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Radiative corrections to the cross sections of photon electroproduction and the single spin asymmetries
induced by the interference between the Bethe-Heitler and deep virtual Compton scattering amplitudes are
calculated within the leading log approximation. The deep virtual Compton scattering amplitude is
presented in the Belitsky-Müller-Kirchner (BMK) approximation for the polarized initial particles. The
Fortran code for estimation of the radiative effects in a given kinematic point and Monte Carlo generator for
simulation of one or two photons are developed. Numerical results are performed for beam-spin
asymmetries in kinematical conditions of current experiments in the Jefferson Laboratory.
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I. INTRODUCTION

The process of deep virtual Compton scattering (DVCS)
is considered to provide useful information for extraction
of properties of the generalized parton distributions.
Experimentally DVCS is investigated through the mea-
surements of the cross section and asymmetries in the
processes of the photon electroproduction with both an
unpolarized and polarized electron beam and proton target.
Three Feynman graphs presented in Fig. 1 contribute to the
cross section of the photon electroproduction. Graphs (a)
and (b) represent the amplitude of the Bethe-Heitler (BH)
process and graph (c) describes the DVCS amplitude. The
latter gives the access to the properties of the generalized
parton distributions; therefore, it is of specific interest.
During the last decade, the process was intensively inves-
tigated both theoretically [1,2] and experimentally [3–6].
The cross section of the photon electroproduction is
dominated by the BH process, i.e., by the sum of two
BH amplitudes [graphs (a) and (b)] squared. Therefore, to
get access to the DVCS process the researcher has to find an
asymmetry vanishing for a pure BH process and for which
the main contribution would involve the DVCS amplitude.

The well-known example of an appropriate asymmetry is
the single beam-spin asymmetry.
The QED radiative correction (RC) is one serious source

of systematical uncertainties and therefore must be known
with any predetermined accuracy. Available calculations of
QED radiative effects in [7–10] are focused on RC to BH
process or have certain limitations and cannot cover
needs of modern requirements on the photon electro-
production. In this paper we present the radiative correction
calculations to the cross section of BH and DVCS proc-
esses in leading approximation. In the approximation the
only leading term containing L ¼ logðQ2=m2Þ (m is the
electron mass) is kept. Since the structure of the depend-
ence of the RC cross section on the electron mass is
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FIG. 1. Feynman graphs of BH (a) and (b) and DVCS
process (c).
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σRC ¼ A logðQ2=m2Þ þ BþOðm2=Q2Þ, where A and B
do not depend on the electron mass, the used approximation
allows us to keep the major part of the RC, e.g., for
experiments with transferring momentum squared of one
GeV squared (Q2 ∼ 1 GeV2), logðQ2=m2Þ ∼ 15.
Calculation of RC for BH and DVCS requires knowl-

edge of the hadronic structure for these processes.
Although the BH cross section can be described in the
model-independent way using the nucleon form factors,
the description of DVCS amplitude requires assumptions
on a model for hadronic subprocesses. A reasonable
approach leading to analytic and transparent results is
the BMK approximation [11] in which quantitative esti-
mates for the azimuthal and spin asymmetries can be
obtained relying on a simple ansatz for the generalized
parton distributions. The theoretical consideration went
beyond the leading twist and involved the complete
analysis in the twist-three approximation. In practice the
results obtained in the BMK approximation are considered
valid for small squared of the transferred momentum
between initial and final proton t, −t ≤ 0.5 GeV2.
The paper is organized as follows. The lowest order

contribution to the cross section for the photon electro-
production induced by the interference of BH and DVCS
amplitudes is represented in Sec. II. Specific attention is paid
on explicit representation of the cross section including the
polarization part of the cross section, mass corrections, as
well as the angular structure of the cross section. RC
calculation is performed in Sec. III. First, we calculate
the matrix element squared and trace all sources of occur-
rence of the electron mass dependence. We keep the
contributions of BH amplitude squared and the interference
between the BH and DVCS amplitudes, and drop the pure
DVCScontribution. Second,we represent the phase space of
two final photons, introduce so-called shifted kinematics,
and calculate integrals over additional photon phase space.
Third, we add the contribution of loops and calculate the
lowest order RC to the cross section. Fourth, we generalize
the result for the RC to the cross section from the BH and
DVCS interference to represent the higher order corrections.
Section IV presents the codes for numerical calculation of
RC in a kinematical point and the Monte Carlo generator
allowing for simulating the events with one or two radiated
photon(s). Section V provides numeric estimates of the
radiative effects in current experiments in JLab focusing on
the RC to the cross section in a wide kinematic region of
modern experiments at JLab. Finally, in Sec. VI we
summarize the results obtained in this paper.

II. THE CROSS SECTION OF THE
INTERFERENCE OF BH AND

DVCS AMPLITUDES

The process of interest is

eðk1; ξÞ þ pðp; ηÞ → e0ðk2Þ þ p0ðp0Þ þ γðkÞ; ð1Þ

where k21 ¼ k22 ¼ m2, p2 ¼ p02 ¼ M2, k2 ¼ 0, ξ and η are
polarization vectors of the initial lepton and proton, and m
and M are their masses, respectively. The process (1) is
traditionally described by the five kinematical variables:
S ¼ 2k1p, Q2 ¼ −ðk1 − k2Þ2, x ¼ Q2=(2pðk1 − k2Þ),
t ¼ ðp − p0Þ2, and ϕ [the angle between ðk1;k2Þ and
ðq;p0Þ planes, q ¼ k1 − k2]. Four latter variables involve
the momenta of final particles; therefore, the cross section
of interest is σ ≡ dσ0=dQ2dxdtdϕ. Because of azimuthal
symmetry, the integration over lepton angle ϕe [i.e., the
angle between ðk1;k2Þ and ðq;k2Þ planes] has been
completed in this cross section. The symmetry can be
violated in the case of transversal target polarization;
therefore, the five dimensional cross section is considered
σ ≡ dσ0=dQ2dxdtdϕðdϕe=2πÞ in this case. Explicitly, the
cross section of the photon electroproduction involving the
contributions of BH and DVCS interference is

