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1 Introduction

Proton-proton collisions at the LHC provide for the first time the conditions to study the
production of particles with masses at the electroweak scale via photon-photon fusion [1,
2]. Although the production of high-mass systems in photon-photon collisions has been
observed by the CMS and ATLAS experiments [3-5], no such measurement exists so far with
the simultaneous detection of the scattered protons. This paper reports the measurement
of the process pp — plt¢—p™) in pp collisions at /s = 13 TeV, where a pair of leptons
(¢ = e, u) with mass m(£t¢~) > 110 GeV is reconstructed in the central CMS apparatus,
one of the protons is detected in the CMS-TOTEM precision proton spectrometer (CT-
PPS), and the second proton either remains intact or is excited and then dissociates into



Figure 1. Production of lepton pairs by v+ fusion. The exclusive (left), single proton dissociation
or semiexclusive (middle), and double proton dissociation (right) topologies are shown. The left
and middle processes result in at least one intact final-state proton, and are considered signal in
this analysis. The rightmost diagram is considered to be a background process.

a low-mass state, indicated by the symbol p*, and escapes undetected. Such a final state
receives contributions from exclusive, pp — p/™¢ p, and semiexclusive, pp — pfT{ p*,
processes (figure 1 left, and center). Central exclusive dilepton production is interesting
because deviations from the theoretically well-known cross section may be an indication of
new physics [6-8], whereas central semiexclusive processes constitute a background to the
exclusive reaction when the final-state protons are not measured.

(Semi)exclusive dilepton production has been previously studied at the Fermilab Teva-
tron and at the CERN LHC, but at lower masses and never with a proton tag [9-14]. In this
paper, forward protons are reconstructed in CT-PPS, a near-beam magnetic spectrometer
that uses the LHC magnets between the CMS interaction point (IP) and detectors in the
TOTEM area about 210 m away on both sides of the IP [15]. Protons that have lost a
small fraction of their momentum are bent out of the beam envelope, and their trajectories
are measured.

Central dilepton production is dominated by the diagrams shown in figure 1, in which
both protons radiate quasi-real photons that interact and produce the two leptons in a
t-channel process. The left and center diagrams result in at least one intact final-state
proton, and are considered as signal in this analysis. The CT-PPS acceptance for detect-
ing both protons in “exclusive” pp — plT¢ p events (the left diagram) starts only above
m(£T¢7) &~ 400 GeV, where the standard model cross section is small. By selecting events
with only a single tagged proton, the sample contains a mixture of lower mass exclusive
and single-dissociation (pp — pfT¢~p*, “semiexclusive”) processes with higher cross sec-
tions. The right diagram of figure 1 is considered background, and contributes if a proton
from the diffractive dissociation is detected, or if a particle detected in CT-PPS from an-
other interaction in the same bunch crossing (pileup), or from beam-induced background
is wrongly associated with the dilepton system. A pair of leptons from a Drell-Yan process
can also mimic a signal event if detected in combination with a pileup proton.

In central (semi)exclusive events, the kinematics of the dilepton system can be used
to determine the momentum of the proton, and hence its fractional momentum loss &.
Comparison of this indirect measurement of £ with the direct one obtained with CT-PPS
can be used to suppress backgrounds, as well as to provide proof of the correct functioning
of the spectrometer.



The CT-PPS detector [15, 16] operated for the first time in 2016 and collected a
total integrated luminosity of ~15fb~! in standard, high-luminosity runs of the LHC. The
average number of pileup interactions per bunch crossing during 2016 was 27. For the
present analysis, a sample of 9.4fb™! is used; the remaining (unused) data set was taken
after September 2016, when the LHC collided protons with a different crossing angle.

The paper is organized as follows. Section 2 describes the experimental setup, and
sections 3—4 the procedures to derive the alignment and the LHC optics parameters from the
data. Section 5 documents the samples of data and simulated events used in the analysis,
while sections 6 and 7 explain the event selection criteria, and the methods applied to
estimate the backgrounds, respectively. Finally, the analysis and the results are presented
in section 8, followed by a summary in section 9.

2 Experimental setup

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal
diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon
pixel and strip tracker with coverage in pseudorapidity up to |n| = 2.5, a lead tungstate
crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each
composed of a barrel and two endcap sections. Forward calorimeters extend the coverage
provided by the barrel and endcap detectors up to |n| = 5.2. Muons are measured in
gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. A
more detailed description of the CMS detector, together with a definition of the coordinate
system used and the relevant kinematic variables, can be found in ref. [17].

The CT-PPS detector measures protons scattered at small angles and carrying between
about 84 to 97% of the incoming beam momentum. These protons remain inside the beam
pipe and their trajectory is measured by a system of position-sensitive detectors at a
distance of about 210 m from the IP, on both sides of CMS. These tracking detectors are
complemented by timing counters to measure the proton arrival time. The detector planes
are inserted horizontally into the beam pipe by means of “Roman Pots” (RPs), i.e. movable
near-beam devices that allow the detectors to be brought very close (down to a few mm) to
the beam without affecting the vacuum, beam stability, or other aspects of the accelerator
operation.

