ultraheavy. Hence, within split
SUSY models, the gluino decay is suppressed because of the highly virtual squark states.
For gluino lifetimes beyond a picosecond, the gluino hadronizes and forms a bound colour-
singlet state containing the gluino and quarks or gluons [22], known as an R-hadron, before
eventually decaying to a quark-antiquark pair and the 9. The long-lived gluino can lead to
final states with significant ﬁ%ﬂss from the undetected X! particles and to jets with vertices
located a significant distance (i.e. displaced) from the luminous region of the proton beams.
A metastable gluino, with a decay length significantly beyond the scale of the CMS detector,
can escape undetected.

This paper presents a search for new-physics processes in final states with one or more
energetic jets and significant ﬁfrniss. The search is performed with a sample of proton-
proton (pp) collision data at a centre-of-mass energy of 13TeV recorded by the CMS
experiment in 2016. The analysed data sample corresponds to an integrated luminosity
of 35.9 4+ 0.9fb~! [23]. Earlier searches using the same technique have been performed
in pp collisions at /s = 7, 8, and 13TeV by the CMS Collaboration [24-29]. The data
set analysed in this analysis is a factor of 16 larger than that presented in ref. [29]. The
search strategy aims to provide sensitivity to a broad range of SUSY-inspired models that
predict the existence of a DM candidate, and the search is used to constrain the parameter
spaces of a number of simplified SUSY models [30-32]. The overwhelmingly dominant
background for a new-physics search in all-jet final states resulting from pp collisions is
the production of multijet events via the strong interaction, a manifestation of quantum
chromodynamics (QCD). Several dedicated variables are employed to suppress the multijet
background to a negligible level while maintaining low kinematical thresholds and high
experimental acceptance for final states characterized by the presence of significant ﬁr}niss.
Signal extraction is performed using additional kinematical variables, namely the number
of jets, the number of jets identified as originating from bottom quarks, and the scalar
and vector sums of the jet transverse momenta. The ATLAS and CMS Collaborations
have performed similar searches in all-jet final states at /s = 13TeV, of which those
providing the tightest constraints are described in refs. [33-35]. This search does not
employ specialized reconstruction techniques [36-46] that target long-lived gluinos.

This paper is organized as follows. Section 2 describes the CMS apparatus and the
event reconstruction algorithms. Section 3 summarizes the selection criteria used to iden-
tify and categorize signal events and samples of control data. Section 4 outlines the various
software packages used to generate the samples of simulated events. Sections 5 and 6 de-
scribe the methods used to estimate the background contributions from SM processes. The



results and interpretations are described in sections 7 and 8, respectively, and summarized
in section 9.

2 The CMS detector and event reconstruction

The central feature of the CMS detector is a superconducting solenoid of 6 m internal
diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon
pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and
a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two
endcap sections. Forward calorimeters extend the pseudorapidity coverage provided by the
barrel and endcap detectors. Muons are detected in gas-ionization chambers embedded
in the steel flux-return yoke outside the solenoid. A more detailed description of the
CMS detector, together with a definition of the coordinate system used and the relevant
kinematical variables, can be found in ref. [47].

Events of interest are selected using a two-tiered trigger system [48]. The first level,
composed of custom hardware processors, uses information from the calorimeters and muon
detectors to select events at a rate of around 100 kHz within a time interval of less than
4 pus. The second level, known as the high-level trigger, consists of a farm of processors
running a version of the full event reconstruction software optimized for fast processing,
and reduces the event rate to less than 1kHz before data storage. The trigger logic used
by this search is summarized in section 3.

The particle-flow (PF) event algorithm [49] reconstructs and identifies each individual
particle with an optimized combination of information from the various elements of the
CMS detector. In this process, the identification of the particle type (photon, electron,
muon, charged hadron, neutral hadron) plays an important role in the determination of
the particle direction and energy. The energy of photons [50] is directly obtained from the
ECAL measurement, corrected for zero-suppression effects. The energy of electrons [51] is
determined from a combination of the electron momentum at the primary interaction ver-
tex as determined by the tracker, the energy of the corresponding ECAL measurement, and
the energy sum of all bremsstrahlung photons spatially compatible with originating from
the electron track. The energy of muons [52] is obtained from the curvature of the corre-
sponding track. The energy of charged hadrons is determined from a combination of their
momentum measured in the tracker and the matching ECAL and HCAL energy deposits,
corrected for zero-suppression effects and for the response function of the calorimeters to
hadronic showers. Finally, the energy of neutral hadrons is obtained from the correspond-
ing corrected ECAL and HCAL energy. The reconstruction techniques used by this search
are not specialized to target specific experimental signatures (such as displaced jets). The
physics objects used in this search are defined below and are summarized in table 1. In the
case of photons and leptons, further details can be found in ref. [29] and references therein.

The reconstructed vertex with the largest value of summed physics object pgf is taken
to be the primary pp interaction vertex (PV). The physics objects considered are those
returned by a jet finding algorithm [53, 54] applied to all charged particle tracks associated
with the vertex, and the associated p%ﬁss, taken as the negative vector sum of the pt of



Physics object acceptances

Jet pr > 40GeV, |n] < 2.4

Photon pr > 25GeV, |n| < 2.5, isolated in cone AR < 0.3

Electron pr > 10CeV, || < 2.5, I'! < 0.1 in cone 0.05 < AR(pr) < 0.2
Muon pr > 10GeV, |n| < 2.5, I'! < 0.2 in cone 0.05 < AR(pr) < 0.2

Single isolated track (SIT) pr > 10GeV, || < 2.5, I'"™k < 0.1 in cone AR < 0.3

Baseline event selection

All-jet final state Veto events containing photons, electrons, muons, and SITs within acceptance
PSS quality Veto events based on filters related to beam and instrumental effects
Jet quality Veto events containing jets that fail identification criteria or 0.1 < fflli < 0.95
Jet energy and sums p]Tl > 100 GeV, Hr > 200 GeV, Hss > 200 GeV
Jets outside acceptance Hiniss /pmiss < 125 veto events containing jets with pr > 40 GeV and |n| > 2.4
Signal region Baseline selection +
o threshold (Hp range)  0.65 (200-250 GeV), 0.60 (250-300), 0.55 (300-350), 0.53 (350-400), 0.52 (400-900)
A¢Y,, threshold Ak > 0.5 (njet > 2), Agr2 > 0.5 (njey = 1)
Nominal categorization schema
Njet 1 (monojet)
>2a (a denotes asymmetric, 40 < pJT2 < 100 GeV)
2,3,4,5, >6 (symmetric, p2 > 100 GeV)
np 0,1,2,3, >4 (can be dropped/merged vs. njet)
Ht boundaries 200, 400, 600, 900, 1200 GeV  (can be dropped/merged vs. njet, )
Hiss houndaries 200, 400, 600, 900 GeV (can be dropped/merged vs. Njet, np, Hr)

Simplified categorization schema
Topology (njet, nb) Monojet-like (1N >2a,0), (1N >2a,>1)
Low njet (2Nn3,0N1), (2n3,>2)

(

(

Medium njet 4N5,0N1), (4N5,>2)

High nje; >6,0N1), (>6,>2)
Hrt boundaries Hr > 200GeV (njet < 3), Hr > 400 GeV (njer > 4)
Hiss houndaries 200, 400, 600, 900 GeV
Control regions Baseline selection +

u+jets (inverted p veto) it > 30GeV, [nf1| < 2.1, AR(p,ji) > 0.5, 30 < mp(phy, psS) < 125 GeV
ppHjets (inverted p veto) — pi? > 30 GeV, 12| < 2.1, AR(p1,2,ji) > 0.5, |my, — mz| < 25 GeV
Multijet-enriched Sidebands to signal region: I—I‘T’“iss/p‘%liss > 1.25 and/or A¢*. < 0.5

min

Table 1. Summary of the physics object acceptances, the baseline event selection, the signal and
control regions, and the event categorization schemas. The nominal categorization schema is defined
in full in appendix A.

those physics objects. Charged particle tracks associated with vertices from additional pp
interactions within the same or nearby bunch crossings (pileup) are not considered by the
PF algorithm as part of the global event reconstruction. The energy deposit associated
with each physics object is corrected to account for contributions from neutral particles
originating from pileup interactions [55].