dσ1γ ¼
1

2S
M2

1γdΓ0: ð2Þ

Phase space for the photon electroproduction cross
section is parametrized as

dΓ0 ¼
1

ð2πÞ5
d3k2
2E2

d3p0

2p0
0

d3k
2ω

δ4ðk1 þ p − k2 − p0 − kÞ

¼ Q2dQ2dxdtdϕ
ð4πÞ4x2S ffiffiffiffiffi

λY
p ð3Þ

with λY¼S2xþ4M2Q2 and Sx ¼ S−X¼Q2=x. Kinematical
limits on t are defined as

t2;1 ¼ −
1

2W2
(ðSx −Q2ÞðSx �

ffiffiffiffiffi
λY

p
Þ þ 2M2Q2); ð4Þ

where W2 ¼ Sx −Q2 þM2.
All variables are ultimately expressed in terms of the five

kinematical variables: S, t, Q2, x and ϕ, e.g.,

w0 ¼ 2kk1 ¼ −
1

2
ðtþQ2Þ þ Sp

2λY
(SxðQ2 − tÞ þ 2tQ2)

þ
ffiffiffiffiffiffiffi
λuw

p
λY

cosϕ;

u0 ¼ 2kk2 ¼ w0 þQ2 þ t ð5Þ

with Sp ¼ Sþ X and

λuw ¼ 4W2(Q2ðSX −M2Q2Þ −m2λY)ðt − t1Þðt2 − tÞ: ð6Þ

Note that in massless approximation (for m → 0) the cross
section of BH and DVCS interference exactly coincides
with the results of [11]. The following equations relating
our notation to the notation of Ref. [11] [Eqs. (30) and (32)]
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are valid: u0¼P2Q2, w0¼−P1Q2, and (for m→ 0)
λuw ¼ 4Q4S2S2xK2

The interference term of matrix element squared is

M2
1γ ¼ ðMl

1 þMl
2ÞMh† þMhðMl

1 þMl
2Þ†; ð7Þ

where Ml
1 and Ml

2 corresponds to diagrams presented in
Figs. 1(a) and 1(b), and Mh described hadronic emission
contribution presented in Fig. 1(c). The BH matrix element
is MBH ¼ Ml

1 þMl
2 ¼ e3t−1JhμJBHμα ðk1; k2; kÞϵα with

JBHμα ðk1;k2;kÞ¼ JBH1μα ðk1;kÞþJBH2μα ðk2;kÞ;

Jhμ ¼ ūðp0Þ
�
γμF1þ iσμν

p0
ν−pν

2M
F2

�
uðpÞ ð8Þ

and

JBHμα ðk1;k2;kÞ¼ ū2

�
γμ
k̂1− k̂þm
−2kk1

γαþ γα
k̂2þ k̂þm

2kk2
γμ

�
u1

¼−ū2
��

k1α
kk1

−
k2α
kk2

�
γμ−

γμk̂γα
2kk1

−
γαk̂γμ
2kk2

�
u1:

ð9Þ

Here ū2 ≡ ūðk2Þ, u1 ≡ uðk1Þ, and ϵ is the photon polari-
zation vector. The matrix element MBH corresponds to the
graphs in Figs. 1(a) and 1(b).
The DVCS amplitude is calculated in [11]. The set of

explicit formulas [e.g., Eqs. (1)–(8)] allows us to present
the DVCS amplitude in terms of covariant hadronic
structures and the Compton form factors. This representa-
tion is appropriate for RC calculation. As a result the
interference (7) has a form:

M2
1γðk1; k2; kÞ

¼ 64π3α3

tQ2
(JhμJBHμα ðk1; k2; kÞðTανðkÞJð0Þν ðk1; k2Þ)†

þ TανðkÞJð0Þν ðk1; k2Þ(JhμJBHμα ðk1; k2; kÞÞ†): ð10Þ

Here Jð0Þμ ðk1; k2Þ ¼ ū2γμu1 and TνμðkÞ are defined by
Eqs. (1)–(8) of [11].
We calculate the cross section in the BMK approxima-

tion. In this approximation the cross section is represented
through the sum over the finite number of terms reflecting
the ϕ-dependence. Respective coefficients are referred as
the Fourier coefficients. They are calculated in the leading
approximation at M2 and t simultaneously going to zero.
We present them in the form appropriate for further RC
calculation.
The most important observable quantity is the beam-spin

asymmetry:

A1γ ¼
σpI

σuBH þ σuI
; ð11Þ

where σuBH is the BH cross section of unpolarized electrons
and protons, and σu;pI are unpolarized and spin-dependent
parts of the cross section that resulted from the interference
of the BH and DVCS amplitudes.
In BMK approximation, the BH cross section is

expressed as

σuBH ¼ fBH
P1P2

ðcBH0 þ cBH1 cosϕþ cBH2 cos 2ϕÞ; ð12Þ

where fBH ¼ α3S3x=ð8πx3tλ5=2Y Þ. The four and two
nonzero coefficients for unpolarized and polarized beam,
respectively:

σuI ¼
fI

P1P2

ðcI0 þ cI1 cosϕþ cI2 cos 2ϕþ cI3 cos 3ϕÞ;

σpI ¼ fI
P1P2

ðsI1 sinϕþ sI2 sin 2ϕÞ ð13Þ

with fI ¼ α3S=ð8πQ4tλ1=2Y Þ. The corresponding Fourier
coefficients ci and si are calculated in [11].