The layout of the beam line from the IP to the 210 m region on one of the two sides of
CMS is shown in figure 2. The two sides are referred to as “arms” in the following. The arms
to the left (positive z direction) and to the right of CMS when looking from the center of
the LHC correspond to LHC sectors 45 and 56 on the two sides of interaction point 5 where
CMS is located, respectively. In each arm there are two tracking units, referred to as “210
near” (210N) and “210 far” (210F), which are located at 203.8 m and 212.6 m from the IP,
respectively. In 2016, the tracking RPs were each instrumented with 10 planes of edgeless
silicon strip sensors, providing a spatial resolution of about 12 ym. Five of these planes
are oriented with the silicon strips at a +45° angle with respect to the bottom of the RP,
while the other five have the strips at a —45° angle. In total each RP silicon detector plane
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Figure 2. Schematic layout (not to scale) of the beam line as seen from above between the
interaction point (IP5) and the region where the RPs are located in LHC sector 56. Dipole magnets
(D1, D2) of single- (MBXW) and twin-aperture, quadrupoles (Q1-Q6), collimators (TCL4-TCL6),
absorbers (TAS, TAN), and quadrupole feedboxes (DFBX) are shown. The 210 near and 210 far
units are indicated, along with the timing RPs not used here. The 220 near and 220 far units (not
used here) are also shown. The RPs indicated in red are the horizontal CT-PPS ones; those in blue
are part of the TOTEM experiment. The red (blue) arrow indicates the outgoing (incoming) beam.
In the CMS coordinate system, the z axis points to the left. The arm in the opposite LHC sector
45 (not shown) is symmetric with respect to the IP.

contains 512 individual strips, with a pitch of 66 um. A schematic diagram of the silicon
strip sensors, indicating their orientation relative to the LHC beam, is shown in figure 3

The hit efficiency per plane is estimated to be >97% before the effect of radiation dam-
age to the sensors. The signal from the silicon detectors is contained within one 25 ns bunch
crossing of the LHC. The data are read out using a digital VFAT chip [18], and recorded
through the standard CMS data acquisition system. The pots as well as the sensors have
been extensively used by the TOTEM experiment and are described in refs. [16, 19]. The
TOTEM silicon strip sensors were not designed to sustain exposure to the high radiation
doses of the standard high-luminosity LHC fills. As expected, a first set of such planes suf-
fered severe radiation damage after about 10fb~!, and was replaced by a set of spares. In
order to operate at high instantaneous luminosity, the RPs have been equipped with special
ferrite shielding, so as to reduce their electromagnetic impedance, and hence limit their
impact on the LHC beams. The timing detectors are housed in low-impedance, cylindrical
RPs specially built for CT-PPS, located at 215.7m from the IP. They were equipped with
diamond detectors for the last part of the run to complement the tracking silicon strip
detectors. They are not used for the analysis discussed here. In its final configuration,
CT-PPS will use 3D silicon pixel sensors for tracking and diamond sensors for timing.

The data analyzed for this paper were collected with the RPs at a distance of about
15 o from the beam, where o is the standard deviation of the spatial distribution of the
beam in the transverse direction pointing to the RP; the values of ¢ range from 0.245 mm
for the 210N RP to 0.14 mm for the timing RP.

3 Alignment of the CT-PPS tracking detectors

Alignment of CT-PPS is required in order to determine the position of the sensors with
respect to each other inside a RP, the relative position of the RPs, and the overall position



/
<
N\

:
‘ Overlap )
oy

v

vertical detectors

Figure 3. Schematic layout of the silicon strip detectors in one RP station. Both the horizontal
RP and the vertical RPs, which are used only for special low-luminosity calibration fills, are shown.
In the top RP, the silicon strips oriented at +45° and —45° angles are indicated by the diagonal
lines. Tracks in the overlap region, indicated by the shaded area, are used to perform a relative
alignment of the RPs in the calibration fills.

of the spectrometer with respect to the beam. An overview of the procedure is given here;
more details are available in ref. [20].
The alignment procedure consists of two conceptually distinct parts:

e Alignment in a special, low-luminosity calibration fill (“alignment fill”), where RPs
are inserted very close to the beam (about 5 o).

e Transfer of the alignment information to the standard, high-luminosity physics fills.

3.1 Alignment fill

The first step is the beam-based alignment, the purpose of which is to establish the position
of the RPs with respect to the LHC collimators and the beam. It takes place only once per
LHC optics setting. In this procedure, the TOTEM vertical RPs [19] (cf. figure 3) are used
together with the horizontal CT-PPS RPs. The beam is first scraped with the collimators
so that it develops a sharp edge. Then each RP is moved in small (approximately 10 pm)
steps until it is in contact with the edge of the beam, which generates a rapid increase in
the rate observed in the beam-loss monitors close to CT-PPS. At this point, each RP is at
the same distance (in units of ) as the collimator, i.e. the RP is at the edge of the shadow
cast by the collimator. The necessity to get very close to the beam stems from the need



of having the TOTEM vertical and the CT-PPS RPs overlap. Data are then taken in this
configuration, with the horizontal and vertical RPs at 8 and 5 o, respectively.

