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Abstract

Relativistic quantum mechanics of a Proca (spin-1) particle in Riemannian spacetimes is con-

structed. Covariant equations defining electromagnetic interactions of a Proca particle with the

anomalous magnetic moment and the electric dipole moment in Riemannian spacetimes are formu-

lated. The relativistic Foldy-Wouthuysen transformation with allowance for terms proportional to

the zero power of the Planck constant is performed. The Hamiltonian obtained agrees with the cor-

responding Foldy-Wouthuysen Hamiltonians derived for scalar and Dirac particles and with their

classical counterpart. The unification of relativistic quantum mechanics in the Foldy-Wouthuysen

representation is discussed.
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I. INTRODUCTION

We present a general quantum-mechanical description of a Proca (spin-1) particle in

Riemannian spacetimes. Its electromagnetic interactions are analyzed. The anomalous

magnetic moment (AMM) and the electric dipole moment (EDM) are taken into account.

The Foldy-Wouthuysen (FW) transformation [1] is performed for a nonrelativistic Dirac

particle. We obtain exact expressions for terms proportional to the zero power of the Planck

constant. For this purpose, we apply the relativistic FW transformation method developed

and substantiated in Refs. [2–4]. The use of the relativistic FW transformation allows one

to express the relativistic quantum mechanics (QM) in the Schrödinger form.

Various properties and applications of the FW transformation have been considered in

Refs. [5–7]. The FW transformation is widely used in electrodynamics [2, 8, 9], quantum

field theory [10], optics [11–13], condensed matter physics [14], nuclear physics [15, 16],

gravity [17–19], the theory of the weak interaction [20] and also quantum chemistry [21–25].

It is applicable not only for Dirac fermions but also for particles with any spins [11, 26–35].

Recently, the FW transformation has been successfully employed [36] to clarify the origin

of the hidden supersymmetry and superconformal symmetry [37] in some purely bosonic

quantum systems.

In precedent studies of Proca quantum mechanics, a detailed analysis of electromagnetic

interactions of a spin-1 particle has been based on the approach developed in Ref. [31]. The

relativistic FW Hamiltonian of a spin-1 particle with the AMM has been derived in Ref.

[33]. However, all precedent investigations using the FW transformation [31, 33, 35, 38, 39]

have been fulfilled in the framework of special relativity. We can also mention an analysis of

QM of a Proca particle in the Minkowski space made in Ref. [40]. Some studies of QM of a

Proca particle in curved spacetimes have been carried out in Refs. [41–46]. In these works,

the Cartan spacetime torsion has also been considered. The nonmetricity in Einstein-Proca

solutions has been studied in Ref. [44]. In Refs. [41–43], Lagrangians of a Proca particle

in Riemann-Cartan spacetimes have been obtained. The corresponding Proca equations ex-

cluding electromagnetic interactions have been presented in Ref. [42]. The Proca equations

with an inclusion of electromagnetic interactions have been obtained in Ref. [43]. However,

the FW transformation has not been used in Refs. [41–46]. The Wentzel-Kramers-Brillouin

approximation and the quasiclassical trajectory-coherent approximation have been applied
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in Refs. [41, 42] and in Ref. [43], respectively. In the present work, we demonstrate

the possibility to obtain the classical limit of Proca QM for a relativistic spin-1 particle in

strong electromagnetic and gravitational fields. For this purpose, we perform the subsequent

Sakata-Taketani [47] and FW transformations. In the FW representation, the passage to

the classical limit usually reduces to a replacement of the operators in quantum-mechanical

Hamiltonians and equations of motion with the corresponding classical quantities [48]. Pre-

viously, a detailed quantum-mechanical description of a scalar particle in Riemannian space-

times has been fulfilled in Ref. [34]. For a Dirac particle, the corresponding problem has

been solved in Refs. [17, 18].

Our notations correspond to Refs. [34, 49]. We denote world and spatial indices by

Greek and Latin letters α, µ, ν, . . . = 0, 1, 2, 3, i, j, k, . . . = 1, 2, 3, respectively. Tetrad

indices are denoted by Latin letters from the beginning of the alphabet, a, b, c, . . . = 0, 1, 2, 3.