III. RC CROSS SECTION

The cross section of two-photon emission, i.e., the
process,

eðk1Þ þ pðpÞ → e0ðk2Þ þ p0ðp0Þ þ γðκ1Þ þ γðκ2Þ; ð14Þ

is proportional to the matrix element squared of the
process with two real photons in the final state that has
the contribution of pure leptonic correction [shown in
Figs. 2(a)–2(c) and discussed in [9] ] and the contribution
of the interference between lepton and hadron emissions.
The interference (M2

2γ) contributes RC to the cross
section (2). The cross section of RC due to two-photon
emission is

dσ ¼ 1

4S
M2

2γdΓ; ð15Þ

where

dΓ ¼ 1

ð2πÞ8
d3k2
2E2

d3p0

2p0
0

d3κ1
2ω1

d3κ2
2ω2

× δ4ðk1 þ p − k2 − p0 − κ1 − κ2Þ ð16Þ

and the additional factor of 2 in the denominator is because
there are two identical particles (photons) in the final state.
The matrix element squared M2

2γ is
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M2
2γ¼

X6
i¼1

½Mll
i ðMlh

1 þMlh
2 Þ†þðMlh

1 þMlh
2 ÞMll†

i �: ð17Þ

Six matrix elements of the process with the emission
of the additional photon correspond to graphs in
Figs. 2(a)–2(c): Mll

1–6 ¼ e4t−1JhμJ1–6;μ. The quantities
J1–6;μ are defined by Eq. (22) of [9]:

J1μ ¼ ū2γμ
k̂1 − κ̂ þm
−2κk1 þ V2

ϵ̂2
k̂1 − κ̂1 þm
−2k1κ1

ϵ̂1u1;

J2μ ¼ ū2γμ
k̂1 − κ̂ þm
−2κk1 þ V2

ϵ̂1
k̂1 − κ̂2 þm
−2k1κ2

ϵ̂2u1;

J3μ ¼ ū2ϵ̂2
k̂2 þ κ̂2 þm

2k2κ2
ϵ̂1
k̂2 þ κ̂ þm
2κk2 þ V2

γμu1;

J4μ ¼ ū2ϵ̂1
k̂2 þ κ̂1 þm

2k2κ1
ϵ̂2
k̂2 þ κ̂ þm
2κk2 þ V2

γμu1;

J5μ ¼ ū2ϵ̂1
k̂2 þ κ̂1 þm

2k2κ1
γμ

k̂1 − κ̂2 þm
−2k1κ2

ϵ̂2u1;

J6μ ¼ ū2ϵ̂2
k̂2 þ κ̂2 þm

2k2κ2
γμ

k̂1 − κ̂1 þm
−2k1κ1

ϵ̂1u1; ð18Þ

where V2 ¼ κ2 ¼ ðκ1 þ κ2Þ2. The quantity V2 has the
meaning of missing mass squared in the experimental design
when only charge particles (electron and proton) are detected
and/or used for reconstruction of kinematical variables.
Matrix elements with emissions of one photon from the

lepton line and one photon from the hadron line [Figs. 2(d)
and 2(e)] are

Mlh
1 þMlh

2 ¼ e4ϵα1ϵ
β
2

�
JBHμα ðk1; k2; κ1ÞTβμðκ2Þ

Q2 þ 2qκ1

þ JBHμβ ðk1; k2; κ2ÞTαμðκ1Þ
Q2 þ 2qκ2

�
: ð19Þ

The matrix element squares (17) has four terms with
denominators containing κ1;2k1 (s-peak) and κ1;2k2 (p-
peak):

M2
2γ ¼ M2

1s þM2
1p þM2

2s þM2
2p; ð20Þ

where indices correspond to the unobserved photon, e.g., 1s
means that the photonwithmomentum κ1 is unobserved and
in the s-peak. Just these four terms contribute to the cross
section in the leading approximation. Each of them (i.e.,
1=k1κ1, 1=k1κ2, 1=k2κ1, or 1=k2κ2) contains the first order
pole which can be extracted if to put vectors κ1 and κ2 in the
peak and use m → 0 in the coefficient at each respective
pole. Practically the terms are calculated by using the
following substitution: κ1¼ð1− z1Þk1, κ1 ¼ ð1=z2 − 1Þk2,
κ2 ¼ ð1 − z1Þk1 and κ2 ¼ ð1=z2 − 1Þk2 for M2

1s, M2
1p,

M2
2s and M2

2p, respectively. The use of these formulas
means putting the angular components of the vectors κ1 and
κ2 to be equal of respective angular components of vectors k1
and k2 in numerators of all terms in the right-hand side of
(20)M2

1;2s;p, keeping the last component (i.e., energy of κ1
and κ2) unfixed. The variables z1;2 represent the energy-
related components of the vectors and can be related toV2 as

z1 ¼ 1 −
V2

w
; z2 ¼

u
uþ V2

; ð21Þ

where w ¼ 2k1ðpþ q − p0Þ and u ¼ 2k2ðpþ q − p0Þ.
The calculation ofM2

1s is similar to that considered in [9]
but there are new technical issues because of the different
structure of thematrix element squared. OnlyMll