The second step consists of determining the relative position of all the sensors in each
arm using the data from the alignment fill. This is achieved by minimizing the residuals
between hit positions and fitted tracks. The track reconstruction is described in section
4.2. The position (shift perpendicular to the beam) and rotation (about the beam axis)
of each sensor are thereby determined. While no event selection is necessary (since the
method assumes that the tracks are linear, which is the case as there are no magnets at the
RP location), the most valuable events are those with tracks reconstructed when the RP
detectors overlap, which allow the relative alignment of the RPs to be determined. The
method is applied to several data subsamples in order to verify the stability of the results.

Finally, the alignment of CT-PPS with respect to the beam is performed, again with
data from the dedicated fill. A sample of several thousand elastic scattering events, pp —
pp, is used for that purpose. The LHC optics causes the elastic hit distribution in any
vertical RP to have an elliptical shape centered on the beam position. This symmetry is
exploited to determine the position of the RP with respect to the beam.

The uncertainties in the results of the procedure just discussed are 5 mrad for rotations,
50 pm for horizontal shifts, and 75 pum for vertical shifts.

3.2 Physics fills

Since the RPs move, and the beam position can change, the position of CT-PPS with
respect to the beam needs to be redetermined for each fill. The physics fills are characterized
by high intensity with only the horizontal RPs inserted at much larger distances (about
150) from the beam than in the alignment fill, and therefore a different procedure is
employed.

The horizontal alignment is based on the assumption that the scattered protons from
a pp collision at the IP have the same kinematic distributions in all fills. Given the
stability of the LHC conditions (RP positions, collimator setting, magnet currents, and
beam orbit), this leads to the spatial distributions of the track impact points observed in
the RPs (section 4.2). The alignment is then achieved by matching these distributions
from a physics fill to those from the alignment fill. An example of this procedure is shown
in figure 4. For this method to work, it is important to suppress the background due
to secondary interactions taking place between the IP and the RPs. To this end, the
correlation between the coordinates of the horizontal hit positions in the near and far RPs
is used. The total uncertainty of the horizontal alignment is about 150 pym.

The beam vertical position with respect to the sensors is determined by fitting a
straight line to the y coordinate of the maximum of the track impact point distribution
as a function of = (horizontal beam position). The fitted function is then extrapolated to
2 = 0. This procedure can be applied since, unlike for the horizontal case, the maximum
of the vertical distribution is within the acceptance of the horizontal RPs. Here again, the
resulting uncertainty is of the order of 150 pum.
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Figure 4. Distribution of the track impact points as a function of the horizontal coordinate for the
alignment fill (black points), a physics fill before alignment (blue points), and after alignment (red
points). The beam center is at 2 = 0 for the black and red points; the x axis origin is undefined for
the blue points. In the alignment procedure the overall normalization of the histogram is irrelevant;
the histograms from different fills are therefore rescaled to compare their shapes.

4 Proton reconstruction

4.1 The LHC beam optics

The reconstruction of the scattered proton momentum from the tracks measured in the
RPs requires precise knowledge of the magnetic fields traversed by the proton from the IP
to the RPs [21]. This is normally parametrized in terms of the “beam optics”, in which the
elements of the beam line are treated as optical lenses. The proton trajectory is described by
means of transport matrices, which transform the kinematics of protons scattered at the IP
to the kinematics measured at the RP position. The trajectory of protons produced at the
IP (denoted by the superscript “*’) with transverse vertex position (x*,y*) and horizontal
and vertical components of scattering angle (O, @Z) is described approximately by:

d(s) = T(s, €)d*, (4.1)

where s indicates the distance from the IP along the nominal beam orbit, and d =
(,04,v,0,,§), with & = Ap/p, and p and Ap the nominal beam momentum and the
proton longitudinal momentum loss, respectively. The symbol T'(s, &) denotes the single-
pass transport matrix, whose elements are the optical functions. The leading term in the
horizontal plane is:

x = Dz (§)E, (4.2)

where the dispersion D, has a mild dependence on . In the vertical plane, the leading
term reads:

Y= Ly(5)927 (4'3)
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Figure 5. Vertical effective length L, (in meters) as a function of the proton relative momentum
loss £ at two (near and far) RPs calculated with the beam line optics simulation program MAD-X [22].

where L, (&) is the vertical effective length. The ¢ dependence of L, is shown in figure 5.
At any location s in the RP region there is a value of £, £, where L, vanishes and hence
the values of y concentrate around zero. Consequently, the distribution of the track impact
points exhibits a ‘pinch’ at xg =~ D,&q, cf. figure 6. The horizontal dispersion D, is then
estimated as:

Dy ~ (4.4)

zo
&

The subleading terms neglected in this approximation are treated as systematic un-
certainties.

An independent estimate of the difference of the dispersions in the two LHC beams,
AD,, is obtained by varying AD, to find the best match between the ¢ distributions
reconstructed from the two arms. This estimate agrees with the one discussed above
within the uncertainties.