Samples of signal events and control data are defined, respectively, by the absence or
presence of photons and leptons that are isolated from other activity in the event. Photons
are required to be isolated [50] within a cone around the photon trajectory defined by
the radius AR = V(A¢)? + (An)? = 0.3, where A¢ and An represent differences in the
azimuthal angle (radians) and pseudorapidity. Isolation for an electron or muon is a relative
quantity, 1™, defined as the scalar pp sum of all PF particle candidates within a cone
around its trajectory, divided by the lepton pt. The cone radius is dependent on the lepton
pr, AR = min[max(0.05,10 GeV/pr),0.2], to maintain high efficiency for semileptonic
decays of Lorentz-boosted top quarks [56]. Isolated electrons and muons are required to
satisfy I™' < 0.1 and 0.2, respectively. Electron and muon candidates that fail any of
the aforementioned requirements, as well as charged-hadron candidates from hadronically
decaying tau leptons, are collectively labelled as single isolated tracks (SITs) if the scalar
pr sum of additional tracks associated with the PV within a cone AR < 0.3 around the
track trajectory, relative to the track pr, satisfies I™2% < 0.1. All isolation variables
exclude the contributions from the physics object itself and pileup interactions [50-52].
The experimental acceptances for photons, electrons, muons, and SITs are defined by the
transverse momentum requirements pp > 25, 10, 10, and 10 GeV, respectively, and the
pseudorapidity requirement |n| < 2.5.

Jets are reconstructed from the PF particle candidates, clustered by the anti-kp al-
gorithm [53, 54] with a distance parameter of 0.4. In this process, the raw jet energy
is obtained from the sum of the particle candidate energies, and the raw jet momentum
by the vectorial sum of the particle candidate momenta, which results in a nonzero jet
mass. An offset correction is applied to jet energies to take into account the contributions
from neutral particles produced in pileup interactions [55, 57]. The raw jet energies are
then corrected to establish a relative uniform response of the calorimeter in 7 and a cal-
ibrated absolute response in pr. Jet energy corrections are derived from simulation, and
are confirmed with in situ measurements of the energy balance in dijet, multijet, v+jets,
and leptonically decaying Z+jets events [58]. Jets are required to satisfy pp > 40 GeV and
In| < 2.4. Jets are also subjected to a standard set of identification criteria [59] that require
each jet to contain at least two particle candidates and at least one charged particle track,
and the energy fraction fi+ attributed to charged-hadron particle candidates is required
to be nonzero.

Jets can be identified as originating from b quarks using the combined secondary vertex
(CSVv2) algorithm [60]. Data samples are used to measure the b tagging efficiency, which
is the probability to correctly identify jets originating from b quarks, as well as the mistag
probabilities for jets that originate from light-flavour (LF) partons (u, d, s quarks or gluon)
or a charm quark. A working point is employed that yields a b tagging efficiency of ~69%
for jets with pr > 30GeV from tt events, and charm and LF mistag probabilities of ~18
and ~1%, respectively, for multijet events.

Finally, the most accurate estimator for ﬁffniss is defined as the projection on the plane

perpendicular to the beams of the negative vector sum of the momenta of all PF particle

candidates in an event. Its magnitude is referred to as p%liss.



3 Event selection and categorization

A baseline set of event selection criteria, described in section 3.1, is used as a basis for all
data samples used in this search. Two additional requirements, described in section 3.2,
are employed to define a sample of signal events, labelled henceforth as the signal region
(SR). The categorization of signal events and the background composition are described
in sections 3.3 and 3.4, respectively. Three independent control regions (CRs), comprising
large samples of event data, are defined by the selection criteria described in section 3.5.
All selection criteria are summarized in table 1.

3.1 Baseline selections

Events containing isolated photons, electrons and muons, or SITs that satisfy the require-
ments summarized in table 1 are vetoed. The aforementioned vetoes are employed to
select all-jet final states, suppress SM processes that produce final states containing neu-
trinos, and reduce backgrounds from misreconstructed or nonisolated leptons as well as
single-prong hadronic decays of 7 leptons.

Beam halo, spurious jet-like features originating from isolated noise patterns in the
calorimeter systems, detector inefficiencies, and reconstruction failures can all lead to large
values of p%ﬁss. Such events are rejected with high efficiency using dedicated vetoes [61, 62].
Events are vetoed if any jet fails the identification criteria described in section 2. Further,
fnx for the highest pr jet of the event, ji, is required to satisfy 0.1 < fflli < 0.95 to further
suppress beam halo and rare reconstruction failures.

The highest pr jet in the event is required to satisfy plﬁ > 100 GeV. The mass scale
of each event is estimated from the scalar pp sum of the jets, defined as Hy = ZZfl prjli,
where nje; is the number of jets within the experimental acceptance. The estimator for
ﬁ%‘iss used by this search is given by the magnitude of the vector pr sum of the jets,
H%liss = |Z:ZJ:e Y ﬁ%‘ . Significant hadronic activity and ﬁITniss, typical of SUSY processes, is
ensured by requiring Ht > 200 GeV and HF"* > 200 GeV, respectively.

Events are vetoed if any additional jet satisfies pr > 40 GeV and || > 2.4 to maintain
the resolution of the HMS variable. An additional veto is employed to deal with the
circumstance in which several jets with transverse momentum below the pt thresholds and
collinear in ¢ can result in significant HITniSS relative to p%ﬂss, the latter of which is less
sensitive to jet thresholds. This type of event topology, which is typical of multijet events,
is suppressed while maintaining high efficiency for new-physics processes with significant

PSS by requiring HMISS /pliss < 1,25,

3.2 Signal region

The multijet background dominates over all other SM backgrounds following the appli-
cation of the baseline event selection criteria. The multijet background is suppressed to
a negligible level through the application of two dedicated variables that provide strong
discrimination between multijet events with ﬁr}niss resulting from instrumental sources, such
as jet energy mismeasurements, and new-physics processes that involve the production of
weakly interacting particles that escape detection.



The first variable, ar [24, 63], is designed to be intrinsically robust against jet energy
mismeasurements. In its simplest form, the ar variable is defined as ap = Eﬂﬁ /M, where
Mt = \/2EJT1E¥(1 — cos ¢j, j,) and ¢j, j, is defined as the azimuthal angle between jets j;
and js. In the absence of jet energy mismeasurements, and in the limit for which the Ep

of each jet is large compared with its mass, a well-measured dijet event with EQE = Egﬁ
and back-to-back jets (¢j, 5, = 7) yields an ap value of 0.5. In the presence of a jet
energy mismeasurement, EJT1 > EJT2 and a1 < 0.5. Values significantly greater than 0.5 can
be observed when the two jets are not back-to-back and recoil against ﬁ%ﬁss from weakly
interacting particles that escape the detector. The definition of the at variable can be
generalized for events with two or more jets, as described in ref. [24]. Multijet events
populate the region ar < 0.5 and the ar distribution is characterized by a sharp edge at
0.5, beyond which the multijet event yield falls by several orders of magnitude. The SM
backgrounds that involve the production of neutrinos result in a long tail in ar beyond
values of 0.5. A Hp-dependent o threshold that decreases from 0.65 at low Ht to 0.52 at
high Ht within the range 200 < Ht < 900 GeV is employed to maintain an approximately
constant rejection power against the multijet background.