1 ,M
ll
6 , and

Mlh
1 can have the pole 1=k1κ1 through contributions from

J1μ, J6μ and JBH1μα that are reduced to

J1μ ≈
k1ϵ1

2ðk1κ2Þðk1κ1Þ
ū2γμðz1k̂1 − κ̂2Þϵ̂2u1;

J6μ ≈ −
z1k1ϵ1

2ðk2κ2Þðk1κ1Þ
ū2ϵ̂2ðk̂2 þ κ̂2Þγμu1;

JBH1μα ðk1; κ1Þ ≈ −
z1k1α
k1κ1

ū2γμu1: ð22Þ

The convolution of the sum Mll
1 þMll

6 with Mlh
2

contains the infrared divergence,

ðMll
1 þMll

6 ÞMlh†
2 þMlh

2 ðMll
1 þMll

6 Þ†

¼ 4πα

ð1 − z1Þκ1k1
M2

1γðz1k1; k2; κ2Þ; ð23Þ

at z1 → 1, while the convolution of this sum with Mlh
1 ,

ðMll
1 þMll

6 ÞMlh†
1 þMlh

1 ðMll
1 þMll

6 Þ†

¼ 4παð1 − z1Þ
z1κ1k1

M2
1γðz1k1; k2; κ2Þ; ð24Þ

does not.

k1

κ1
κ2

k2

p p ,

(a) (b) (c)

(d) (e)

FIG. 2. Feynman graphs with two real photons in the final state:
both photons produced by leptons (a), (b), and (c) and by leptons
and hadrons (d) and (e).
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The convolution of the other terms Mll
2–5 with Mlh

1

results in the term also containing the infrared divergence:

X5
i¼2

½Mll
i M

lh†
1 þMlh

1 M
ll†
i � ¼ 4παM2

1γðz1k1;k2;κ2Þ
ð1− z1Þκ1k1

: ð25Þ

All other convolutions do not have contributions to the
cross sections in the leading log approximation.
The resulting expressions for the terms in (20) are

M2
1s ¼

4πα

κ1k1

ð1þ z21Þ
z1ð1 − z1Þ

M2
1γðz1k1; k2; κ2Þ;

M2
1p ¼ 4πα

κ1k2

ð1þ z22Þ
ð1 − z2Þ

M2
1γ

�
k1;

k2
z2

; κ2

�
;

M2
2s ¼

4πα

κ2k1

ð1þ z21Þ
z1ð1 − z1Þ

M2
1γðz1k1; k2; κ1Þ;

M2
2p ¼ 4πα

κ2k2

ð1þ z22Þ
ð1 − z2Þ

M2
1γ

�
k1;

k2
z2

; κ1

�
: ð26Þ

The integration over angular variables results in

Z
dΓ
κ1k1

¼ dΓ0

L
8π2w

dV2;
Z

dΓ
κ1k2

¼ dΓ0

L
8π2u

dV2: ð27Þ

Thus, the matrix elements squared of the process with
two real photons in the final state is expressed in terms of
the BH/DVCS matrix element squared in the same way as
for the BH process [9]. The phase space parametrization is
also independent on the dynamics of the process and its
parametrization obtained for the pure BH process is
applicable for the contribution from the BH and DVCS
interference as well [9]. Therefore, the cross section for
radiative correction to the interference of BH and DVCS
amplitudes keeps the same form:

σsðS;x;Q2; t;ϕÞ¼ α

2π
L
Z1

zm
1

dz1
1þ z21
1− z1

Ksðz1Þσ1γðz1Þ;

σpðS;x;Q2; t;ϕÞ¼ α

2π
L
Z1

zm
2

dz2
1þ z22
1− z2

Kpðz2Þσ1γðz2Þ: ð28Þ

Here z1;2 in brackets means that the cross section needs to
be taken in a shifted kinematics, i.e.,

σ1γðz1Þ ¼ σ1γðz1S; xs; z1Q2; t; ϕ̄sÞ;
σ1γðz2Þ ¼ σ1γðS; xp; z−12 Q2; t; ϕ̄pÞ ð29Þ

and

Ksðz1Þ ¼
x2s sin θ0s
x2D1=2

0s

; Kpðz2Þ ¼
x2p sin θ0p
z2x2D

1=2
0p

; ð30Þ

where xs ¼ z1Q2=ðz1S − XÞ and xp ¼ Q2=ðz2S − XÞ are
Bjorken x in shifted kinematics; D0, sin θ0 and ϕ̄ are given
in [9] by Eqs. (38) and (40); the subscript (s or p) explicitly
indicates the type of kinematics for which these quantities
have to be calculated.
The lower limits of integration in (28) are defined by the

substitutional in Eq. (21), the maximal missing mass
squared

V2
max ¼ ð2MÞ−1ð

ffiffiffiffiffi
λY

p ffiffiffiffi
λt

p
þ SxtÞ −Q2 þ t ð31Þ

with λt ¼ tðt − 4M2Þ and reads as

zm1 ¼ tðX − 2M2Þ þ ffiffiffiffiffiffiffiffiffiffiffi
λt=λY

p ðXSx − 2M2Q2Þ
St − 2M2Q2 þ ffiffiffiffiffiffiffiffiffiffiffi

λt=λY
p ðSSx þ 2M2Q2Þ ;