These two horizontal dispersion measurements and the beam position values constrain
the LHC optics between the IP and the RPs, including the nonlinearities of the proton
transport matrices and their dependence on £. The optical functions are extracted with
the methods originally developed for the analysis of elastic scattering data [23].

4.2 Proton track reconstruction

Since there is no significant magnetic field in the region of the CT-PPS RPs, the trajec-
tory of particles passing through the silicon strip detectors is a straight line. In each RP
(RP hereinafter refers to the particle detector contained in the pot), track reconstruction
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Figure 6. Distribution of the track impact points measured in RP 210F, in sector 45, for the align-
ment fill. The point where L, = 0 is shown with a cross. The beam center is at x =y = 0. The edge
of the distribution is slanted because the RP shown has a rotation of 8° with respect to the vertical.

therefore starts with a search for linear patterns along z among the hits detected in the 10
planes, as described in chapter 3 of ref. [24]. The search is performed independently in each
of the two strip orientations (with angles of +45° and —45° with respect to the bottom
of the RP); hits in at least 3 out of 5 planes are required. If only one pattern is found in
both orientations, the patterns can be uniquely associated and a track fitted, yielding a
“track impact point” evaluated at the center of the RP along z. Figure 7 shows a typical
distribution of the track impact points in the (z,y) plane for a RP at 150 from the beam.
When there is more than one pattern in any strip orientation, a unique association is not
possible and no track is reconstructed. The inefficiency due to multiple tracks depends on
the pileup, and ranges between 15 and 40% in the 2016 data used in this analysis. This
multiple tracks inefficiency and the &- and time-dependent effects of radiation damage to
the sensors described in section 2 are the dominant sources of inefficiency. Other recon-
struction effects, such as those due to showers within the detector material, are estimated
to contribute ~3% to the efficiency for finding proton tracks.

4.3 Determination of £

The fractional momentum loss of a proton, &, can be determined from the track impact
point in a single RP. This is advantageous in regions where the other RP of the sector does
not have sufficient acceptance or is inefficient. In practice, £ is reconstructed by inverting
eq. (4.2). This method ignores subleading terms in the proton transport (notably the one
proportional to the horizontal scattering angle); their effect is included in the systematic
uncertainties.
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Figure 7. Example of track impact point distribution (in the x,y plane) measured in RP 210F,
sector 45, at 150 from the beam in the x direction. The beam center is at x = y = 0. The
track selection includes a matching requirement with RP 210N, which suppresses noise and beam
backgrounds, but slightly reduces the acceptance for low values of the position x, given the different
acceptance of the near and far RPs.

The main uncertainties are:

e dispersion calibration: relative uncertainty in D, of about 5.5%;
e horizontal alignment: approximately 150 pm;

e neglected terms in eq. (4.2).

For values of & = 0.04, the leading uncertainty comes from the dispersion, and from
the neglected terms related to ©F in eq. (2).

Having reconstructed &, eq. (4.3) can then be used to determine the vertical scattering
angle from the curves presented in figure 5. The scattering angle can, in turn, be related
to the vertical component of the proton transverse momentum.

5 Data sets and Monte Carlo samples

The CT-PPS data analyzed here were collected during the period May—September 2016;
they correspond to an integrated luminosity of 9.4 fb~!. In the same period, CMS collected
a total of 15.6fb~!. For the present data, the beam amplitude function 8* at the IP was
0.4m and the crossing angle o, of the beams was 370 urad. After about a month, the
silicon strip detectors suffered heavy radiation damage. After new silicon strip detectors
were installed in September, the LHC implemented a smaller crossing angle for collisions
at the CMS IP, which resulted in different optics parameters and therefore changed the
CT-PPS acceptance. These later data are therefore not used in the present analysis.
Simulated signal samples of exclusive (pp — pf*¢~p) and single proton dissociative
(pp — plT¢ p*) events proceeding via photon fusion yy — £T¢~ are generated with the
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LPATR code [25, 26] (version 4.2). LPAIR is also used to produce vy — £T¢~ samples with
both protons exciting and dissociating, that is pp — p*¢T¢~p*. These three topologies are
illustrated in figure 1. The central detector information is passed through the standard
GEANT4 [27] simulation of the CMS detector and reconstructed in the same way as the
collision data. Conversely, only generator-level forward proton information is used, which
is sufficient for the present analysis.

Background from the Drell-Yan process, pp — v*/Z* — ¢/~ + X, is simulated with
MADGRAPH5_ aMC@QNLO [28, 29], interfaced with the PYTHIA 8.212 [30] event generator
using the CUETP8M1 tune [31] for parton showering, underlying event, and hadronization.
The events are generated at leading order, and normalized to the next-to-next-to-leading
order cross section prediction [32].

6 Event selection

6.1 Central variables

Events were selected online [33] by requiring the presence of at least two muon (electron)
candidates of any charge, each with transverse momentum pp > 38 (33) GeV. No require-
ment on forward protons was imposed online.