Temporal and spatial tetrad indices are distinguished by hats. The signature is (+−−−).

Commas and semicolons before indices denote partial and covariant derivatives, respectively.

Repeated Greek indices and the Latin indices from the beginning of the alphabet are summed

over the values 0, 1, 2, 3. Repeated Latin indices i, j, k, . . . , î, ĵ, k̂, . . . are summed over the

values 1, 2, 3. The tetrad indices are raised and lowered with the flat Minkowski metric,

ηab = diag(1,−1,−1,−1).

We use the system of units ~ = 1, c = 1 but include ~ and c explicitly when this inclusion

clarifies the problem.

II. COMPARISON OF QUANTUM MECHANICS OF DIRAC AND PROCA PAR-

TICLES

A comparison of basic quantum-mechanical equations for Dirac and Proca particles is

instructive for a consideration of fundamentals of Proca QM.

A. Fundamentals of Dirac quantum mechanics

Dirac QM describes a single spin-1/2 particle in the Minkowski spacetime. The action

and the Lagrangian of spinor field are given by

S =

∫
Ld4x, L = Ψ̄(iγµ∂µ −m)Ψ, (1)

3



where Ψ̄ = Ψ†γ0.

The Euler-Lagrange equation reads

∂µ
∂L

∂(∂µΨ̄)
=

∂L
∂Ψ̄

= 0. (2)

Explicitly, we obtain the Dirac equation for a free particle:

(iγµ∂µ −m) Ψ = 0. (3)

The 4× 4 Dirac matrices satisfy the so-called Clifford algebra,

{γµ, γν} = 2ηµν . (4)

The fifth matrix γ5 can also be introduced:

γ5 = iγ0γ1γ2γ3,
(
γ5
)2

= 1,
{
γ5, γµ

}
= 0. (5)

The Lagrangian of a Dirac particle in an electromagnetic field should be invariant under

the local gauge transformation Ψ → Ψ′ = exp (ieΛ)Ψ. It is well known that this condition

results in a replacement of the partial derivative with the covariant (lengthened) one,

Dµ = ∂µ + ieAµ, (6)

where Aµ is the four-potential of the electromagnetic field. We use the denotations Aµ =

(Φ,−A), ∂µ = (∂0,∇), where ∇ is the nabla operator. The gauge transformations of the

electromagnetic field have the form

Aµ → A′
µ = Aµ − ∂µΛ, A → A′ = A+∇Λ, Φ → Φ′ = Φ− ∂0Λ. (7)

The Lagrangian and the Dirac equation in the electromagnetic field are given by

L = Ψ̄(iγµDµ −m)Ψ, (8)

(iγµDµ −m) Ψ = 0. (9)

The Lagrangian of the electromagnetic field reads

L(em) = −1

4
FµνF

µν , Fµν = ∂µAν − ∂νAµ. (10)

The Dirac equation in curved spacetimes can also be obtained with the Lagrangian ap-

proach (see, e.g., Ref. [50]). The gauge invariance under local transformations can be
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restored by replacing the partial derivative ∂µ with the gauge covariant derivative Dµ. One

needs to apply a flat tangent space defined by the tetrad of four-vectors eµa satisfying the

relation ηabeµae
ν
b = gµν . The covariant generalization of the integration, d4x →

√
−g d4x, g =

det gµν , should be used. The spinor field Ψ locally defined in the flat tangent space does

not have curved Riemann indices, and its total covariant derivative reduces to a Lorentz

covariant derivative (see Refs. [50, 51])

∂µ → Dµ = ∂µ +
i

4
σabΓµab, σab =

i

2

(
γaγb − γbγa

)
,

Γµab = −Γµba = ecµΓcab, Γcab = eµb e
ν
ceaµ;ν =

1

2
(−Ccab + Cabc − Cbca) ,

Cabc = −Cbac = eµae
ν
b (ecν,µ − ecµ,ν).

(11)

The anholonomic components of the connection Γµab are often called the Lorentz connection

coefficients. In Eq. (11), Cabc are the Ricci rotation coefficients and σab are the generators

of the local Lorentz transformations of the spinor field:

Ψ → Ψ′ = exp

(
− i

4
ωabσ

ab

)
Ψ.

