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Abstract. The effects of a uniform external magnetic field on the thermomagnetic convection of magnetic 
fluid in a cylindrical enclosure are numerically studied. It was found that uniform magnetic field can be 
cause the convection in the non-uniformly heated magnetic fluid in a cylindrical enclosure even in the case 
of zero gravity. There are two threshold values of fluid magnetization and temperature gradient. Above the 
first threshold the convective flow is realized as circular flow, above the second one there are two cells in 
the enclosure. The angle between a magnetic field strength and a temperature gradient is found to be 
significant factor influencing structure of a convective flow and heat transfer control. 

1 Introduction  
Natural convection of magnetic fluids has attracted much 
research over the years [1 – 6]. The additional body 
force μ0M∇H gives an opportunity to control the natural 
convection under magnetic field. This ponderomotive 
Kelvin force drives the stronger magnetized colder fluid 
to the regions with a stronger magnetic field. Such a 
motion is referred to as thermomagnetic convection. The 
thermomagnetic convection has a great potential for 
many engineering applications, such as electronic 
cooling devices, heat exchanger, and pure magnetic 
convection in space engineering.  

In the case of uniform magnetic field the Kelvin 
force is equal to zero and magnetic field can not to effect 
convection. But there are two factors which even in the 
case of uniform external magnetic field give an 
opportunity to control the thermoconvection in an 
enclosure.  

The first one has been founded by Finlayson [7] and 
studied in details in [4, 8] for infinite flat layers. It is 
shown that uniform transversal external magnetic field 
becomes nonuniform in the infinite layer of a heated 
magnetic fluid and influence a convection. Magneto-
gravitational convection in a vertical layer of magnetic 
fluid in an oblique magnetic field is studied in [9]. 

 The second factor is the geometry of a magnetic 
fluid-filled enclosure. Any finite enclosure such as 
square or cube has the corners and magnetic field 
becomes nonuniform near them because of boundary 
conditions for magnetic field. The effect of the external 
uniform magnetic field on the thermomagnetic 
convection in square and cubic enclosures was studied in 
[10 – 13]. 

It is interesting to exclude the factor of geometry and 
study the convection in the situation when the external 

magnetic field remains uniform in an enclosure. Such 
enclosure with finite dimension would be very 
convenient both for theoretical and experimental 
investigation. 

It’s well known that uniform external magnetic field 
remains to be uniform in the magnetic enclosures formed 
by the surfaces of the second order: the cylinder 
magnetized across the axes, ellipsoid or sphere. 
Experimental study of the thermomagnetic convection in 
the sphere is presented in [14]. We study the effect of the 
uniform external magnetic field on 2D-convection in the 
cylindrical enclosure in order to understand the results of 
[14] too. 

2 Physical model 
Cylindrical enclosure heated from below is one of the 

classical and the most considered configuration for the 
study of natural convection because of its relative 
simplicity and practical importance. Fig. 1 shows the 
schematic view of the physical model considered in this 
paper. The cylindrical enclosure with the radius R filled 
with magnetic fluid is surrounded with the solid massive 
with the radius R∞. The temperature at the external 
boundary is fixed as 

𝑇𝑇 = −�����
��

𝑦𝑦 + �����
�

       (1) 
so, the temperature gradient at the “infinity” is 
oriented vertically downwards and equal to 

𝛾𝛾� = −𝑇𝑇𝑏𝑏−𝑇𝑇𝑡𝑡
2𝑅𝑅                    (2) 

If the thermal conductivity of the fluid and the solid 
massive are equal then Tb is the temperature at the 
bottom point of the cylinder (x = 0, y = –R) and Tt – at 
the top one, otherwise the temperature gradient for the 
regime of conductivity is constant and equal to [16] 
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The magnetic field is supposed to be uniform at the 
“infinity” R∞: 𝐇𝐇� = �𝐻𝐻��, 𝐻𝐻���. If the magnetic 
permeability of the fluid is  and the solid massive is 
nonmagnetic than, in the isothermal case, the magnetic 
field in the cylinder is uniform and equal to [17] 

𝐇𝐇 = �𝐇𝐇�
���(�)/��

    (4) 
whereis the permeability of vacuum. 