Offline, the tracks of the two highest-pt lepton candidates of the same flavor in the
event are fitted to a common vertex. The vertex position from the fit is required to be
consistent with that of a collision (]z] < 15cm), with a x? < 10 (probability greater
than 0.16% for 1 degree of freedom). The lepton candidates are further required to have
pr > 50 GeV, and to pass the standard CMS quality criteria [34, 35]. In the final stage of
the analysis only leptons with opposite charge are retained. No explicit isolation is required
for the leptons; however, nonprompt leptons (i.e. from heavy and light hadron decays in
flight) are heavily suppressed by the applied track multiplicity criteria described below.

In order to select a sample enriched in 7y — £T¢~ events, a procedure similar to that
of the Tevatron and Run 1 LHC analyses [3-5, 9-11, 13, 36] is used. The event is accepted
if no additional tracks are found in the region within the veto distance around the dilepton
vertex. No explicit requirement is made on the pr or on the quality of these extra tracks.
In addition, the dilepton acoplanarity (a = 1 — |A¢(¢1¢7)|/7) is required to be consistent
with the two leptons being back-to-back in azimuth ¢. The dilepton acoplanarity versus
the distance between the closest extra track and the dilepton vertex is shown in figure 8
for muons (left) and electrons (right), for the simulated signal (blue and green dots) and
double-dissociation and Drell-Yan backgrounds (red and yellow dots). Based on these
distributions, an extra-track veto region distance of at least 0.5 mm around the vertex
is required, along with a < 0.009 for the muons and a < 0.006 for the electrons. The
acoplanarity requirements are chosen such that the signal to background ratio predicted
by the simulation is above unity before any matching of the leptons with RP tracks. The
size of the extra-track veto region is smaller than suggested by the simulation, reflecting
the fact that the distribution of primary vertices in z is narrower in the data than in the
simulation. Because of the high pileup rate, the selection is based on information from
reconstructed tracks alone, without using information from the calorimeters. This results
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Figure 8. Dimuon (left) and dielectron (right) acoplanarity versus the distance between the closest
extra track and the dilepton vertex for simulated signal and backgrounds. The points represent the
Drell-Yan (red), exclusive vy — £+£~ (blue), single-dissociative vy — ¢*¢~ (green), and double-
dissociative vy — ¢T¢~ (yellow) processes. The dashed lines indicate the region selected for the
analysis. The number of points for each physics process does not reflect its cross section.

in an efficiency of > 95% for the highest values of pileup and pileup density observed in
the 2016 data set used for the measurement.

Finally, the invariant mass of the leptons is required to satisfy m(£*4~) > 110 GeV.
This suppresses the region around the Z boson mass, which is expected to be dominated
by Drell-Yan production.

Figure 9 shows the distributions of the dimuon and dielectron invariant mass and
rapidity y, after all the central detector requirements just described are applied. The Monte
Carlo (MC) predictions are normalized to the total integrated luminosity. In addition, for
the LPAIR predictions, rapidity gap survival probabilities of 0.89, 0.76, and 0.13 are applied
to the exclusive, the single dissociative, and the double dissociative processes, respectively.
The rapidity gap survival probability quantifies the fraction of events in which no extra
soft interactions occur between the colliding protons. These soft interactions produce
extra final-state particles, and thereby suppress the visible (semi)exclusive cross section.
The values used are calculated from modified photon parton distribution functions in the
proton that are compatible with Run 1 LHC measurements. In the case of the proton
dissociation processes, these values represent a mix of the incoherent and QCD evolution
terms calculated in ref. [37]. This choice of rapidity gap survival probabilities leads to
a fair description of the data for y around zero, but overestimates the results at more
forward /backward rapidities, as is clear from the bottom panels of figure 9. A y dependence
of the rapidity gap survival probability is expected in several models [38, 39].

6.2 Matching central and proton variables

Events with at least one well-reconstructed proton track in CT-PPS are retained for further
analysis. For each event, the value of the fractional momentum loss of the scattered proton

- 12 —
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Figure 9. Dimuon (left) and dielectron (right) invariant mass (top) and rapidity (bottom), after all
central-detector criteria are applied, in pp collisions at 13 TeV. Points with error bars indicate the
measured data (with statistical uncertainties only), and the stacked histograms show the different
simulated contributions for signal and backgrounds (with statistical uncertainty of similar size as
the data). The lower panel in each plot shows the ratio of the data to the sum of all signal and
background predictions.

is estimated from the leptons as:

€(00) = = [pr(e)e ) 4 pr(e)e )] (6.1)

where the two solutions for £7 correspond to the protons moving in the +z direction.

The formula is exact for exclusive events, but holds also for the single-dissociation case,
as illustrated with LPAIR simulated events in figure 10; in this case only one of the two
possible solutions will correspond to the direction of the intact proton. Studies with LPAIR
indicate that a mass of the dissociating system larger than about 400 GeV is needed in
order to produce a deviation comparable to the expected £(¢7¢7) resolution of about 3%
(4%) for dimuons (dielectrons). The latter is obtained from simulation, with an additional
smearing to account for residual data-simulation differences. The LPAIR simulation also
indicates that the minimum mass of the dissociating system required to generate activity
in the CMS tracker is about 50 GeV; the fraction of dissociative events above this threshold
is of a few percent.
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corresponding to the side with the intact proton is shown.