The second variable, known as A¢ considers the minimum azimuthal angular sep-

*
min’
aration between each jet in the event and the vector pr sum of all other jets in the event.

—miss

rin ~ 0 while events with genuine p7"'> can

Multijet events typically populate the region A¢7

*
min

have values up to A¢}, = m. The requirement A¢7 . > 0.5 is sufficient to reduce signifi-
cantly the multijet background, including rare contributions from energetic multijet events
that yield both high jet multiplicities and significant p because of high-multiplicity neu-
trino production in semileptonic heavy-flavour decays. For events that satisfy nj; = 1, a
small modification to the A¢}, variable is utilized that considers any additional jets with

25 < pr < 40 GeV that are outside the nominal experimental acceptance (A¢*2 > 0.5).

min

The requirements on ar and Ag¢ summarized in table 1, suppress the expected

*
min?
contribution from multijet events to the sub-percent level with respect to the total ex-
pected background counts from all other SM processes. For the region Hp > 900 GeV, the
necessary control of the multijet background is achieved solely with the A¢* . and A¢: 2>

variables. These requirements complete the definition of the SR.

Signal events are recorded with a number of trigger algorithms. Events with nje; > 2
must satisfy thresholds on both Ht and a7 that are looser than those used to define
the SR. High-activity events that satisfy Ht > 900 GeV are also recorded. Finally, a
trigger condition that requires H%“iss > 120 GeV, p%iss > 120 GeV, and a single jet with
pr > 20 GeV and |n| < 5.2 is also used to efficiently record signal events for all categories
of the SR, including those that satisfy nje; > 1. The combined performance of these trigger
algorithms yields high efficiencies, as determined from samples of CR data enriched in
vector boson + jets and tt events. The efficiencies are primarily Hp-dependent and range
from 97.4-97.9% (200 < Ht < 600GeV) to 100% (Ht > 600 GeV) with statistical and
systematic uncertainties at the percent level. Trigger efficiencies for a range of benchmark
signal models are typically comparable or higher (~100%).



3.3 Event categorization

Signal events are categorized into 27 discrete topologies according to nje; and the number
of b-tagged jets ny,. Events are further binned according to the energy sums Hr and H%ﬁss.
The binning schema, defined in full in table 6 (appendix A), is determined primarily by
the statistical power of the u+jets and puu+jets CRs.

Seven bins in nje; are considered, as summarized in table 1. Events that contain only a

“monojet”. Events

single jet within the experimental acceptance (nj = 1) are labelled as
containing two or more jets are categorized according to the second-highest jet pp. Events
that satisfy mjer > 2 with only the highest pr jet satisfying pr > 100 GeV are labelled
as “asymmetric”. Events for which the second-highest jet pp also satisfies pr > 100 GeV
are labelled as “symmetric” and are categorized according to nje¢ (2, 3, 4, 5, and >6).
The symmetric topology targets the pair production of SUSY particles and their prompt
cascade decays, while the monojet and asymmetric topologies preferentially target models
with a compressed mass spectrum and long-lived SUSY particles.

Events are also categorized according to ny, (0, 1, 2, 3, >4), where n}, is bounded from
above by nje; and the choice of categorization is dependent on n;e;. Higher ny, multiplicities
target the production of third-generation squarks.

The nominal binning schema for Hr is defined as follows: four bounded bins that satisfy
200-400, 400-600, 600-900, and 900-1200 GeV, and a final open bin Hp > 1200 GeV. This
schema is adapted per (njet, np) category as follows: only the region Hp > 400 GeV is
considered for events that satisfy nje; > 4, and bins at high Ht are merged with lower-Hr
bins to satisfy a threshold of at least four events in the corresponding bins of the CRs.

The Hffniss variable is used to further categorize events according to three bounded
bins that satisfy 200-400, 400-600, and 600-900, and a final open bin H%liss > 900 GeV.
The HITIliSS binning depends on njet, Ny, and Hr. Given that HITIliSS cannot exceed Hr by
construction, the lower bound of the final H%liss bin is restricted to be not higher than the
lower bound of the Ht bin in question. Events that satisfy njer = 1 or 200 < Ht < 400 GeV
are not categorized according to H‘Tniss.

In total, there are 254 bins in the SR. An alternate, simplified binning schema is also
provided in which events are categorized according to eight topologies defined in terms of
njet and ny,. For each topology, event yields are integrated over the full available Ht range
and categorized according to the four nominal Hfrniss bins defined above. This schema has
32 bins that are exclusive, contiguous, and provide a complete coverage of the SR. The
SM background estimates are obtained from the same likelihood model as the one used to
determine the nominal result.

3.4 Background composition

Following the application of the SR selection criteria, the multijet background is reduced to
a negligible level. The remaining background contributions are dominated by processes that
involve the production of high-pt neutrinos in the final state. The associated production of
jets and a Z boson that decays to v dominates the background contributions for events con-
taining low numbers of jets and b-tagged jets. The Z(— v7)+jets background is irreducible.



The associated production of jets and a W boson that decays to fv (¢ = e, u, T) is also a sig-
nificant background in the same phase space. The production and semileptonic decay of top
quark-antiquark pairs (tt) becomes the dominant background process for events containing
high numbers of jets or b-tagged jets. Events that contain the leptonic decay of a W boson
are typically rejected by the vetoes that identify the presence of leptons or single isolated
tracks. If the lepton is outside the experimental acceptance, or is not identified or isolated,
then the event is not vetoed and the aforementioned processes lead to what is collectively
known as the “lost lepton” (#)ost) background. Residual contributions from other SM pro-
cesses are also considered, such as single top quark production; WW, WZ, ZZ (diboson)
production; and the associated production of tt and a boson (ttW, ttZ, tty, and ttH).

3.5 Control regions

Topological and kinematical requirements, summarized in table 1, ensure that the samples
of CR data are enriched in the same or similar SM processes that populate the SR, as well
as being depleted in contributions from SUSY processes (signal contamination).

Three sidebands to the SR comprising multijet-enriched event samples are defined by:
1.25 < {Miss /pmiss < 3 () (region A), 0.2< A¢¥,, <0.5 (B), and both 1.25 < Fmiss /pmiss < 3.
and 0.2 < A¢:, < 0.5 (C). Events are categorized according to njey and Hr, identically
to the SR. Events are recorded with the signal triggers described above.

Two additional CRs comprising u+jets and pu-+jets event samples are defined by
the application of the baseline selections and requirements on isolated, central, high-pr
muons. Tighter isolation requirements for the muons are applied with respect to those
indicated in table 1. A trigger condition that requires an isolated muon with pp > 24 GeV
and |n| < 2.1 is used to record the p-+jets and pp+jets event samples with efficiencies

of ~90 and ~99%, respectively. For both samples, no requirements on ar or A¢ re

rnin a
imposed. The kinematical properties of events in the u+jets and pu+jets CRs and SR are
comparable once the muon or dimuon system is ignored in the calculation of event-level
quantities such as Hr and H%‘iss. Events in both samples are categorized according to
Njet, Ht, and ny, with counts integrated over H‘Tmss. The nje; categorization is identical
to the SR. Background predictions are determined using up to eleven bins in Ht that are
then aggregated to match the Ht binning schema used by the SR. The ny}, categorization
for u+jets events is identical to the SR, whereas pu+jets events are subdivided according
to np, = 0 and ny, > 1. Differences in the binning schemas between the SR and CRs are
accounted for in the background estimation methods through simulation-based templates,
the modelling of which is validated against control data.