zm2 ¼ Xt − 2M2Q2 þ ffiffiffiffiffiffiffiffiffiffiffi
λt=λY

p ðXSx − 2M2Q2Þ
tðSþ 2M2Þ þ ffiffiffiffiffiffiffiffiffiffiffi

λt=λY
p ðSSx þ 2M2Q2Þ : ð32Þ

The relationship between z1;2 and V2 is illustrated in
Fig. 3. In most cases the relation between them is unam-
biguous as shown in Fig. 3(a). However there are situations
(for cosϕ < 0) when the curves z1;2ðV2Þ have a minimum
[Fig. 3(b)]. In this case an additional contribution, σadd,
reflecting the area between two points of intersections
between the curve z1;2ðV2Þ and the line z1;2 ¼ zm1;2 can to
be presented as a separate contribution to the cross section.
The explicit form of σadd is given in the Appendix.
The integrals in (28) are divergent at the upper integra-

tion limit because of the infrared divergence, which is

0.6

1

5.00

(a)

z2

z1

zm
1

zm
2

Vmax
2

z
1,2

V ,2 2GeV

φ=20o

0.6

1

5.00

(b)

z2z1

zm
1

zp
1

zm
2

zp
2

Vmax
2

z
1,2

V ,2 2GeV

φ=160o

FIG. 3. The dependence of z1 and z2 on V2 for cosðϕÞ > 0 (a)
and cosðϕÞ < 0 (b). Other kinematical variables used for this
example were x ¼ 0.175, Q2 ¼ 1 GeV2, t ¼ −0.1 GeV2, and
Ebeam ¼ 5.75 GeV. In plot (b), the curves z1;2ðV2Þ cross the lines
z1;2 ¼ zm1;2 at V

2 ¼ V2
1s;p and reach their minimum values at V2 ¼

V2
2s;p such that V2

1s;p < V2
2s;p < V2

max. The explicit expressions
for zp1;2 and V2

1;2s;p are given in the Appendix.
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canceled by adding the contribution of loops and soft
photon emission [8] represented by the Feynman graphs in
Figs. 4(a)–4(h) and 4(k). The result for the infrared free
contribution is

α

π
ðδinf þ δfinÞσ1γ þ σFs þ σFp þ σadd; ð33Þ

where

δfin ¼
L
4
(zm1 ð2þ zm1 Þ þ zm2 ð2þ zm2 Þ);

δinf ¼ L( logð1 − zm1 Þ þ logð1 − zm2 Þ) ð34Þ
and

σFs ¼ αL
2π

Z1

zm
1

dz1
1þ z21
1 − z1

(Ksðz1Þσ1γðz1Þ − σ1γ);

σFp ¼ αL
2π

Z1

zm
2

dz2
1þ z22
1 − z2

(Kpðz2Þσ1γðz2Þ − σ1γ): ð35Þ

The experimental cuts on missing mass squared V2
cut or

maximal photon energy can be incorporated by the follow-
ing replacements:

Ks;pðz1;2Þ → θðz1;2 − zc1;2ÞKs;pðz1;2Þ: ð36Þ
Here zc1;2 reflect the restrictions on the energy of the hard
photon or missing mass squared. The relation between
these variables are given in Eq. (A6) of the Appendix.
The total lowest order RC is

σRC ¼ α

π
ðδvac þ δinf þ δfinÞσ1γ þ σFs þ σFp þ σadd: ð37Þ

Here δvac reflects the contribution of vacuum polarization,
i.e., the Feynman graphs in Figs. 4(i), 4(j), and 4(l).
Specifically, ΠðtÞ ¼ α=ð2πÞδvac and δvac is the contribution
of vacuum polarization by leptons and hadrons calculated as
in [12] [see Eq. (21) and discussion before Eq. (20)].
Formally, the expression for the observed cross section
coincides with the cross section for the BH process obtained
in [9] [expression (48)]. The higher order corrections can be
included in the style of (51) or (52) of Ref. [9].
The behavior of the cross section for t close to kinematical

bounds (i.e., in the region where t ∼ t1 and t ∼ t2) deserves
special attention. The quantity δinf in (34) becomes infinite
when t → t1 or t → t2. In this limit zm1 ¼ 1 and zm2 ¼ 1. The
source of the occurrence of the divergence is known [13].
The divergence is canceled by taking into account multiple
soft photon emission. We follow the so-called exponentia-
tion procedure suggested in [14]:�

1þ α

π
ðδvac þ δinf þ δfinÞ

�

→ exp

�
α

π
δinf

��
1þ α

π
ðδvac þ δfinÞ

�
; ð38Þ

such that the observed cross section becomes

σobs ¼ exp

�
α

π
δinf

��
1þ α

π
ðδvac þ δfinÞ

�
σ1γ

þ σFs þ σFp þ σadd: ð39Þ
After this procedure the observed cross section vanishes at
the kinematical bounds on t.
This result allows us to construct a Monte Carlo generator

of the eventswith one or two photons in the final state. Such a
generator is reasonable to construct for the total cross section
that contains three contributions coming from a pure BH
process (BH amplitude squared), pure DVCS process
(DVCS amplitude squared), and the interference between
BH and DVCS amplitudes. RC given by Eqs. (28)–(35) and
(A1) is applicable for the interference term and pure BH
process [9]. The derived formulas are also applicable for pure
DVCS contribution, so, alternatively, the pure DVCS term
can be optionally included in event generation. Although the
result for the pure DVCS contribution is not proved, we can
provide some arguments why the formulas are valid for this
contribution aswell. The amplitudes contributed to theRC to
the pure DVCS cross section include one photon radiated by
leptons and one photon radiated by hadrons: the standard
leading log in the case of one photon was calculated many
times resulting in the same z1;2-dependent coefficient exactly
as in (28) and the remaining coefficients came from two-
photon phase space parametrization.
To have an opportunity to simulate the specific contri-

butions we must represent the observed cross section as a
sum of positively definite contributions. Because of the last
terms in (35), i.e., the terms containing σ1γ, the contribu-
tions σFs;p are not positively definite. These terms can be
decomposed using