To be considered as signal candidates, events are further required to have a value of
£(¢t07) within the CT-PPS coverage. The minimum value of £ observed in an inclusive
sample of dilepton-triggered events, with no selection to enhance v+ production, is used.
Numerically this corresponds to:

e sector 45, RP 210N: £ > 0.033,
e sector 45, RP 210F: £ > 0.024,
e sector 56, RP 210N: & > 0.042,
e sector 56, RP 210F: £ > 0.032.

The difference between the & coverage in the sectors 45 and 56 is due to the asymmetric
beam optics.

Finally, the signal region is defined by requiring that £(¢*¢~) and the corresponding
value measured with CT-PPS, ¢(RP), agree within 20 of the combined uncertainty on
EWteT) and D,.
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7 Backgrounds

After all selection criteria discussed above, the backgrounds are expected to arise mainly
from prompt /¢~ production combined with proton tracks from unrelated pileup interac-
tions or beam backgrounds in the same bunch crossing. The largest background sources
of prompt ¢*¢~ production are the Drell-Yan process and vy — ¢~ production in which
both protons dissociate.

To estimate both the Drell-Yan and the double dissociative backgrounds, samples of
RP tracks from Z — p*p~ and Z — ete” events in data are used (referred to as “Z
control samples” in the following). For the double dissociative background estimate, LPAIR
simulated events are also used, in conjunction with the RP tracks from the Z control
samples. To avoid statistical correlations between the two estimates, only every second
event from each sample is considered for the Drell-Yan estimate, and the remaining part
for the double-dissociative background. In both cases, the background estimation is mostly
based on data, and does not require detailed knowledge of the RP acceptance and detector

efficiency. The procedure is described in the following.

e The extra track and acoplanarity selection criteria are not applied to estimate the
Drell-Yan background. Instead, an invariant mass window of 80 < m({t{™) <
110 GeV is imposed, resulting in a high purity sample of Drell-Yan events. A sub-
sample is then selected with a proton track matching the kinematics of the ¢*¢~
pair. The Drell-Yan events in this subsample tend to be concentrated at midrapidity,
which causes a distortion of the £(¢1¢7) distribution. The distribution is therefore
reweighted to match the shape predicted by the Drell-Yan simulation for events en-
tering the signal region, with m(¢*¢~) > 110 GeV. Finally, the simulated Drell-Yan
sample is used to obtain the number of matching events expected to pass the track
multiplicity, acoplanarity, and m(¢*¢~) requirements, given the number observed in
the Z boson control sample.

e In the case of the background from double dissociation dilepton production, simulated
double dissociation LPAIR events are randomly mixed with the background-dominated
sample of protons from the Z boson control sample. The protons from this sample
are used for convenience, and any other sample of protons could have been used; the
information from the central part of the event is not necessary for the present study.

The MC events passing the central detector requirements are selected, and an ex-
ponential function is fitted to the corresponding £(¢7¢~) distribution. Then a fast
simulation is performed in which the fit is sampled, and the value of £(£1¢7) is
randomly assigned to a proton from the Z boson sample.

The background estimate is obtained from the number of events in the fast simulation
that pass the proton selection (cf. section 6.2) in addition to the central detector
requirements, normalized to the number of MC events passing the central signal
selection. The procedure just described forces all double dissociation events to have
a background proton in CT-PPS. The background estimate thus needs to be scaled
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Arm and background source Full 20

Left Drell-Yan 6.14 + 0.13 0.75 & 0.05
Right Drell-Yan 5.22 £ 0.12 0.63 £ 0.04
Total Drell-Yan 11.36 £+ 0.18 1.38 &+ 0.06
Left double dissociation 0.57 £ 0.01  0.046 + 0.003

Right double dissociation 0.60 £ 0.01  0.062 4 0.004
Total double dissociation 1.17 £ 0.02 0.108 + 0.005

Total background 12.52 £ 0.18  1.49 £+ 0.07

Table 1. Estimated backgrounds from Drell-Yan and double-dissociation ™ p~ production, within
the acceptance of at least one of the RPs of a given arm, and in the subsample with proton
kinematics matching within 2 0. The bottom row indicates the total background from the sum of
Drell-Yan and double dissociation events.

by the fraction of events passing the central selection that do not have a proton in
CT-PPS. This is obtained from the data.

For the simulation of the double dissociation process, the y-independent rapidity
gap survival probability of 0.13 quoted above is used. If instead the y-dependent
rapidity gap survival probability discussed in section 6 were used, the dissociative
background and total background estimates would decrease. The present estimate is
thus conservative.

e The dissociating system may contain a final-state proton that falls within the CT-PPS
acceptance, even without overlap of an unrelated proton. However, the simulation
indicates that the total number of such events within the acceptance is negligible.