As a result, the action is given by [50]

S =

∫
Ψ̄(iγaDa −m)Ψ

√−g d4x, Da = eµaDµ, (12)

and the covariant Dirac equation reads

(iγaDa −m) Ψ = 0. (13)

When the electromagnetic fields are taken into account, the covariant derivative takes the

form (see Ref. [18])

Dµ = ∂µ + ieAµ +
i

4
σabΓµab. (14)

The Dirac equation for the spin-1/2 particle can also be obtained by quantization of

the corresponding classical system. The spin degrees of freedom are described with the

Grassmann variables [52, 53]. In such a description, the model possesses a local supersym-

metry controlling the introduction of particle interactions [53]. Namely, the odd constraint

generates (via the Poisson bracket) the even constraint being a classical analog of the Klein-

Gordon equation. The simple supersymmetric structure of the algebra with one even and

one odd constraint allows one to modify the odd constraint to introduce the interaction. The

modified even constraint is generated via the Poisson bracket of the modified odd constraint
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with itself, and the modified odd and even constraints will commute (relative to the Poisson

bracket) as in the free case. The mechanism has been presented in Ref. [54].

We can mention the existence of bosonic symmetries of the Dirac equation [55].

B. Fundamentals of Proca quantum mechanics

Proca QM describes a single spin-1 particle, and a massive Proca particle has three

independent components of the spin. The Proca Lagrangian takes the form

L = −1

2
U †
µνU

µν +m2U †
µU

µ, (15)

where Uµν = −Uνµ is defined by

Uµν = ∂µUν − ∂νUµ. (16)

The complex functions Uµ are used. The additional conditions

∂µU
µ = 0, ∂µ(U

†)µ = 0 (17)

should be satisfied. These conditions exclude a spin-0 particle.

Equation (16) is the first Proca equation [56]. The second Proca equation can be derived

from the Lagrangian (15) and takes the form [56]

∂νUµν −m2Uµ = 0. (18)

The Proca functions, Uµν and Uµ, have ten independent components.

Equations (15) – (18) describe a vector particle in vacuum.

In the case of the free Maxwell field Aµ, both the Lagrangian density (10) and the Maxwell

equations are invariant under the local gauge transformation (7). This is not the case for

the free Proca field, where both the Lagrangian density and the Proca equations are not

invariant under the local gauge transformation

Ψ → Ψ′ = exp (ieΛ)Ψ, Uµ → U ′
µ = Uµ − ∂µΛ. (19)

The gauge invariance is broken by the mass term. This result is quite natural. It would be

more natural to assume that the Proca Lagrangian can be gauge invariant under the local

gauge transformation (7). However, it is not gauge invariant due to the mass term. This
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circumstance results from the fact that the Abelian Proca model has second-class constraints.

The first-class constraints are defined as the constraints which commute (i.e., have vanishing

Poisson brackets) with all other constraints. This situation brings to light the presence of

some gauge degrees of freedom in the Dirac formalism. On the other hand, the second-class

constraints have at least one nonvanishing bracket with some other constraints. Models with

the second-class constraints can be converted into gauge theories with first-class constraints.

The quantization of a second-class constrained system can be achieved by the reformulation

of the original theory as a first-class one and then quantizing the resulting first-class theory.

Such a procedure has been performed for the Proca field [57–63]. In Refs. [57, 58], the

BRST quantization method has been used. It is equivalent to the BFV method [64] for the

considered problem (see Refs. [57, 58]). Another possibility of gauge transformations for the

Proca field is an application of the method of gauge unfixing [59–63]. These two methods

advocate both the gauge transformation (19) and lengthening the derivatives (6) for the

Proca particle in electromagnetic fields. The same conclusion also follows from the results

obtained in Refs. [65–67]. A unified quantization of both the electromagnetic and Proca

fields has been performed in Ref. [65]. In Ref. [66], an elimination of the Lorenz condition

has been applied. In Ref. [67], a noncommutative spacetime has been used.