The p+jets event sample is enriched in events from W(— pr)+jets and tt production,
as well as other SM processes (e.g. single top quark and diboson production), that are
manifest in the SR as the /o5 backgrounds. Each event is required to contain a single
isolated muon with pp > 30GeV and |n| < 2.1 to satisfy trigger conditions, and is well
separated from each jet j; in the event according to AR(u,j;) > 0.5. The transverse

miss

mass my = V’ 2php (1 — cos(AgﬁMﬁ%mss)], where A(ﬁ‘u"ﬁ%iss is the difference between the

ﬁ%ﬁss, must fall within

azimuthal angles of the muon transverse momentum vector pf. and of
the range 30-125 GeV to select a sample of events rich in W bosons.



The pu+jets sample is enriched in Z — u™p~ events that have similar acceptance and
kinematical properties to Z(— v7)+jets events when the muons are ignored. The sample
uses selection criteria similar to the u+jets sample, but requires two oppositely charged,
isolated muons that both satisfy pr > 30GeV, |n| < 2.1, and AR(u1,2,ji) > 0.5. The
muons are also required to have a dilepton invariant mass m,,, within a £25GeV window
around the mass of the Z boson [12].

4 Monte Carlo simulation

The search relies on several samples of simulated events, produced with Monte Carlo (MC)
generator programs, to aid the estimation of SM backgrounds and evaluate potential signal
contributions.

The MADGRAPH5_aMC@QNLO 2.2.2 [64] event generator is used at leading-order (LO)
accuracy to produce samples of Wjets, Z+jets, tt, and multijet events. Up to three or four
additional partons are included in the matrix-element calculation for tt and vector boson
production, respectively. Simulated W+jets and Z+jets events are weighted according to
the true vector boson pr to account for the effect of missing next-to-leading-order (NLO)
QCD and EW terms in the matrix-element calculation [64, 65], according to the method
described in ref. [66]. Within the range of vector boson pr that can be probed by this search,
the QCD and EW corrections [65] are largest, ~40% and ~15%, at low and high values
of boson pr, respectively. Simulated tt events are weighted to improve the description
of jets arising from initial-state radiation (ISR) [67]. The weights vary from 0.92 to 0.51
depending on the number of jets (1-6) from ISR, with an uncertainty of one half the
deviation from unity. The MADGRAPH5_aMC@NLO generator is used at NLO accuracy
to generate samples of s-channel production of single top quark, as well as ttW and ttZ
events. The NLO POWHEG v2 [68, 69] generator is used to describe the ¢- and Wt-channel
production of events containing single top quarks, as well as ttH events. The PYTHIA
8.205 [70] program is used to generate diboson (WW, WZ, ZZ) production.

Event samples for signal models involving the production of gluino or squark
pairs, in association with up to two additional partons, are generated at LO with
MADGRAPH5_aMC@NLO, and the decay of the SUSY particles is performed with the
PYTHIA program. The NNPDF3.0 LO and NNPDF3.0 NLO [71] parton distribution func-
tions (PDF's) are used, respectively, with the LO and NLO generators described above.

The simulated samples for SM processes are normalized according to production cross
sections that are calculated with NLO and next-to-NLO precision [64, 69, 72-76]. The
production cross sections for pairs of gluinos or squarks are determined at NLO plus next-
to-leading-logarithm (NLL) precision [77-82]. All other SUSY particles, apart from the
XY, are assumed to be heavy and decoupled from the interaction. Uncertainties in the
cross sections are determined from different choices of PDF sets, and factorization and
renormalization scales (up and pR), according to the prescription in ref. [82]. The PYTHIA
program with the CUETP8M1 tune [83, 84] is used to describe parton showering and
hadronization for all simulated samples.

~10 -



The RHADRONS package within the PYTHIA 8.205 program is used to describe the
formation of R-hadrons through the hadronization of gluinos [22, 85, 86]. The hadronization
process, steered according to the default parameter settings of the RHADRONS package,
predominantly yields meson-like (gqq) and baryon-like (gqqq) states, as well as glueball-
like (gg) states with a probability Py, = 10%, where g, g, q, and q represent a gluino, gluon,
quark, and antiquark, respectively. The gluino is assumed to undergo a three-body decay,
to a qq pair and the )Z(l), according to its proper decay length c7y that is a parameter of
the simplified model [87]. Studies with alternative values for parameters that influence the
hadronization of the gluino, such as Py, = 50%, indicate a minimal influence on the event
topology and kinematical variables for the models considered in this paper. Further, the
model-dependent interactions of R-hadrons with the detector material are not considered
by default, as studies demonstrate that the sensitivity of this search is only moderately
dependent on these interactions, as discussed in section 8.

The description of the detector response is implemented using the GEANT4 [88] pack-
age for all simulated SM processes. Scale factors are applied to simulated event samples
that correct for differences with respect to data in the b tagging efficiency and mistag prob-
abilities. The scale factors have typical values of ~0.95-1.00 and ~1.00-1.20, respectively,
for a jet pr range of 40-600 GeV [60]. All remaining signal models rely on the CMS fast
simulation package [89] that provides a description that is consistent with GEANT4 follow-
ing the application of near-unity corrections for the differences in the b tagging efficiency
and mistag probabilities, as well as corrections for the differences in the modelling of the
HITniSS distribution. To model the effects of pileup, all simulated events are generated with
a nominal distribution of pp interactions per bunch crossing and then weighted to match
the pileup distribution as measured in data.

5 Nonmultijet background estimation

The #)os; and Z(— v7)+jets backgrounds, collectively labelled henceforth as the nonmultijet
backgrounds, are estimated from data samples in CRs and transfer factors R determined
from the ratios of expected counts obtained from simulation:

Z .
Nl\/lfét (njeta HT) Np, H’Ilznss)

Lost — Llost __ Liost putjets
R o NlH—jetS(n Hr,np) ) Npred =R Niata (5.1)
MC jet, £1T b
_ NZ—WD(n_ Hr+.n Hmiss) _ _ .
Z—vo _ *YMC jets 24T, Teh, M Z — U _ pZ—vv zriitjets
R : NZGv7 = REY Nihets, (5.2)

T pgpktjets
NMC (njet7HT7nb)

where Rbest and RZ7"7 are the transfer factors that act as multiplier terms on the event
counts N é‘;‘]aets and N# T ghserved in each (njet, Hr, ny,) bin of, respectively, the p+jets

data
and pp+jets CRs to estimate the fogy or Z(— vv)+jets background counts Nﬁ};;; and
szrzi”” in the corresponding (njet, Hr, nn, HE) bins of the SR. Several sources of un-

certainty in the transfer factors are evaluated. In addition to statistical uncertainties
arising from finite-size simulated event samples, the most relevant systematic effects are
discussed below.
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The uncertainties from known theoretical and experimental sources are propagated
through to the transfer factors to ascertain the magnitude of variations related to the fol-
lowing: the jet energy scale, the scale factors related to the b tagging efficiency and mistag
probabilities, the efficiency to trigger on and identify, or veto, well-reconstructed isolated
leptons, the PDFs [90], up and pg, and the modelling of jets from ISR produced in as-
sociation with tt [67]. Uncertainties of 100% in both the NLO QCD and EW corrections
to the W-jets and Z+jets simulated samples are also considered. A 5% uncertainty in
the total inelastic cross section [91] is assumed and propagated through to the weighting
procedure to account for differences between the data and simulation in the pileup distri-
butions. Uncertainties in the signal trigger efficiency measurements are also propagated to
the transfer factors. The effects of the aforementioned systematic uncertainties are summa-
rized in table 2, in terms of representative ranges. Each source of uncertainty is assumed
to vary with a fully correlated behaviour across the full phase space of the SR and CRs.