The numbers of background events expected with tracks in either or both of the near
and far RPs in each arm are shown in tables 1-2. A total of 11.04+0.2 (stat) dimuon events
and 10.5 + 0.2 (stat) dielectron ones are expected within the acceptance, but outside the
2 0 matching window. Within the 2 0 matching window, the total background prediction
is 1.49+0.07 (stat) dimuon events and 2.36 +0.09 (stat) dielectron events with a matching
track in at least one RP, in both arms combined.

The systematic uncertainties in the Drell-Yan and double dissociation backgrounds are
shown in table 3 and are estimated as follows. A 5% contribution is assigned to reflect
the statistical uncertainty of the control sample of protons from the Z boson mass region
for the dimuon case, and a 4% contribution for the dielectron channel. In addition, the
Drell-Yan background estimate is affected by uncertainties related to the reweighting of
the £(¢1T¢7) distribution and the modeling of the track multiplicity distribution in the
simulation. The former is obtained as the difference of the background estimates with and
without reweighting, leading to a 25% (11%) relative uncertainty in the dimuon (dielectron)
channel. The latter is estimated from the difference between data and simulation in the
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Arm and background source Full 20

Left Drell-Yan 6.24 + 0.13 1.07 £ 0.06
Right Drell-Yan 6.09 + 0.14 1.23 £+ 0.06
Total Drell-Yan 12.33 £ 0.19 2.30 £+ 0.09
Left double dissociation 0.31 &= 0.01 0.035 + 0.002
Right double dissociation 0.25 £ 0.01  0.032 £+ 0.002
Total double dissociation 0.56 & 0.01  0.067 £ 0.003
Total background 12.89 £ 0.19  2.36 + 0.09

Table 2. Estimated backgrounds from Drell-Yan and double-dissociation eTe™ production, within
the acceptance of at least one of the RPs of a given arm, and in the subsample with proton
kinematics matching within 2 0. The bottom row indicates the total background from the sum of
Drell-Yan and double dissociation events.

pp efe”

Sources of uncertainty Drell-Yan Double diss. Drell-Yan Double diss.
Statistics of Z sample 5% 5% 4% 4%
E(107) reweighting 25% — 11% —
Track multiplicity modeling 28% — 14% —
Survival probability — 100% — 100%
Luminosity — 2.5% — 2.5%

Table 3. Sources of systematic uncertainties in the estimates of Drell-Yan and double-dissociation
backgrounds in the dimuon and dielectron channels.

low-multiplicity region, with 1-5 additional tracks near the dilepton vertex, resulting in 28
and 14% relative uncertainties for the dimuon and dielectron channels, respectively. The
double-dissociation process has never been measured directly, and therefore the background
estimate for this process also includes a 100% relative uncertainty on the rapidity gap
survival probability. Finally, the double-dissociation background includes a 2.5% integrated
luminosity uncertainty [40] applied to the normalization of the simulated samples.

As a further check of the pileup background estimate, a set of pseudo-experiments
is performed in which the measured values of £(¢*¢~) within the CT-PPS acceptance are
randomly coupled with £(p) values from events without any offline selection imposed on the
central variables. The dilepton system and the proton originate from different events and
are thus uncorrelated. Such a procedure is repeated 104 times, and the average number of
events in which £(¢7¢7) and £(p) match within 2 o is determined. The result is consistent
with the background estimates of 1.49 £ 0.07 (stat) and 2.36 & 0.09 (stat) events discussed
above for the dimuon and dielectron channels, respectively.
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8 Results

In the u™p~ channel, a total of 17 events are observed with &(u™ ™) within the CT-PPS
acceptance, and at least one track detected in the relevant RPs. Five of those events
have a mismatch of >2¢ between the dimuon and the proton kinematics, compared to
11.0 + 4.0 (stat+syst) such events expected from background; twelve events have a track
in at least one of the two RPs matching &(u™ ™) within 2 0. The significance of observing
12 events over the background estimate of 1.49 £ 0.07 (stat) &+ 0.53 (syst) is 4.3 0, esti-
mated by performing pseudo-experiments according to a Poisson distribution, including
the systematic uncertainties profiled as log-normal nuisance parameters.

The invariant masses and rapidities of the ™ p~ candidate events are consistent with
the expected single-arm acceptance, given the LHC optics and the position of the RPs.
No events are observed with matching protons in both arms; the highest-mass event is at
m(utp~) = 342 GeV, approximately 20 GeV below the threshold required to detect both
protons.

In the ete™ channel, a total of 23 events are observed with (ete™) within the CT-
PPS acceptance, and at least one track detected in the relevant RPs. Fifteen of those
events have a mismatch of >2 ¢ between £(RP) and £(ete™) compared to the expectation
of 10.5 £ 2.1 (stat+syst). Eight events have a scattered proton candidate in at least one
of the two RPs matching £(ete™) within 2. The significance of observing 8 events with
a background estimate of 2.36 £ 0.09 (stat) £ 0.47 (syst) is 2.6 ¢, including the systematic
uncertainties profiled as log-normal nuisance parameters.