Besides lengthening the derivatives, the Proca Lagrangian in electromagnetic fields is

usually supplemented by the Corben-Schwinger term [68],

LAMM =
ieκ

2

(
U †
µUν − U †

νUµ

)
F µν , (20)

where F µν is the electromagnetic field tensor. The Corben-Schwinger term is proportional

to κ = g − 1, where g = 2mµ/(e~s). For spin-1 particles, g = 2mµ/(e~). Since the initial

Proca equations correspond to g = 1, this term describes not only the AMM but also a part

of the normal (g = 2) magnetic moment µ0 = e~/m.

The corresponding initial Proca-Corben-Schwinger equations (generalized Proca equa-

tions) describing the electromagnetic interactions of the spin-1 particle in the Minkowski

spacetime have the form (see Refs. [31, 39, 68])

Uµν = DµUν −DνUµ, (21)

DνUµν −m2Uµ − ieκUνFµν = 0, Fµν = ∂µAν − ∂νAµ, (22)

where the covariant derivative Dµ has the form (6). We should mention that properties

of the four-potential Aµ = (Φ,−A) in special relativity and general relativity substantially
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differ. In particular, covariant and contravariant components of the four-potential have even

different dimensions when the metric tensor is not dimensionless.

Since the Proca Lagrangian is not gauge invariant, its extension on curved spacetimes

cannot be as straightforward as for a Dirac particle. Therefore, the Proca Lagrangian in

curved spacetimes has been constructed in Refs. [41–43] by a replacement of the partial

derivative by the standard covariant derivative of general relativity. The same replacement

is fulfilled for a scalar boson [69, 70]. The standard covariant derivatives of the scalar φ and

the covariant vector Jν are given by

Dµφ ≡ φ;µ = ∂µφ, DµJν ≡ Jν ;µ = ∂µJν −
{

ρ
νµ

}
Jρ,

where
{

ρ
νµ

}
=

1

2
gρλ (gλν,µ + gλµ,ν − gνµ,λ) (23)

are the Christoffel symbols. The covariant derivative which includes the electromagnetic

interactions has the form

Dµ = Dµ + ieAµ. (24)

We underline a substantial difference between the definitions of covariant derivatives for the

Dirac and Proca particles.

In Ref. [43], the presented Proca Lagrangian includes the Corben-Schwinger term. The

corresponding Proca-Corben-Schwinger (PCS) equations are given by Eqs. (21) and (22)

where the covariant derivatives are defined by Eq. (24).

III. GENERALIZED PROCA EQUATIONS IN THE MINKOWSKI SPACETIME

Previous developments of the Proca QM including the FW transformation have been

performed in Refs. [31, 33, 35, 39]. A possibility of dual transformations, B → E, E →
−B, µ′ → d, allows one to supply the Proca Lagrangian by the term characterizing the

EDM [33],

LEDM = −ieη

2

(
U †
µUν − U †

νUµ

)
Gµν , (25)

where the tensor Gµν = (B,−E) is dual to the electromagnetic field one, Fµν = (E,B).

Here η = 2mcd/(e~s) = 2mcd/(e~), and d is the EDM. The second PCS equation takes the

form [33]

DνUµν −m2Uµ − ieκUνFµν + ieηUνGµν = 0. (26)
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The PCS equations can be presented in a Hamiltonian form. Since the spin of a Proca

particle has three components, six components of the wave function are independent. Spatial

components of Eq. (21) and a time component of Eqs. (22) and (26) can be expressed in

terms of the others. As a result, the equations for the ten-component wave function can be

reduced to the equation for the six-component one (Sakata-Taketani transformation [47]).

The distinctive feature of this transformation is that one obtains expressions for U0 and

Uij (i, j = 1, 2, 3), which do not contain the time derivative, and then substitutes them into

equations for the remaining components. From Eq. (22), we have

U0 =
1

m2

(
DiU0i − ieκU iF0i

)
.

Next we introduce two vector functions, φ and U , the components of which are given by

iUi0/m and U i:

φ ≡ i

m
(Ui0) , U ≡

(
U i

)
= − (Ui) .

We assume that the components of the vector D are equal to Di. With these denotations,

U0 = − i

m
D · φ− ieκ

m2
E ·U , D × (D ×U) =

(
DjUij

)
.

It should be underlined that there is not any difference between upper and lower components

of vectors.