Sources of additional uncertainties are determined from closure tests performed using
control data that aim to identify nje- or Hr-dependent sources of systematic bias arising
from extrapolations in kinematical variables covered by the transfer factors. Several sets of
tests are performed. The accuracy of the modelling of the efficiencies of both the a1 and
A¢y .. requirements is estimated from both the p+jets and pp+jets samples. The effects
of W boson polarization are probed by using u-+jets events with a positively charged muon
to predict those containing a negatively charged muon. Finally, the efficiency of the single
isolated track veto is also probed using a sample of u+jets events. The uncertainties are
summarized in table 2.

The simulation modelling of the ny, distributions for the Z(— vv)+jets background in
the region ny, > 1 is evaluated through a binned maximum-likelihood fit to the observed
np, distributions in data in each (njet, Hr) bin of the pu+jets CR. Additional checks are
performed in pu—+jets samples that are enriched in mistagged jets that originate from LF
partons or charm quarks, or the genuine tags of b quarks from gluon splitting, through
the use of loose and tight working points of the b tagging algorithm, respectively. No tests
reveal evidence of significant bias in the simulation modelling of the ny, distribution.

Finally, the modelling of the HZ** distribution in simulated events is compared to the
distributions observed in p+jets and pp+jets control data, and inspected for trends, by
assuming a linear behaviour of the ratio of observed and simulated counts as a function
of H%liss. Linear fits are performed independently for each n;e; category while integrating
event counts over ny, and Hr, and then repeated for each Ht bin while integrating event
counts over nje; and my,. Systematic uncertainties are determined from any nonclosure
between data and simulation as a function of nje; and are assumed to be correlated in Hr
(and ny,), and vice versa. The uncertainties can be as large as ~50% in the most sensitive
HIss bins,

6 Multijet background estimation

The multijet background is estimated using the three data sidebands defined in section 3.5.
Events in each sideband are categorized according to nje; and Ht. The event counts in data
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Source of uncertainty Magnitude [%]
liost 7 — v
Finite-size simulated samples 1-50 1-50
Total inelastic cross section (pileup) 0.6-3.8 2.3-2.8
pr and pg scales 2.3-3.6 0.9-4.7
Parton distribution functions 1.1-2.7 0.0-3.3
W+jets cross section 0.2-14 —
tt cross section 0.0-1.0 —
NLO QCD corrections 1.5-13 2.6-17
NLO EW corrections 0.1-9.5 0.0-7.8
ISR (tt) 0.8-1.1 —
Signal trigger efficiency 0.0-3.1 0.0-2.0
Lepton efficiency (selection) 2.0 4.0
Lepton efficiency (veto) 5.0 5.0
Jet energy scale 3.4-5.5 5.3-8.0
b tagging efficiency 0.4-0.6 0.3-0.6
Mistag probabilities 0.1-1.4 0.2-1.8
aT extrapolation 3-9, 2-6 3-9, 2-6
Agr ;. extrapolation 3-22,2-18 3-22,2-18
W boson polarization 1-7, 27 —
Single isolated track veto 0-10, 0-13 —

Table 2. Systematic uncertainties in the /st and Z — v¥ background evaluation. The quoted
ranges are representative of the minimum and maximum variations observed across all bins of the
signal region. Pairs of ranges are quoted for uncertainties determined from closure tests in data,
which correspond to variations as a function of nj,, and Hr, respectively.

are corrected to account for contamination from nonmultijet SM processes, such as vector
boson and tt production, as well as the residual contributions from other SM processes.
The nonmultijet processes are estimated from the p+jets and pp+jets CRs, following a
procedure similar to the one described in section 5. The corrected counts are assumed
to arise solely from multijet production. For each sideband, a transfer factor per (njet,
Hr) bin is obtained from simulation, defined as the ratio of the number of multijet events
that satisfies the SR requirements to the number that satisfies the sideband requirement.
Estimates of the multijet background per (nje, Hr) bin are obtained per sideband from
the product of the transfer factors and the corrected data counts.

The final estimate per (nje, Hr) bin is a weighted sum of the three estimates. The
multijet background is found to be small, typically at the percent level, relative to the sum
of all nonmultijet backgrounds in all (njet, n1,) bins of the SR. The HINSS /piiss and Ag*

min

~13 -



variables that are used to define the sidebands are determined to be only weakly correlated
for multijet events, and the estimates from each sideband are assumed to be uncorrelated.
Statistical uncertainties associated with the finite event counts in data and simulated event
samples, as large as ~100%, are propagated to each estimate. Uncertainties as large as
~20% in the estimates of nonmultijet contamination are also propagated to the corrected
events. Any differences between the three estimates per (njet, Hr) bin are adequately
covered by systematic uncertainties of 100%, which are assumed to be uncorrelated across
(’I”Ljet, HT> bins.

A model is assumed to determine the estimates as a function of ny and HITniSS. The
distribution of multijet events as a function of ny, and Hffniss per (njet, H) bin is assumed to
be identical to the distribution expected for the nonmultijet backgrounds. This assumption
is based on simulation-based studies and is a valid simplification given the magnitude of
the multijet background relative to the sum of all other SM backgrounds, as well as the
magnitude of the statistical and systematic uncertainties in the estimates described above.

7 Results

A likelihood model is used to obtain the SM expectations in the SR and each CR, as well as
to test for the presence of new-physics signals. The observed event count in each bin, defined
in terms of the njet, ny, Hr, and H%liss variables, is modelled as a Poisson-distributed vari-
able around the SM expectation and a potential signal contribution (assumed to be zero in
the following discussion). The expected event counts from nonmultijet processes in the SR
are related to those in the py+jets and pp+jets CRs via simulation-based transfer factors, as
described in section 5. The systematic uncertainties in the nonmultijet estimates, summa-
rized in table 2, are accommodated in the likelihood model as nuisance parameters, the mea-
surements of which are assumed to follow a log-normal distribution. In the case of the mod-
elling of the H%liss distribution, alternative templates are used to describe the uncertainties
in the modelling and a vertical template morphing schema [29, 92] is used to interpolate
between the nominal and alternative templates. The multijet background estimates, deter-
mined using the method described in section 6, are also included in the likelihood model.

Figures 1 and 2 summarize the binned counts of signal events and the corresponding
SM expectations as determined from a “CR-only” fit that uses only the data counts in
the p+jets and pp+jets control regions to constrain the model parameters related to the
nonmultijet backgrounds. The uncertainties in the SM expectations reflect both statistical
and systematic components. The multijet background estimates are determined indepen-
dently and included in the SM expectations. The fit does not consider the event counts in
the signal region.

Hypothesis testing with regards to a potential signal contribution is performed by
considering a full fit to the event counts in the SR and CRs. No significant deviation is
observed between the predictions and data in the SR and CRs, and the data counts appear
to be adequately modelled by the SM expectations with no significant kinematical patterns.