In our computations we use the properties of 
magnetic fluid from the experimental paper [14]: 

Density, 1370 kg/m3 
Dynamic viscosity, Pa∙s   
Kinematic viscosity  •m2/s 
Thermal conductivity, i 0.15 W/(m·K)  
Magnetization saturation, MS 44.9 kA/m 
The heat capacity of the magnetic fluid could be 

calculated taking into account the additivity law. As the 
heat capacities of the surfactant (oleic acid) and the 
carrier fluid (transformer oil) are very close and equal to 
cp

fluid = 1.75 kJ/(kg∙K) then the heat capacity of the 
magnetic fluid can be calculated as 

cp = cp
solids + cp

fluidf                          (5) 
wheres is the volume concentration of the solid phase 
and f is the volume concentration of liquid phase (oleic 
acid and transformer oil). The volume concentration of 
solid phase can be calculated through the density of 
magnetic fluid and its components. As for transformer 
oil f = 817 kg/m3 and for magnetite s = 5000 kg/m3, 
the volume concentration of the solid phase can be 
estimated as 

𝜑𝜑� = ����
�����

= 0.132                              (6) 

Heat capacity of the magnetite is cp
solid  = 0.52  

kJ/(kg∙K) and in according to (5) the heat capacity of the 
magnetic fluid is cp  = 1.58 kJ/(kg∙K). Then the thermal 
diffusivity is mf = cp =6.9∙10-8 m2/s

We assume, as in [14], that the cylindrical enclosure 
is surrounded by Plexiglas massive with the properties: 

kg/m3,= 0.18 W/(m·K), cp = 1.27 kJ/(kg∙K), 
and thermal diffusivitye∙ m2/s. 

The dependence of the magnetization of a magnetic 
fluid with monodisperse particles on a magnetic field is 
described by the well-known Langevin function. But real 
magnetic fluids contain particles with the different sizes 
and this dependence is much more complicated. So, we 
use empiric relationship which rather correctly describes 
the experimental dependences of the magnetization on 
the magnetic field [15] 

𝑀𝑀(𝐻𝐻) = 𝑀𝑀�
���/��

�����/��
= 𝑀𝑀�

����

������
              (7) 

Here χ0 is the initial magnetic susceptibility, the 
dimensionless value marked by “^”, 𝐻𝐻� = H/MS. In futher 
computations we used χ0 = 2 which corresponds to real 
magnetic fluids. Taking into account equation (7), the 
equation (4) has an analytical solution: the magnetic 
field in the cylindrical enclosure filled with a magnetic 
fluid is related with the external uniform magnetic field 
by the equation 

𝐻𝐻� = (�����������)��(�����������)���������
���

  (8) 

3 Governing equations 

3.1 Momentum equation 

The momentum equation including gravity buoyancy 
force and magnetizing force is as follows [3] 

𝜌𝜌 ��𝐮𝐮
��

+ (𝐮𝐮 ∙ ∇)𝐮𝐮� = −∇𝑝𝑝 + 𝜂𝜂Δ𝐮𝐮 + 𝜌𝜌𝜌𝜌 + 𝜇𝜇�𝑀𝑀∇𝐻𝐻.    (9) 
The fluid is assumed to be an incompressible fluid 

div𝐮𝐮 = 0.        (10) 
For the thermal convection with low temperature 

difference, the classical Boussinesq approximation that 
the thermophysical properties of the fluid are assumed to 
be constant except for the density and the magnetization 
difference for buoyancy force is used.  

There are two reasons for dependence of a fluid 
magnetization on the temperature: change of the 
particles magnetic moment and thermal expansion of the 
fluid [4]. As the Curie temperature for the particles of 
magnetite is 858 K, around a reference state T0 change of 
the magnetic moment is negligible and, if magnetic field 
is not very small, only thermal expansion is the reason of 
magnetization change. Then we can write [4] 
  ���

��
�

�
= −𝑀𝑀�𝛽𝛽�� = −𝑀𝑀��𝜑𝜑�𝛽𝛽� + (1 − 𝜑𝜑�)𝛽𝛽��      (11) 

where  M0 is determined with Eq. (7), 𝛽𝛽� is the 
coefficient of thermal expansion of solid particles, and 
𝛽𝛽� – of fluid. As for magnetite 𝛽𝛽� = 2 ∙ 10�� K��, and 
for transformer oil  𝛽𝛽� = 6.9 ∙ 10�� K��, 𝛽𝛽�� = 6.25 ∙
10�� K��.  
   Using Eq. (7) (∂M/∂H)0 can be written as 

            ���
��

�
�

= ��
(�������)�                 (12) 

Thus, the equation of state finally can be written as 
𝑀𝑀(𝐻𝐻, 𝑇𝑇) = 𝑀𝑀� +

𝜒𝜒�

�1 + 𝜒𝜒�𝐻𝐻��
� (𝐻𝐻 − 𝐻𝐻�) − 𝑀𝑀�𝛽𝛽��(𝑇𝑇 − 𝑇𝑇�) 

            = 𝑀𝑀� + 𝑎𝑎(𝐻𝐻)(𝐻𝐻 − 𝐻𝐻�) + 𝑏𝑏(𝐻𝐻)(𝑇𝑇 − 𝑇𝑇�)     (13) 
Then the momentum equation can be written as follows: 

 
 

Fig. 1. Problem geometry. 
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𝜌𝜌 ��𝒖𝒖
��

+ (𝐮𝐮 ∙ ∇)𝐮𝐮� = −∇(𝑝𝑝) + 𝜂𝜂Δ𝐮𝐮 − 𝜌𝜌�𝛽𝛽��(𝑇𝑇 − 𝑇𝑇�)𝐠𝐠 +

𝜇𝜇� �𝑎𝑎(𝐻𝐻)(𝑇𝑇 − 𝑇𝑇�)∇𝐻𝐻 + 𝑏𝑏(𝐻𝐻)(𝐻𝐻 − 𝐻𝐻�)∇𝐻𝐻
+𝑀𝑀�∇(𝐻𝐻 − 𝐻𝐻�) �         (14) 

We will use a stream function ψ and a vortex ω as 
follows: 

𝑢𝑢� = ��
��

,  𝑢𝑢� = − ��
��

, 𝜔𝜔 = ���
��

− ���
��

= −∆𝜓𝜓      (15) 
After an operation curl applied to Eq. (15) and taking 
into account that ∇×H = 0, the momentum equation 
becomes  

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ (𝐮𝐮 ∙ ∇)𝜔𝜔 = 𝜈𝜈Δ𝜔𝜔 +  𝛽𝛽��𝑔𝑔
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 
�������

�
�����

�������
���

��
��
��

− ��
��

��
𝜕𝜕𝜕𝜕�      (16) 

3.2 Energy equation 

This equation has a standard form:  
𝜌𝜌𝜌𝜌� ���

��
+ (𝐮𝐮 ∙ ∇)𝑇𝑇� = 𝜆𝜆∆𝑇𝑇                 (17) 

3.3 Magnetic field 

A magnetic field both in the enclosure and in the 
external space is described with Maxwell’s equations for 
nonconducting fluids 

∇ × 𝐇𝐇 = 0, ∇ ∙ 𝐁𝐁 = 0, 𝐁𝐁 = 𝜇𝜇�(𝐇𝐇 + 𝐌𝐌) 
As for the magnetic fluids with magnetite particles the 
vectors of magnetic field strength and magnetization are 
parallel for flow velocities typical for convection, i.e. 
M = χ(H,T)H, then, using (7), (11) and (12), we get 

𝐁𝐁 = 𝜇𝜇�(1 + 𝜒𝜒(𝐻𝐻, 𝑇𝑇))𝐇𝐇 = 
𝜇𝜇� �1 + ��

������
�1 − 𝛽𝛽��(𝑇𝑇 − 𝑇𝑇�)�� 𝐇𝐇 = 𝜇𝜇�𝜇̂𝜇(𝐻𝐻, 𝑇𝑇)𝐇𝐇   

As ∇×H = 0 the magnetic field strength can be expressed 
as the gradient of a scalar potential F 

𝐇𝐇 = ∇𝐹𝐹                  (18) 
and finally  the magnetic field is described with the 
nonlinear equation 