To perform the general Sakata-Taketani (ST) transformation of Eqs. (21) and (22), it is

convenient to define the spin-1 matrices as follows [31]:

S(1) =




0 0 0

0 0 −i

0 i 0


 , S(2) =




0 0 i

0 0 0

−i 0 0


 , S(3) =




0 −i 0

i 0 0

0 0 0


 . (27)

This definition is not unique. One can use any other spin matrices satisfying the properties

[S(i), S(j)] = ieijkS
(k), S(i)S(j)S(k) + S(k)S(j)S(i) = δijS

(k) + δjkS
(i), S2 = 2I, (28)

where I is the unit 3× 3 matrix.

An exclusion of the components U0 and Uij results in

iD0φ = mU +
1

m
D × (D ×U)− ieκ

m
B ×U +

eκ

m2
E(D · φ) + e2κ2

m3
E(E ·U),

iD0U = mφ− 1

m
D(D · φ)− eκ

m2
D(E ·U).

(29)
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The following properties are valid for any operators V and W proportional to the unit

matrix I:

V × φ = −i(S · V )φ, V (W · φ) =
[
V ·W − S(i)S(j)V (j)W (i)

]
φ,

V (j)W (i)φ(j) = [V ·W − (S · V )(S ·W )]φ(i).
(30)

In particular,

D × (D ×U) = −(S ·D)2U . (31)

Since [Di, Dj] = −ieeijkB
(k), Eq. (29) takes the form

iD0φ = mU − 1

m
(S ·D)2U − eκ

m
(S ·B)U − eκ

m2

[
S(i)S(j)E(j)D(i) −E ·D

]
φ

−e2κ2

m3

[
(S ·E)2 −E2

]
,

iD0U = mφ+
1

m

[
(S ·D)2 −D2

]
φ− e

m
(S ·B)φ+

eκ

m2

[
S(i)S(j)D(j)E(i) −D ·E

]
U .

(32)

The wave functions φ and χ form the six-component ST wave function

Ψ =
1√
2


 φ +U

φ−U


 .

The final equation in the ST representation has the Hamiltonian form:

i
∂Ψ

∂t
= HΨ. (33)

The general ST Hamiltonian obtained by Young and Bludman [31] is given by

H = eΦ + ρ3m+ iρ2
1

m
(S ·D)2

−(ρ3 + iρ2)
1

2m
(D2 + eS ·B)− (ρ3 − iρ2)

eκ

2m
(S ·B)

− eκ

2m2
(1 + ρ1)

[
(S ·E)(S ·D)− iS · [E ×D]−E ·D

]

+
eκ

2m2
(1− ρ1)

[
(S ·D)(S ·E)− iS · [D ×E]−D ·E

]

−e2κ2

2m3
(ρ3 − iρ2)

[
(S ·E)2 −E2

]
,

(34)

where ρi (i = 1, 2, 3) are the 2 × 2 Pauli matrices. We do not consider a nonintrinsic

quadrupole moment included in Ref. [31].

Equations (33) and (34) define the general Hamiltonian form of the initial PCS equations

(21) and (22). For spin-1 particles, the polarization operator is equal to Π = ρ3S. It is
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analogous to the corresponding Dirac operator, which can be written in a similar form:

Π = ρ3σ.

This approach has been applied for a description of electromagnetic interactions of a

Proca particle with the EDM [33]. In particular, the equation of spin motion containing

terms with electric and magnetic dipole moments perfectly agrees with the corresponding

equations in QM of a spin-1/2 particle [9, 71] and in classical physics (see Ref. [72] and

references therein). The general description of spin motion of a Proca particle includes

spin-tensor interactions proportional to terms bilinear in spin [39, 73–75].

IV. COVARIANT PROCA EQUATIONS IN RIEMANNIAN SPACETIMES

The general covariant Proca equations in Riemannian spacetimes are also given by the

formulas (21) and (26). However, the covariant derivatives are defined by Eq. (24). Next

derivations can be fulfilled similarly to the case considered in the previous section. We

should remind the reader of the substantial difference between the covariant derivatives for

the Dirac and Proca particles. The covariant derivative contains the spin-dependent term

for the Dirac particle [see Eqs. (11) and (14)] but cannot contain such a term for the Proca

particle. The spin matrices for Proca particles naturally appear as a result of a transition

from the ten-component wave function to the six-component one [31, 39]. Therefore, they

cannot act on the Proca fields Uµν and Uµ.