Event counts and SM background estimates, and the associated correlation matrix,
are also determined using the simplified 32-bin schema, which can be found in table 7 and
figure 5 (appendix A), respectively.
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Figure 1. Counts of signal events (solid markers)

as determined from the

)

black histograms and shaded bands
CR-only fit as a function of ny,, Hr, and Hffniss for the event categories njet

statistical and systematic,

(

tainties

(upper),

The centre panel of each subfigure shows the ratios of observed

=1 and >2a

2 (middle), and = 3 (lower).
counts and the SM expectations, while the lower panel shows the significance of deviations observed

in data with respect to the SM expectations expressed in terms of the total uncertainty in the SM

expectations.
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Figure 2. Counts of signal events

) as determined from the

(

CR-only fit as a function of ny, Hr, and Hr}mss for the event categories njet

tainties
(middle),
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4 (upper),

(lower). The lower panels are described in the caption of figure 1.
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Model family Production and decay Additional assumptions

Production and prompt decay of squark pairs

T2bb pp — bibr, by — by? -

T2tt pp — t1t1, T1 — tX0 —

T2cc pp —>¥1?1, t — %] 10 <mz, —mgo <80 GeV
T2qq8fold  pp — qq, 4 — qx" mg, = Mgy, 4 = {1,d,5,¢
T2qq-1fold  pp —dq, 4 — qx} Mg (g£a) = My,
Production and prompt decay of gluino pairs

T1bbbb pp — 88, § — bbj = bbx?  mg > my

T1tttt pp — 88, § — tt] = Tty my, > mg

Tlqqqq pp — 88, & — aq" — daxy  mg > mg

Production and decay of long-lived gluino pairs

T1qqqqLL pp — €8, & — qq* — qax; mg > mg, 1073 < e1p < 10° mm or metastable

Table 3. Summary of the simplified SUSY models used to interpret the result of this search.

8 Interpretations

The search result is used to constrain the parameter spaces of simplified SUSY
models [30-32]. Interpretations are provided for nine unique model families, as summarized
in table 3. Each family of models realizes a unique production and decay mode. The model

parameters are the masses of the parent gluino (mg) or bottom, top, and LF (mg , mg , mg)

)
squark, also collectively labelled as mgysy, and the X9 (m%?) Two scenarios arzlconsidered
for LF squarks: one with an eightfold mass degeneracy for qi, and qr with q = {u, d,3, c}
and the other with just a single light squark (ur,). All other SUSY particles are assumed to
be too heavy to be produced directly. Gluinos are assumed to undergo prompt three-body
decays via highly virtual squarks. In the case of split SUSY models (T1qqqqLL), the gluino
is assumed to be long-lived with proper decay lengths in the range 1073 < ¢y < 10° mm.
A scenario involving a metastable gluino with ¢y = 10'® mm is also considered.

Under the signal+background hypothesis, and in the presence of a nonzero signal
contribution, a modified frequentist approach is used to determine observed upper limits
(ULs) at 95% confidence level (CL) on the cross section oyr, to produce pairs of SUSY
particles as a function of mgysy, mso, and c7p (if applicable). The approach is based on
the profile likelihood ratio as the test statistic [93], the CLg criterion [94, 95], and the
asymptotic formulae [96] to approximate the distributions of the test statistic under the
SM-background-only and signal+background hypotheses. An Asimov data set [96] is used
to determine the expected oyr, on the allowed cross section for a given model. Potential
signal contributions to event counts in all bins of the SR and CRs are considered.

The experimental acceptance times efficiency (Ae) is evaluated independently for each
model, defined in terms of mgysy, mso, and crp (if applicable). The effects of several

X
sources of uncertainty in Ae, as well as the potential for migration of events between bins
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of the SR, are considered. Correlations are taken into account where appropriate, including
those relevant to signal contamination that may contribute to counts in the CRs.

The statistical uncertainty arising from the finite size of simulated samples can be as
large as ~30%. The Ae for models with a compressed mass spectrum relies on jets arising
from ISR, the modelling of which is evaluated using the technique described in ref. [67].
The associated uncertainty can be as large as ~30%. The corrections to the jet energy
scale (JES) evaluated with simulated events can lead to variations in event counts as large
as ~25% for models yielding high jet multiplicities. The uncertainties in the modelling of
scale factors applied to simulated event samples that correct for differences in the b tagging
efficiency and mistag probabilities can be as large as ~20%.

Table 4 defines a number of benchmark models that are close to the limit of the
search sensitivity. All model families are represented, and the model parameters (mgusy,
mso, and cry if applicable) are chosen to select models with large and small differences in
mgsusy and ms0, as well as a range of cry values. Table 4 summarizes the aforementioned
uncertainties for each benchmark model, presented in terms of a characteristic range that
is representative of the variations observed across the bins of the SR. The upper bound for
each range may be subject to moderate statistical fluctuations.

Additional subdominant contributions to the total uncertainty are also considered.
The uncertainty in the integrated luminosity is determined to be 2.5% [23]. Uncertainties
in the production cross section arising from the choice of the PDF set, and variations
therein, as well as variations in urp and pur at LO are considered. Uncertainties in event
migration between bins from variations in the PDF sets are assumed to be correlated with,
and adequately covered by, the uncertainties in the modelling of ISR. Uncertainties from
pr and pg variations are determined to be ~5%. The effect of a 5% uncertainty in the total
inelastic cross section [91] is propagated through the weighting procedure that corrects for
differences between the simulated and measured pileup, resulting in event count variations
of ~10%. Uncertainty in the modelling of the efficiency to identify high-quality, isolated
leptons is &5% and is treated as anticorrelated between the SR and u+jets and pu-+jets
CRs. The uncertainty in the trigger efficiency to record signal events is <10%.

The Ae for the TlqqqqLL family of models depends on crp in addition to mg and
mzo- Scenarios involving a compressed mass spectrum or gluinos with ¢7y 2 10 m increase
the probability that the decay of the gluino-pair system escapes detection, and the Ae is
reduced for such models, as indicated in table 4, because of an increased reliance on jets
from ISR. Scenarios with mgz — mso 2 100 GeV and 1
or both gluinos decaying within the calorimeter systems to yield energetic jets comprising