∇ ∙ (𝜇̂𝜇(|∇𝐹𝐹|, 𝑇𝑇)∇𝐹𝐹) = 0   (19) 
where 

𝜇̂𝜇(∇𝐹𝐹, 𝑇𝑇) = 1 + ��
����|∇�|/��

�1 − 𝛽𝛽��(𝑇𝑇 − 𝑇𝑇�)�  (20) 

3.4 Boundary conditions 

On the walls of the enclosure, no-slip conditions for the 
velocity are applied: the stream function is equal to zero 
on the walls of the enclosure; the vortex is calculated 
from the Eq. (15 taking into account the curvature of the 
walls. 

The temperature at the “infinity” R∞ is determined by 
means of the Eq. (1) and the conditions of continuity 
must be fulfilled at the boundary of the enclosure 

𝑇𝑇� = 𝑇𝑇�,    𝜆𝜆�
��
��

= 𝜆𝜆�
��
��

     (21) 
 The external magnetic field is uniform and at the 
“infinity”  R∞ is equal to H∞={Hx∞, Hy∞}, i.e. the scalar 
potential is determined at the external boundary as 

𝐹𝐹 = 𝐻𝐻��𝑥𝑥 + 𝐻𝐻��𝑦𝑦    (22) 
The conditions (Bi – Be )∙n, (Hi – He)∙τ = 0 must be 
fulfilled at the boundary of the enclosure, i.e. 

𝜇̂𝜇 ���
��

= ���
��

,   ���
��

= ���
��

         (23) 
where 𝐧𝐧 is the unit vector normal to the boundary and 𝛕𝛕 
is the unit vector tangential to the boundary. 

3.5 Dimensionless form of the equations 

We use as the scales: [t] = R2/i, [x, y] = R, [T] = 0R, [u] 
= i/R, [H] = MS, [F] = MSR, [ψi, [ω] = i/R2. The 
system of equations can be written in dimensionless 
form as follows: 

∇ ∙ �𝜇𝜇(|∇𝐹𝐹��|, 𝜃𝜃)∇𝐹𝐹��� = 0,     Δ𝐹𝐹�� = 0   (24) 
𝜕𝜕𝜕𝜕�
𝜕𝜕𝜕𝜕

+
1
Pr

(𝐮𝐮 ∙ ∇)𝜔𝜔� = Δ𝜔𝜔� + Ra
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 

Ra�
�����

�������
����

��
��
��

− ���

��
��
��

�   (25) 

 ∆𝜓𝜓� = −𝜔𝜔�        (26) 
Pr ���

��
+ (𝐮𝐮 ∙ ∇)𝜃𝜃� = ∆𝜃𝜃�                   (27) 

Pr ���
��

= ��
��

∆𝜃𝜃�     (28) 

Here 𝐹𝐹� = 𝐹𝐹/𝑅𝑅𝑅𝑅�, 𝐻𝐻� = 𝐻𝐻/𝑀𝑀�, 𝜔𝜔� = 𝜔𝜔𝜔𝜔�/𝜅𝜅�, 𝜓𝜓� = 𝜓𝜓/𝜅𝜅�,
𝜃𝜃 = (𝑇𝑇 − 𝑇𝑇�)/Δ𝑇𝑇, Δ𝑇𝑇 = 2𝛾𝛾�𝑅𝑅, the magnetic 
permeability is equal to 1 for external space and is given 
by (20) for the fluid in the cylinder. 
    The Rayleigh number, the magnetic Rayleigh number 
and the Prandtl number are: 

Ra = ��������

��
, Ra� = ����

��������

���
, Pr = �

�
      (29) 

4 Numerical method 
The problem was solved numerically by finite elements 
method with triangle elements. The linear interpolation 
functions are used for the magnetic field scalar potential 
and the stream function 

𝐹𝐹 = 𝐴𝐴�𝑥𝑥 + 𝐵𝐵�𝑦𝑦 + 𝐶𝐶�,    𝜓𝜓 = 𝐴𝐴�𝑥𝑥 + 𝐵𝐵�𝑦𝑦 + 𝐶𝐶� 
and the exponential functions [18] for the temperature 
and the vortex are used: 