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIG. 4. The one-loop Feynman graphs for the BH (a-h) and
DVCS (k) amplitudes containing the infrared divergence and the
graphs for the vacuum polarization (i), (j), and (l).
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Z1

zm
1

dz1
1þ z21
1 − z1

(Ksðz1Þσ1γðz1Þ − σ1γ)

¼
Z1−Δ

E

zm
1

dz1
1þ z21
1 − z1

Ksðz1Þσ1γðz1Þ − σ1γ

Z1−Δ
E

zm
1

dz1
1þ z21
1 − z1

þ
Z1

1−Δ
E

dz1
1þ z21
1 − z1

(Ksðz1Þσ1γðz1Þ − σ1γ) ð40Þ

and similarly for σFp. The quantityΔ is defined as a minimal
energy of the photon we want to generate (i.e., calorimeter
resolution) and E ¼ Ebeam. The second integral in (40) is
calculated analytically. The third integral vanishes for
Δ → 0; therefore, it could be neglected (or kept and added
to the contribution of the one-gamma contribution). The
calculation results in

σFs ¼ σsðΔÞ þ δsðΔÞσ1γ;
σFp ¼ σpðΔÞ þ δpðΔÞσ1γ; ð41Þ

where σs;pðΔÞ represent the first term in (40).
Combining all together, we have for the cross section

with the lowest order RC

σobs ¼
�
1þ α

π
ðδvac þ δðΔÞÞ

�
σ1γ þ σsðΔÞ þ σpðΔÞ þ σadd;

ð42Þ

where

δðΔÞ ¼ δsðΔÞ þ δpðΔÞ þ δinf þ δfin

¼ L

�
3

2
þ log

�
4M2Δ2

SX

��
: ð43Þ

Each contribution in (42) is positively definite. The price
for this representation is the dependence on Δ.
The event is generated for a kinematical point x, Q2, t,

and ϕ according to (42), and the electron azimuthal angle
(ϕe) is simulated uniformly. Then the probabilities of all
three channels: nonradiated (i.e., no an additional radiated
photon), radiated in s-peak, and radiated in p-peak are
calculated as

pnonrad ¼
�
1þ α

π
ðδvac þ δðΔÞÞ

�
σ1γ
σobs

;

ps-peak ¼
σsðΔÞ
σobs

;

pp-peak ¼
σpðΔÞ
σobs

: ð44Þ

The scattering channel is generated according to these three
probabilities. If the event with one photon in the final state
is chosen then no additional variables are needed to be
simulated. If the two-photon event in s-peak or p-peak is
chosen, then the three kinematical variables of an additional
photon are needed to be simulated. The photon energy is
simulated through the variable z1 or z2 (for s- and p-peaks
respectively) according to their distributions in the inte-
grand of σsðΔÞ and σpðΔÞ. The photon angles are simulated
in s- or p-peaks; i.e., the photon angles become equal to the
angles of the initial or final lepton. Note, in (44) the
components of σadd that correspond to s- and p-peaks are
included in the definition of σsðΔÞ and σpðΔÞ.

IV. CODES FOR NUMERICAL CALCULATION OF
RC IN A KINEMATICAL POINT AND

MONTE CARLO GENERATOR

The results presented in previous section allows us to
create a code for numerical calculation of RC in a
kinematical point (i.e., for specific x, Q2, t, ϕ, and beam
energy) and the respective Monte Carlo generator [15].
The Fortran code is called DVCSLL. Special keys allow

us to choose the part of the cross section (i.e., BH only,
BH-DVCS interference, etc.), the approximation for had-
ronic part (exact for BH only or BMK), electron and
proton polarizations, accuracies of integration, and the
values of kinematical variables and the cut on missing
mass. The Monte Carlo generator GenDVCSLL works as a
slave system; i.e., it generates one event for a kinematical
point externally given. An additional parameter for the
Monte Carlo generator is Δ.
Thus, DVCSLL is the code to calculate RC to the

cross section of photon electroproduction (i.e., pure BH
process, its interference with DVCS amplitude, and
optionally, pure DVCS contribution) in leading approxi-
mation. The specific features of the approach and
properties of the resulting expressions include (i) the
cross section of the lowest order in a shifted kinematical
point is factorized in the integrand, (ii) no additional
assumptions about hadronic structure (except those
necessary to calculate the cross section with one photon
in the final state) are required, (iii) cases of longitudinal
and transverse target polarization are included, (iv) higher
order corrections are included using a procedure of
exponentiation (alternative approach in terms of electron
structure functions was used in [8,9]), (v) a cut on
missing energy is implemented, and (vi) numeric inte-
gration over the photon phase space represented by
(x, Q2, t, ϕ) is implemented. BMK approximation is
used to describe the hadronic structure for DVCS. Note
that only the leading log correction is implemented. The
next-to-leading RC for the BH cross section of polarized
particles is calculated in [10].
The leading log accuracy is the main uncertainty of

theoretical calculation. Other theoretical uncertainties the
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researcher has to keep in mind include (i) higher order
corrections through exponentiation procedure (not so high
effect is expected), (ii) accuracy of numeric integration
(largely under control), and (iii) approximations made
when experimental cuts are implemented (could be tested)
and finally resolved (using Monte Carlo generators).
Besides, there are physical contributions not taken into
account yet, e.g., the pentagon (or five-point) diagrams, i.e.,
the box diagram with a photon emission from the lepton
line. Another type of uncertainty is the model dependence,
such as the model for the nucleon form factors (essential
effect is not expected, but needed to be checked for each
specific data analysis) and the BMK approximation for RC
to DVCS.
The design of the Monte Carlo generator BHRadgen is