< ergp S 10m often lead to one
particle candidates that have no associated charged particle track. Hence, the efficiencies
for the event vetoes related to the jet identification and fflli requirements, described in
sections 2 and 3.1, can be as low as ~90% and ~30%, respectively, for this region of the
model parameter space. Uncertainties as large as ~10% are assumed. The efficiencies
for all other scenarios are typically ~100%. Jet identification requirements in the trigger
logic lead to inefficiencies and uncertainties not larger than 2%. Finally, models with
1 < erg £ 10mm often lead to jets that are tagged by the CSV algorithm with efficiencies
as high as ~60%, which are comparable to the values obtained for jets originating from b
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Family (msusy, m ) Ae Systematic uncertainties [%)] ouL./otn (95% CL)
(e1o) [GeV]  [%] MC stat. ISR JES b tagging Exp. Obs.
Tobb (1000, 100) 40.1 14-23 -7  4-11 1-4  0.62 0.67
(550, 450) 5.7 922 415 415 37 0.76 1.21
(1000, 50) 23.8 14-27 37 4-14 1-5 0.82 0.85
T2tt (450, 200) 4.2 6-19 4-12 6-15 4-9 0.56 0.73
(250, 150) 0.3 1023 1327 822 6-16 0.71 0.66
T2cc (500, 480) 20.5 6-19 4-18 5-13 1-4  0.68 1.38
T2qq8fold (1250, 100) 42.9 12-24 2-7  5-14 1-1 0.54 0.66
(700, 600) 7.7 622 4-17 4-13 2-5 0.7 1.13
T2qq1fold (700, 100) 32.9 4-22 2-7  3-10 0-5 0.60 0.88
(400, 300) 4.5 620 522 5-18 3-5 0.61 0.46
T1bbbb (1900, 100) 25.1 11-19 3-9 4-6 7-11  0.56 1.25
(1300, 1100) 14.6 1122 2-11 3-11 2-5 044 1.15
Tltttt (1700, 100) 6.9 12-24 26 3-15 2-6  0.51 1.31
(950, 600) 0.3 15-30 5-9 12-26 2-6  0.89 1.51
TlqqqqLL (1800, 200) 27.8 820 35 39 01 1.02 1.91
(1 ) (1000, 900) 6.7 1521 2-10 4-14 0-1 0.68 1.26
TlqqqqLL (1800, 200) 229 1120 25 39 17-59  0.43 1.00
(1 mm) (1000, 900) 52 1726 29 417 10-41  0.28 0.63
T1qqqqLL (1000, 200) 11.2 1622 2-14 4-9 0-1 0.74 1.58
(100 m) (1000, 900) 10.4 14-26 3-14 2-12 0-1 0.63 0.45

Table 4. A list of benchmark simplified models organized according to production and decay modes
(family), the Ae, representative values for some of the dominant sources of systematic uncertainty,
and the expected and observed upper limits on the production cross section oy, relative to the
theoretical value oy, calculated at NLO+NLL accuracy. Additional uncertainties concerning the
T1qqqqLL models are not listed here and are discussed in the text.

quarks. Uncertainties of 20-50% in the tagging efficiency are assumed to cover differences
with respect to jets originating from b quarks, as indicated in table 4.

Figure 3 summarizes the excluded regions of the mass parameter space for the nine
families of simplified models. The regions are determined by comparing oyr, with the
theoretical cross sections oy, calculated at NLO+4NLL accuracy. The former value is deter-
mined as a function of mgygy and mso, while the latter has a dependence solely on msysy.
The exclusion of models is evaluated using observed data counts in the signal region (solid
contours) and also expected counts based on an Asimov data set (dashed contours). The
observed excluded regions for the T1bbbb and T1tttt families, as shown in figure 3 (lower),
can be up to 2-3 standard deviations weaker than the expected excluded regions when
mg —mzo ~ 350 GeV. These differences are typically due to fluctuations in data for events

X1
that satisfy nje; > 5 and ny, > 3. Figure 3 (lower) also allows a comparison of the sensitivity
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Figure 3. Observed and expected mass exclusions at 95% CL (indicated, respectively, by solid
and dashed contours) for various families of simplified models. The upper subfigure summarises the
mass exclusions for five model families that involve the direct pair production of squarks. The first
scenario considers the pair production and decay of bottom squarks (T2bb). Two scenarios involve
the production and decay of top squark pairs (T2tt and T2cc). The grey shaded region denotes T2tt
models that are not considered for interpretation. Two further scenarios involve, respectively, the
production and decay of light-flavour squarks, with different assumptions on the mass degeneracy of
the squarks as described in the text (T2qq-8fold and T2qq-1fold). The lower subfigure summarises
three scenarios that involve the production and prompt decay of gluino pairs via virtual squarks
(T1bbbb, T1tttt, and Tlqqqq). A final scenario involves the production of gluinos that are assumed
to be metastable on the detector scale (T1qqqqLL).
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Figure 4. Observed upper limit in cross section at 95% CL (indicated by the colour scale) as
a function of the g and X{ masses for simplified models that assume the production of pairs of
long-lived gluinos that each decay via highly virtual light-flavour squarks to the neutralino and SM
particles (T1qqqqLL). Each subfigure represents a different gluino lifetime: ¢ = 1 (upper left), 10
(upper centre), and 100 pm (upper right); 1 (middle left), 10 (middle centre), and 100 mm (middle
right); and 1 (lower left), 10 (lower centre), and 100 m (lower right). The thick (thin) black solid line
indicates the observed excluded region assuming the nominal (£1 standard deviation in theoretical
uncertainty) production cross section. The red thick dashed (thin dashed and dotted) line indicates
the median (41 and 2 standard deviations in experimental uncertainty) expected excluded region.

to T1lqqqq and T1qqqqLL models, which assume the prompt-decay and metastable gluino
scenarios, respectively. The latter scenario leads to a monojet-like final state as the gluino
escapes detection, resulting in a reach in mj that is independent of mso.

Figure 4 summarizes the evolution of the search sensitivity to the T1qqqqLL family of

models as a function of c¢rg. Each subfigure presents the observed oyy, as a function of mg
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Model family Best mass limit [GeV]
Gluino or squark X9
T2bb 1050 500
T2tt 1000 400
T2cc 500 475
T2qq_8fold 1325 575
T2qq-1fold 675 350
T1bbbb 1900 1150
T1tttt 1650 850
T1qqqq 1650 900
T1lqqqqLL (Metastable g) 900 —
T1qqqqLL (e7p = 1 mm) 1750 1000

Table 5. Summary of the mass limits obtained for each family of simplified models. The limits
indicate the strongest observed mass exclusions for the parent SUSY particle (gluino or squark)
and X§.

and mso for simplified models that involve the production of gluino pairs. The excluded
mass regions based on the observed and expected values of oyr, are also shown, along
with contours determined under variations in theoretical and experimental uncertainties.
The top row of subfigures cover the range 1 < ¢y < 100 um and demonstrate coverage
comparable to the T1qqqq prompt-decay scenario. A moderate improvement in sensitivity
for models with 1 < ey < 10 mm is observed because of the additional signal-to-background
discrimination provided by the ny, variable. The sensitivity is reduced for models with
lifetimes in the region c¢ry > 100 mm because of a lower acceptance for the jets from the
gluino decay and an increased reliance on jets from ISR. The coverage is independent of
¢ty beyond values of 10 m and comparable to the limiting case of a metastable gluino.

A nonnegligible fraction of R-hadrons that traverse the muon chambers before decaying
are identified as muons by the PF algorithm. The fraction is dependent on the R-hadron
model and the choice of parameters that affect the hadronization model and matter inter-
actions. The signal Ae is strongly dependent on c7y due to the muon veto employed by
this search. Under these assumptions, the excluded mass regions shown in figure 4 weaken
by 50-200 GeV for models with ¢y 2 1 m, with the largest change occurring at ¢y ~ 10 m.
The change is negligible for models with ¢y below 1 m.

Table 5 summarizes the strongest expected and observed mass limits for each family
of models. The simplified result based on the 32-bin schema, summarized in appendix A,
yields limits on oy, that are typically a factor ~2 weaker than those obtained with the
nominal result.
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9 Summary

A search for supersymmetry with the CMS experiment is reported, based on a data sam-
ple of pp collisions collected in 2016 at /s = 13TeV that corresponds to an integrated
luminosity of 35.9 + 0.9 fb~!. Final states with jets and significant missing transverse mo-
mentum ]5’1Tniss, as expected from the production and decay of massive gluinos and squarks,
are considered. Signal events are categorized according to the number of reconstructed jets,
the number of jets identified as originating from bottom quarks, and the scalar and vector
sums of the transverse momenta of jets. The standard model background is estimated
from a binned likelihood fit to event yields in the signal region and data control samples.
The observed yields in the signal region are found to be in agreement with the expected
contributions from standard model processes. Supplemental material is provided to aid
further interpretation of the result in appendix A.