𝜔𝜔 = 𝐴𝐴�exp �
𝑈𝑈��

Pr
(𝑋𝑋 − 𝑋𝑋���)� + 𝐵𝐵�𝑌𝑌 + 𝐶𝐶� 

𝑇𝑇 = 𝐴𝐴�exp[𝑈𝑈��(𝑋𝑋 − 𝑋𝑋���)] + 𝐵𝐵�𝑌𝑌 + 𝐶𝐶� 
 
where the coefficients A, B, C are calculated from the 
function values in the nodes of the triangle elements, a 
local coordinate system X, Y is oriented at each element 
so that the axis X directed along the local velocity  𝐔𝐔�� in 
this element. 

The vortex at the solid boundary of the enclosure is 
calculated with taking into account the curvature of the 
boundary according to the method supposed in [19]. 

5 Results and Discussion 
The Rayleigh number is only one governing parameter in 
the case of the thermo-gravitational convection. In our 
case there are three independent dimensionless 
parameters: the numbers Ra and Ram and the parameter 
𝛽𝛽��Δ𝑇𝑇. The last one specifies the magnetic field 
gradient in the enclosure through the equations (20) and 
(24).  
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In order to exclude the influence of the gravity and to 
highlight the influence of the uniform external magnetic 
field on the thermal convection in the pure state we put 
the Rayleigh number equal to zero (Ra = 0) in this study. 
As both parameters Ram and 𝛽𝛽��Δ𝑇𝑇 depend on the 
temperature difference T, we use in the study T and 
the magnetization M0 as the independent physical 
parameters. All the further computations are fulfilled for 
the fluid with properties presented above and 
corresponding to the magnetic fluid used in the 
experiments [14]. The dimensionless radius of the 
external boundary of the calculation domain is 𝑅𝑅� = 11, 
the radius of the enclosure, as in the [14], is 8 mm.  

The heat flux across the boundary of the cylinder can 
be characterized by the Nusselt number which was 
calculated as 

Nu =
1
Nu�

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑
��

��
 

where Nu0 is the Nusselt number in the case of 
conductivity regime, 𝜗𝜗� and 𝜗𝜗� are the angles for which 
𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 = 0. This integral was calculated both from 𝜗𝜗� to 
𝜗𝜗� and from 𝜗𝜗� to 𝜗𝜗�. The difference between the results 
was less than 0.01%. 

To validate the quality of the numerical results, the 
problem of convective stability in the field of gravity in a 
cylindrical enclosure without magnetic field (Ram = 0) is 
tested and results are compared with the linear theory 
solution [16]. Table 1 shows the studied grid systems: 

 
Table No 1. Grid parameters. 
No of the grid 1 2 3 4 5 
Number of 
nodes 

9091  16201 25381 36541 49771 

Number of 
elements 

18000  32160 50400 72720 99120 

 
Table 2 illustrates the mesh independency analysis. The 
grid No 4 is used in all computations presented below. 

      For the case of zero gravity (Ra = 0, Ram ≠ 0) it was 
found that there are two types of convective flow   
         Table 2. 
Comparison of the present results of critical Rayleigh number 
for different grid resolution with linear theory [16]. 
i/e Galerkin 

method 
[16] 

Grid 
No 1 

Grid 
No 2 

Grid 
No 3 

Grid 
No 4 

Grid 
No 5 

0.01 408.2 421.52 417.63 415.32 413.8 413.01 
0.2 373.6 384.33 382.06 380.7 379.83 379.46 
0.5 372.3 379.65 378.36 377.62 377.14 377.15 
1 412.4 415.36 414.74 414.44 414.26 414.31 
2 527.1 525.88 525.97 526.11 526.30 526.40 
       

structures in a cylindrical enclosure (Fig. 2). In contrast 
to the thermo-gravitational convection, for which the 
only one structure (a single cell) can be realized, two 
structures (single cell and two cells) are possible for the 
thermomagnetic convection in the case of zero gravity. 
    To check the dependence on the Prandtl number, the 
problem for the maximum value of the parameters 
(Ra = 0, Ram = 2383686, H∞ = 20MS, T = 120 K) is 
solved. Table 3 shows that the results are the Prandtl 
number almost independent. The value Pr = 709 and 
i/e = 0.833 corresponding to the above-stated 
properties of the magnetic fluid are used in all 
computations. 