as follows. The input required by the generator is (i) the
four kinematical variables x, Q2, t, and ϕ; (ii) the value of
Δ; (iii) beam energy; and (iv) the value of V2

cut. The output
is (i) generated channel of scattering for an event, i.e.,
radiated (two photons in final state) or nonradiated (one
photon in final state), (ii) three additional kinematical
variables (to describe an additional photon) generated for
the radiated event, and (iii) the cross section of RC for any
event. The cross sections and distributions over additional
kinematical variables are calculated for the given kinemati-
cal point (x, Q2, t, and ϕ). Then any number of events are
simulated using this information. If simulation of many
events is required for a certain kinematical point, then the
program is efficient. However, the computation is not so
fast if the point needs to be simulated for each event.
Approaches to accelerate generation of an event could
include (i) a look-up table storing information about
additional photon energies and angles in a kinematical
region, (ii) relaxation of requirements to the accuracy of
Monte Carlo integration, and (iii) using a numeric approach
for integration and calculation of distribution over addi-
tional photonic variables. Collinear kinematics is used for
simulation of photonic angles. Instead, the distribution can
be used from the integrand over photonic angles. The
calculation is based on the leading log approximation.
Next-to-leading corrections can be implemented using
results for the RC calculation with the next-to-leading
accuracy [10]. In this case new analytical results for the
distribution over additional photonic variables need to be
obtained and implemented. The current code was obtained
using the results integrated over two angles of an additional
photon. Exact formulas are implemented for the BH only.
Contributions of DVCS are calculated in the BMK
approximation.

V. NUMERIC ANALYSIS

The experimental access to characteristics of the DVCS
amplitudes is provided by the measurement of the beam-
spin asymmetry (11). The observed asymmetry can be
represented as

A ¼ A1γ
δp
δu

; ð45Þ

where δu;p are RC factors for unpolarized (i.e., presented in
the denominator of A1γ) and polarized (i.e., presented in the
numerator of A1γ) parts of the cross section. The relative
correction to asymmetry is defined as

δA ¼ A − A1γ

A1γ
: ð46Þ

The results for ϕ- and t-dependencies are presented in
Figs. 5 and 6, respectively. For Compton form factors, the
model suggested by Korotkov and Nowak [16] is used. RC
is much higher in the region of 90° < ϕ < 270° and small
value of −t. It is clear that the largest contribution to RC
comes from collinear kinematics when w0 or u0 is minimal.
Minimal values of these quantities can be achieved in this
region when −t trends to its minimum values, cosϕ is
negative, and the absolute minimum is of order m2

for ϕ ¼ 180°.
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0 90 180 270 360

t=-0.045 GeV 2
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-0.1

0

0.1

0.2

0 90 180 270 360

t=-0.29 GeV 2

1

1.5

2

2.5

0 90 180 270 360

δ t=-0.045 GeV 2

φ,deg

1

1.5

2

2.5

0 90 180 270 360

δ t=-0.29 GeV 2

φ,deg

FIG. 5. The ϕ-dependence of the asymmetry (upper)
and RC factors (lower plots). The dashed curve at the upper
plots gives the σ1γ and the solid curve shows the observed cross
sections with V2

cut ¼ 0.3 GeV2 (the curve closer to dashed curve)
and without cuts. Dashed and solid curves at the bottom
plots show δu;p with and without the cut, respectively. The
curves with higher values corresponds to δp, i.e., δp > δu.
Kinematical variables used for this example were x ¼ 0.1,
Q2 ¼ 2 GeV2, and Ebeam ¼ 11 GeV.
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VI. SUMMARY AND CONCLUSION

In this paper we used the leading log approximation to
calculate the radiative corrections to the cross sections of
photon electroproduction induced by the interference
between the Bethe-Heitler and deep virtual Compton scatter-
ing amplitudes. The calculated RC is valid for the exper-
imental designwhen both final charged particles are detected
and their momenta are used for reconstruction of kinematical
variables in a bin [3,4,6]. The steps required for the
calculation of RC to the pure BH process and interference
of BH and DVCS amplitude are (i) matrix element squared,
(ii) integration over loops and taking care on ultraviolet
divergence (i.e., making the electron charge and mass
renormalization), (iii) phase space parametrization and
integration over a part of kinematical variables of an addi-
tional photon: the cross section is defined by four kinematical
variables (x, Q2, t and ϕ) and the cross section with a two
photon emitted is defined by seven kinematical variables,
including the same four variables (x,Q2, t, and ϕ) and three
additional variables (the two-photon invariant mass squared
V2 and two angles of the photon pair), (iv) extraction and
cancellation of the infrared divergence without making new
assumptions, (v) implementation of a contribution of higher
order corrections (calculated approximately), and (vi) coding