Limits are determined in the parameter spaces of simplified models that assume the
production and prompt decay of gluino or squark pairs. The strongest exclusion bounds
(95% confidence level) for squark masses are 1050, 1000, and 1325 GeV for bottom, top,
and mass-degenerate light-flavour squarks, respectively. The corresponding mass bounds
on the neutralino Y| from squark decays are 500, 400, and 575 GeV. The gluino mass is
probed up to 1900, 1650, and 1650 GeV when the gluino decays via virtual states of the
aforementioned squarks. The strongest mass bound on the )Z(f from the gluino decay is
1150 GeV.

Sensitivity to simplified models inspired by split supersymmetry is also demonstrated.
These models assume the production of long-lived gluino pairs that decay to final states
containing displaced jets and ﬁffniss from the undetected Y! particles. The long-lived gluino,
with an assumed proper decay length crp, is expected to hadronize with SM particles and
form a bound state known as an R-hadron. The model-dependent matter interactions of
R-hadrons are not considered by default. The sensitivity of this search is only moderately
dependent on these matter interactions for models with ¢y 2 1m, while no dependence
is found for models with cry below 1m. Models that assume a X{ mass of 100 GeV and
gluino masses up to 1600 GeV are excluded for a proper decay length cry below 0.1 mm.
The bound on the gluino mass strengthens to 1750 GeV at ¢y = 1 mm, before weakening
to 900-1000 GeV for models with ¢y > 10m. For all values of ¢y considered, the exclusion
bounds on the gluino mass weaken to about 1 TeV when the difference between the gluino
and X9 mass is small. The search provides coverage of the cry parameter space for models
involving long-lived gluinos, such as the region ¢y < 1 mm, that is complementary to the
coverage provided by dedicated techniques at the LHC.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent
performance of the LHC and thank the technical and administrative staffs at CERN and
at other CMS institutes for their contributions to the success of the CMS effort. In ad-
dition, we gratefully acknowledge the computing centres and personnel of the Worldwide

~ 93 -



LHC Computing Grid for delivering so effectively the computing infrastructure essential
to our analyses. Finally, we acknowledge the enduring support for the construction and
operation of the LHC and the CMS detector provided by the following funding agencies:
BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ,
and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COL-
CIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador);
MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland);
CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece);
OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN
(Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia);
BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New
Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna);
MON;, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI
and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter,
IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR
(Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.).

Individuals have received support from the Marie-Curie programme and the European
Research Council and Horizon 2020 Grant, contract No. 675440 (European Union); the
Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Founda-
tion; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche
dans I'Industrie et dans I’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door
Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports
(MEYS) of the Czech Republic; the Council of Science and Industrial Research, India;
the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from
European Union, Regional Development Fund, the Mobility Plus programme of the Min-
istry of Science and Higher Education, the National Science Center (Poland), contracts
Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998,
and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Re-
search Program by Qatar National Research Fund; the Programa Severo Ochoa del Prin-
cipado de Asturias; the Thalis and Aristeia programmes cofinanced by EU-ESF and the
Greek NSRF'; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn
University and the Chulalongkorn Academic into Its 2nd Century Project Advancement
Project (Thailand); the Welch Foundation, contract C-1845; and the Weston Havens Foun-
dation (U.S.A.).

— 24 —



A Supplemental material

Njet M Hrt [GeV]
200 400 600 900 1200
1 0 200 400 600 900 —
1 1 200 400 600 — —
>2a 0 200 200,400 200, 400, 600 200, 900 —
>2a 1 200 200,400 200, 400, 600 200, 900 —
>2a 2 200 200, 400 200, 400, 600 200, 900 —
>2a >3 200 200,400 200, 400, 600 — —
2 0 200 200,400 200, 400, 600 200, 400, 600, 900 200, 400, 600, 900
2 1 200 200,400 200, 400, 600 200, 400, 600, 900 200, 400, 600, 900
2 2 200 200,400 200, 400, 600 —
3 0 200 200,400 200, 400, 600 200, 400, 600, 900 200, 400, 600, 900
31 200 200,400 200, 400, 600 200, 400, 600, 900 200, 400, 600, 900
3 2 200 200,400 200, 400, 600 200, 400, 600, 900 200, 400, 600, 900
3 3 200 200, 400 200, 400, 600 — —
4 0 — 200,400 200, 400, 600 200, 400, 600, 900 200, 400, 600, 900
4 1 — 200,400 200, 400, 600 200, 400, 600, 900 200, 400, 600, 900
4 2 — 200,400 200, 400, 600 200, 400, 600, 900 200, 400, 600, 900
4 >3 — 200,400 200, 400, 600 200, 400, 600, 900 —
) 0 — 200,400 200, 400, 600 200, 400, 600 200, 400, 600, 900
) 1 — 200,400 200, 400, 600 200, 400, 600 200, 400, 600, 900
) 2 — 200,400 200, 400, 600 200, 400, 600 200, 400, 600, 900
) 3 — 200,400 200, 400, 600 200, 400, 600 —
5 >4 — 200,400 — — —
>6 0 — 200 200, 400 200, 400, 600 200, 400, 600, 900
>6 1 — 200 200, 400 200, 400, 600 200, 400, 600, 900
>6 2 — 200 200, 400 200, 400, 600 200, 400, 600, 900
>6 3 — 200 200, 400 200, 400, 600 200, 400, 600, 900
>6 >4 — 200 — — —

Table 6. Summary of the nominal (nje, nn, Hr, H¥) binning schema. Each entry (and the
following entry, if present) signifies the lower (upper) bound of an H¥'** bin within a given (njet, n,

Hr) bin. Unique or final entries represent H¥5 bins unbounded from above. A dash (—) signifies

that the Hr bin in a given (nje, np,) category is not used in the analysis, in which case counts in
high- Hr bins are integrated into the adjacent lower- Hr bin. For monojet events, Hy = HS. The
a denotes asymmetric pr thresholds for the two highest pr jets.
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Njet N HIiss [GeV]
200 400 600 900
=1, >2a 0 Data 411184 11448 1116 111
SM 360000438000 1000041400  910+£170  107+28
=1, >2a >1 Data 31174 769 105 7
SM 25500 £ 2500 649 +91 69+ 13 6.4+1.8
=2, =3 =0,=1 Data 66955 5946 903 100
SM 58000+11000  5400+£1100 860+£220  113+41
=2, =3 >2 Data 1045 70 6 0
SM 8704130 56.9+9.4 7T1+1.7 1.0+04
=4, =5 =0, =1 Data 9546 1734 315 44
SM 10500 £+ 1100 1880 + 310 319+71 40+ 14
=4, =5 >2 Data 1012 93 4 3
SM 970+ 110 81+11 84+1.7 1.24+04
>6 =0,=1 Data 758 141 33 5
SM 9104180 167+ 76 33+ 25 4.2+5.0
>6 >2 Data 197 14 3 0
SM 189 +40 16.9+4.9 21+1.2 0.2+0.2

Table 7. Observed counts of candidate signal events and SM expectations determined from the
CR-only fit using the simplified binning schema, as a function of njet, ny,, and HFSS. All counts are
integrated over Hy. The uncertainties include both statistical and systematic contributions. The
a denotes asymmetric pr thresholds for the two highest pr jets.
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Figure 5. Correlation matrix for the SM background estimates determined from the CR-only fit
using the simplified binning schema defined in table 7.
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