Table 3. The Prandtl number dependency test. 
Pr min max Nu 

10 -5.13317 5.1306 1.6393 
100 -5.13528 5.1358 1.6426 

1000 -5.1356 5.1366 1.6430 
The distribution of the temperature and magnetic 

field potential in the calculation domain equal to the 
external boundary conditions and ψ = 0, ω = 0 are used 
as initial conditions. 

There is no convection for small values of T and H∞ 
(remember Ra = 0). Above some critical values of the 
fluid magnetization and the temperature difference the 
circulation flow arises (Fig. 2a). Fig. 3 shows the 

correspondence the dependence of the maximum stream 

    

  
a) T = 23 K b) T = 40 K c) T = 56 K d) T = 57 K 

Fig. 2. Stream function and temperature fields. 𝐻𝐻�� = 20, 0.
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field potential in the calculation domain equal to the 
external boundary conditions and ψ = 0, ω = 0 are used 
as initial conditions. 

There is no convection for small values of T and H∞ 
(remember Ra = 0). Above some critical values of the 
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correspondence the dependence of the maximum stream 

    

  
a) T = 23 K b) T = 40 K c) T = 56 K d) T = 57 K 

Fig. 2. Stream function and temperature fields. 𝐻𝐻�� = 20, 0.

 

function on the temperature difference  to the square root 
law of the Landau ψ ~ (T - T*)0.5 where T* is the 
critical value of the temperature difference.  The same 

character of dependence we can see for the Nusselt 
number (Fig. 4). 

As in the case of thermo-gravitational convection, the 
circulation flow takes the form of an oval with the 
increasing of T and the inclination of the major axis of 
the oval increases too (Figs. 2b, 2c). The direction of 
rotation in the case of parallelism of the magnetic field 
and the temperature gradient is arbitrary and it’s possible 
both clockwise, and counter-clockwise. 

The investigations of a linear stability of the basic 
state in the case of thermo-gravitational convection show 
[16] that the onset of the convection is possible in one of 
the four different perturbations: circular flow, two cells 
oriented vertically and horizontally, and four cells. 
However, numerous experimental studies and computer 
simulations found that only one cell flow can be realized. 
Fig. 2d shows that for sufficient value of the 
magnetization and the temperature difference two cells 
flow can be realized for thermo-magnetic convection. 
Above this second threshold the Nusselt number 
significantly decreases in comparison with one cell, but 
the rate of the Nusselt number increasing with the T 
growth is much more (Fig. 4).  

Fig. 4 shows that, for the given set of the parameters, 
the convective flow can be realized as two cells if the 
initial condition is ψ = 0, ω = 0 and T > 56 K. But if the 
initial condition is the one sell solution for  T < 56 K 
then the convective flow is one cell for  T > 56 K too. 
The corresponding values of the Nusselt numbers are 
shown with the marker □. It depends on the way of the 
fluid heating in the enclosure what structure can be 
realized in the experiment. The circular flow, formed at 
the small temperature differences, is stable in all range of 
temperatures if the heating is slow. In the case of quick 
heating (it corresponds to initial conditions is ψ = 0, ω = 
0 and the Prandtl number Pr = 709) two cell flow is 
formed for sufficiently high temperature difference. This 
critical T depends on the fluid magnetization. Fig. 5 
shows two neutral curves which divide the space of M - 
T on three zones: zone of stable state without 
convection, zone of the convection with one cell flow 

and zone of the two cell flow convection. The 
connection between the magnetization M0 in Fig. 5 and 
the external magnetic field H∞ is given by the equations 
(7), (8). 

 
Fig. 5. Neutral curves for  = 0. The direction of rotation in 
the case of one cell is arbitrary. M and 𝐻𝐻�� are connected 
through Eqs. (7) and (8). 