the results to have, first, a program for RC calculation in a
kinematical point (x, Q2, t, and ϕ) and the Monte Carlo
generator with the inclusion of RC contributions. The
calculation in the leading log approximation resulted in
(28). Adding the contribution of loops and canceling the
infrared divergence results in (37). Finally, the exponentia-
tion of multiple soft photons results in the final formula in
(38). The calculation of the next-to-leading-order correction
to the BH cross section is much more complicated [10]. The
code created to calculate RC in a kinematical point based on
these calculations is namedDVCSLL. This code allows us to
calculate RC to BH and DVCS process in leading approxi-
mation. Cases of longitudinal and transverse target polari-
zation are included. Higher order corrections are included
through exponentiation and potentially higher order correc-
tions in terms of electron structure functions available for BH
can be included for the interference ofBHandDVCS aswell.
An opportunity to incorporate a cut on missing energy is
implemented. The numeric integration over the phase space
of an additional photon is implemented, and the BMK
approximation [11] is used to describe hadronic structure
for DVCS. The approach implemented in the Monte Carlo
generator allowed for the generation of DVCS events and
Monte Carlo integration over an experimental bin. For each
event the Monte Carlo generator selects between radiated
(two photons in final state) or nonradiated (one photon in
final state) and if the radiated event is selected, three
additional kinematical variables to describe an additional
photon aregenerated.Anumerical analysis of theRC to cross
sections and asymmetries allowed us to conclude that the RC
is under control and remaining uncertainties are due tomodel
dependence and to the effects not taken into account yet (e.g.,
the pentagon diagrams).
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APPENDIX: EXPLICIT EXPRESSION FOR σadd

The analytical expression for the term σadd is

σadd¼
αL
2π

2
64
Zzm1

zp
1

dz1
1þz21
1−z1

δ̂s sinθ0sþ δ̃s sin θ̃
0
s

D1=2
0s

�
xs
x

�
2

σ1γðz1Þ

þ
Zzm2

zp
2

dz2
1þz22

z2ð1−z2Þ
δ̂p sinθ0pþ δ̃p sin θ̃

0
p

D1=2
0p

�
xp
x

�
2

σ1γðz2Þ

3
75

ðA1Þ

0
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FIG. 6. The t-dependence of the asymmetry (upper left), RC to
asymmetry (upper right), and RC factors (lower plots). Dashed
curve for A gives the σ1γ and solid curved show the observed
cross sections with V2

cut ¼ 0.3 GeV2 (the curve closer to dashed
curve) and without cuts. Dashed and solid curves at the other
three plots show δA;u;p with and without the cut, respectively.
Kinematical variables used for this example were x ¼ 0.1,
Q2 ¼ 2 GeV2, and Ebeam ¼ 11 GeV.
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for cosϕ < 0, and σadd ¼ 0 for cosϕ ≥ 0. In (A1), σ1γðz1;2Þ
are defined by (29), sin θ0 is given in [9] by Eq. (38) as one
of solution of Eq. (35), and sin θ̃0s;p represent other solution

sin θ̃0 ¼ −
cos θz

ffiffiffiffiffiffi
D0

p þ A sin θz cosϕ
cos θ2z þ sin2 θz cos2 ϕ

: ðA2Þ

The lowest limits of integration in (A1) are defined as

zp1;2 ¼ 1−4λYV2þV2
−½ðV2

− −V2þÞ
ffiffiffiffiffiffiffiffiffi
Ds;p

p
þðV2þþV2

−ÞA2s;pþ2V2þV2
−ðλY þSxSpÞ�−1; ðA3Þ

where

V2
� ¼ tSx �

ffiffiffiffi
λt

p ffiffiffiffiffi
λY

p
2M2

−Q2 þ t;

Ds;p ¼ A2
1V

2þV2
− þ A2

2s;p;

A1 ¼ 4M cosðϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2ðSX −M2Q2Þ −m2λY

q
;

A2s ¼ Q2ðSpðSx þ 2tÞ − λYÞ − tðλY þ SpSxÞ;
A2p ¼ Q2ðSpðSx þ 2tÞ þ λYÞ þ tðλY − SpSxÞ: ðA4Þ

The quantities δ̂s;p and δ̃s;p are introduced to reflect
experimental cuts on V2 and therefore z1;2. There are four
cases for the cutting value ofV2, i.e., no cut andwhenV2

cut is

between V2
1s;p, V

2
2s;p or V2

max [Fig. 3(b)]. First, when no cut

on missing mass square is used, δ̂s;p ¼ δ̃s;p ¼ 1. Second, if
V2
cut ≤V2

1s;p, then δ̂s;p¼ δ̃s;p¼0. Third, if V2
1s;p <V2

cut <

V2
2s;p, then δ̂s;p ¼ θðz1;2 − zc1;2Þ and δ̃s;p ¼ 0. Fourth,

V2
2s;p<V2

cut<V2
max then δ̂s;p ¼ 1 and δ̃s;p ¼ θðzc1;2 − z1;2Þ.

Formally, δ̂s;p and δ̃s;p can be presented using a combined
formula aggregating all four cases:

δ̂s;p ¼ θðV2
cut−V2

1s;pÞθðV2
2s;p−V2

cutÞθðz1;2− zc1;2Þ
þθðV2

cut−V2
2s;pÞ;

δ̃s;p ¼ θðV2
cut−V2

2s;pÞθðzc1;2−z1;2Þ: ðA5Þ
The restrictions on z1;2 read

zc1;2 ¼ 1 − 2λYV2
cut½A1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV2þ − V2

cutÞðV2
cut − V2

−Þ
q

þ A2s;p þ V2
cutðSpSx þ λqÞ�−1 ðA6Þ

and the other quantities used in previous expressions are

V2
1s;p ¼ V2þDs;p

A2
1V

2þ þ A2
2s;p

< V2
max;

V2
2s;p ¼ 2V2þV2

−
ffiffiffiffiffiffiffiffiffi
Ds;p

p
ðV2þ þ V2

−Þ
ffiffiffiffiffiffiffiffiffi
Ds;p

p
− A2s;pðV2þ − V2

−Þ
: ðA7Þ
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