As for the dimuon case, no events in the ete™ channel are observed with matching
protons in both arms, although the highest mass events are at m(ete™) = 650 and 917 GeV,
in the region where the double-arm acceptance is nonzero. Studies based on LPAIR indicate
that less than one exclusive event is expected in this region for the integrated luminosity of
the present data. The data show no activity compatible with a track in the RPs on the side
where no proton is observed, thus ruling out track reconstruction problems. The expected
& of the missing proton derived from the lepton kinematics corresponds to the detector
region well outside the area suffering from inefficiencies induced by radiation damage. The
two events observed are thus likely to be semiexclusive events, or background events with
an uncorrelated proton.

Central semiexclusive dilepton events are expected to have very small values of |t|,
the absolute value of the four-momentum squared exchanged at the proton vertices. As
mentioned earlier, only the vertical component of the scattering angle, and hence of the
proton transverse momentum, is currently measured. For 11 candidate dimuon events out
of the 12, the vertical component of the scattering angle is compatible with zero within at
most 2.50, where ¢ is the uncertainty of the vertical component of the scattering angle.
For one event, the discrepancy is 3.5 0, in agreement with the background estimate. Also
for the dielectron data the vertical component of the scattering angle, and hence of the
proton transverse momentum, is measured; it is consistent with zero, as expected for the
signal, for six of the eight events. Two events have values more than 3 o away from zero.
This is again consistent with the background estimate. The vertical component of the
scattering angle for the two highest-mass eTe™ events is compatible with zero.
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Figure 11. Correlation between the fractional values of the proton momentum loss measured in
the central dilepton system, £(¢*¢7), and in the RPs, £(RP), for both RPs in each arm combined.
The 45 (left) and 56 (right) arms are shown. The hatched region corresponds to the kinematical
region outside the acceptance of both the near and far RPs, while the shaded (pale blue) region
corresponds to the region outside the acceptance of the near RP. For the events in which a track
is detected in both, the £ value measured at the near RP is plotted. The horizontal error bars
indicate the uncertainty of £(RP), and the vertical bars the uncertainty of £(¢7¢~). The events
labeled “out of acceptance” are those in which £(£+£~) corresponds to a signal proton outside the
RP acceptance; in these events a background proton is detected with nonmatching kinematics.

The correlation of £(¢1¢7) versus £(RP) and the mass versus rapidity distributions,
for the combined dimuon and dielectron results, are shown in figures 11 and 12. The
combined signal significance is estimated by performing pseudo-experiments according to a
joint distribution, including systematic uncertainties, and corresponds to an excess of 5.1 ¢
over the background. In the calculation, the uncertainty on the integrated luminosity and
that on the rapidity gap survival probability are assumed to be fully correlated between the
two channels. All other sources are taken as independent. Of the 20 total events selected,
13 have a track in both the near and far RPs. In these events, the two independent &
measurements agree within 4%.

The fractions of the exclusive and single proton dissociative contributions in the final
sample of matching events are estimated by comparing their acoplanarity distribution to
those expected for the two classes of events in LPAIR. This results in a contribution of
approximately 70% from single proton dissociation, consistent within large uncertainties
with the predictions of LPAIR weighted by the rapidity gap survival probabilities. The
dominance of single dissociation is also consistent with the lack of a second observed proton
in the two high-mass eTe™ events.

The observed yields are consistent with those predicted by LPAIR modified by the
rapidity gap survival probabilities, assuming the fraction of single proton dissociation events
from the acoplanarity comparison just discussed. The full simulation of the CMS central
apparatus (section 5) is used. For the scattered protons, the prediction includes the effect
of the CT-PPS acceptance, that of radiation damage in the silicon strip sensors, and the
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Figure 12. Expected acceptance regions in the rapidity vs. invariant mass plane overlaid with
the observed dimuon (closed circles) and dielectron (open circles) signal candidate events. The
“double-arm acceptance” refers to exclusive events, pp — pf*¢~p. Following the CMS convention,
the positive (negative) rapidity region corresponds to the 45 (56) LHC sector.

inefficiency due to multiple proton tracks. The comparison is performed in the region where
radiation damage is less severe, corresponding to £(RP) > 0.05.

9 Summary

We have studied vy — putp~ and vy — eTe™ production together with forward protons re-
constructed in the CMS-TOTEM precision proton spectrometer (CT-PPS), using a sample
of 9.4 b~ collected in proton-proton collisions at /s = 13 TeV. The Roman Pot alignment
and LHC optics corrections have been determined using a high statistics sample of forward
protons. A total of 12 vy — pTpu~ and 8 4y — eTe™ events are observed with dilep-
ton invariant mass larger than 110 GeV, and a forward proton with consistent kinematics.
This corresponds to an excess larger than five standard deviations over the expected back-
ground from double-dissociative and Drell-Yan dilepton processes. The result represents
the first observation of proton-tagged 7+ collisions at the electroweak scale. The present
data demonstrate the excellent performance of CT-PPS and its potential for high-mass
exclusive (proton-tagged) measurements. With its 2016 operation, CT-PPS has proven for
the first time the feasibility of continuously operating a near-beam proton spectrometer at
a high-luminosity hadron collider.
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