 
Till now the magnetic field parallel to the 

temperature gradient is studied. As the magnetization 
gradient is formed by the temperature gradient, they are 
parallel always and, it seems, the direction of the 
magnetic field vector has not to influence the convective 
flow. But after the onset of the convection the convective 
flow distorts the temperature field and, as consequence, 
distorts the magnetic field too. As a result, the verticality 
deviation of the magnetic field leads to very complicated 
interaction with the field of the temperature and can 
influence the convective flow. 

The numerical simulation shows that the maximum 
absolute value of the stream function for T  = 50 K 
(only one cell flow exists for this temperature difference) 
increases with the increasing of the angle of vertically 
deviation up to  ±30o and then decreases (Fig. 6a). The 
dependence of the Nusselt number on the angle of 
vertically deviation has a similar character (Fig. 6b). The 
variation of the stream function ψ and the Nusselt 
number Nu not very large (less than 2%) in this case but 
it exists. Thus, we can confirm the influence of the 
uniform magnetic field direction on the convective flow. 

For T  = 100 K and   = 0 the convective flow has a 
structure of two cells. In this case the influence of the 
external magnetic field inclination is more significant 
(Fig. 7a, b). The flow almost isn’t changed in the range 
of the angles -28o ≤ ≤ 31o: the maximum stream 
function varies between 6.79 and 6.64, i.e. within the 
range of 2%; the Nusselt number varies even less than 
ψ : in the range of 1.596 – 1.598. It should be mentioned 
that if the angle of the field inclination increases in 
positive direction then the intensity of the flow in the 
right cell increases and in the left cell decreases. In the 

Fig. 3. The maximum of 
stream function and the 
square of maximum stream 
function in the cell vs 
temperature difference. 
𝐻𝐻��  =  2, 𝛼𝛼 = 0. 

Fig. 4. The effect of temperature 
difference on Nusselt number. 
𝐻𝐻��  =  20, 𝛼𝛼 = 0. Zero initial 
conditions for the flow give solid 
line, result for using of previous 
solution as initial condition is 
presented by  □. 1 – one cell, 2 – 
two cells. 
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case of counter-clockwise inclination of the field we see 
an opposite situation.  

For 76o > || > 31o the cell with the maximum 
absolute value of the stream function becomes to 
dominate and only one cell convective flow is possible 
in all range of the parameters. The direction of the 
circulation flow is counter-clockwise for positive  and 
clockwise for negative angles.  

For 90o > || > 76o we can see two cell structure 
again. 

 

 
 

Fig. 6. The effect of magnetic field inclination on maximum 
stream function (6a) and the Nusselt number (6b). 
T = 50 K, 𝐻𝐻�� = 20.  

 
 

  
Fig. 7. The effect of magnetic field inclination on maximum 
stream function (7a) and the Nusselt number (7b). T = 
100 K, 𝐻𝐻�� = 20.  

 

6 Conclusions 
The buoyancy-induced thermal convection 

under external uniform magnetic field is numerically 
studied in a cylindrical enclosure. The effect of 
temperature, magnetization, direction of magnetic field 
and temperature gradient on thermomagnetic convection 
inside the enclosure is discussed in details. The main 
important conclusions can be summarized as follows:  
1. Convection in a non-uniformly heated cylindrical 

enclosure can be induced by the external uniform 
magnetic field even in the case of zero gravity. 

2. There are two threshold values of temperature 
gradient and fluid magnetization.  

3. Above the first threshold values the convective 
flow is realized as circular flow.  

4. There are the second threshold values of the 
parameters of the problem for angles near 0o and 
90o between magnetic field and temperature 
gradient. Flow realized above these values is two 
cells.  

5. The direction of rotation in one cell structure is 
arbitrary for the external magnetic field and 
temperature gradient parallelism. It is counter-

clockwise for positive and clockwise for negative 
angles. 

 
All these conclusions are right if zero initial 

conditions for stream function and vortex are used. If the 
convective structure formed for some parameters (for 
example, for T = 100 K, M0 = 0.96,  = 0o – two cells) 
is used in computer simulation as initial condition for 
another set of parameters (for example,  = 40o or 70o), 
restructuring of the convective flow doesn’t occur. Thus, 
it’s possible to state that formed structures have some 
margin of stability. 
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