It is necessary to specify that the spin is defined in the particle rest frame which belongs to

local Lorentz (tetrad) frames. Therefore, the spin matrices for the Dirac and Proca particles

have the standard form only in local Lorentz frames (LLFs). As a result, the spin matrix

S should be coupled with vectors defined in such frames. It is convenient to pass to vector

denotations and to introduce the two vector functions, φ and U , and the vector operator

D [31, 33, 39]. In Riemannian spacetimes, they should be defined by

φ ≡ i

m
(Uî0̂) , U ≡

(
U î

)
, D̂ ≡ (Dî),

where Da = eµaDµ. It is convenient to introduce the 3 × 3 spin matrices [31, 33, 39]. For

example,

D̂ × (D̂ ×U) = −(S · D̂)2U . (35)

It is also convenient to pass to tetrad components in Eqs. (21) and (26). Equation (21)
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takes the form

Uab = eµae
ν
b (Dµe

d
νUd −Dνe

c
µUc) = eµaDµUb − eνbDνUa

+(Γacb − Γbca)U
b = eµaDµUb − eνbDνUa + CabcU

c,
(36)

where the coefficients Γabc and Cabc are defined by Eq. (11). A transformation of Eq. (26)

is similar and results in

ebµDµUab − ΓbcaU
bc + ηbcηdfCcdfUab −m2Ua − ieκU bFab + ieηU bGab = 0, (37)

where Fab = eaµe
b
νFµν , Gab = eaµe

b
νGµν .

The general equations (36) and (37) are the covariant equations describing electromag-

netic interactions of a Proca particle with the AMM and EDM in Riemannian spacetimes.

The presence of the Lorentz connection coefficients in Eqs. (36) and (37) leaves room for

effects caused by the Cartan torsion.

In Refs. [18, 49, 76], a similarity between (e/m)Fµν and Γcebu
c has been stated. In this

connection, it apparently seems that the definition of the Proca fields Uab, Ua in LLFs allows

one to include the additional term −imυU bΓcebu
c (υ = const) into Eq. (37). However, the

tensorlike quantity eeµe
b
νΓcebu

c = eeµeeν;ρu
ρ (unlike Fµν) is anholonomic. Therefore, it is not

a true tensor, and the additional term −imυUνeeµe
b
νΓcebu

c cannot enter Eq. (26), which is

fully covariant.

For an example, we derive the FW Hamiltonian, taking into account only terms pro-

portional to the zero power of ~. These terms define the particle motion. A derivation of

smaller terms describing the spin motion needs rather cumbersome calculations.

V. FOLDY-WOUTHUYSEN TRANSFORMATION FOR A PROCA PARTICLE

IN RIEMANNIAN SPACETIMES

Since we disregard terms of the first and higher orders in ~, we can neglect the terms

describing the AMM and EDM and all terms originating from commutators with the operator

Dµ. In this approximation, Eqs. (36) and (37) reduce to

Uab = eµaDµUb − eνbDνUa, ebµDµUab −m2Ua = 0. (38)

In further derivations, commutators of the operator Dµ with other operators entering Eq.

(38) can also be neglected.
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The previous analysis shows that the best choice is the Schwinger gauge (see Refs. [18, 49])

satisfying the relations e 0̂
i = 0, e0

î
= 0. In this case, the operator Dî = ej

î
Dj does not contain

D0. Of course, other gauges can also be used, but they are much less convenient. For the

Schwinger gauge,

g00 = e0
0̂
e0̂0 =

(
e0
0̂

)2
, g0i = e0̂0ei

0̂
= e0

0̂
ei
0̂
. (39)

Another important property of this gauge is valid for any covariant operator:

Bi = eĵiBĵ , Bî = ej
î
Bj . (40)

Equations (39) and (40) are valid for any Schwinger gauge.

We follow the same approach as that applied in Refs. [33, 39]. To eliminate the com-

ponents U0̂ and Uî̂j, we obtain expressions for them and substitute these expressions into

equations for the remaining components. For the introduced vectors,

D̂ · φ ≡ − i

m
η îĵDîUî0̂, D̂ ·U ≡ DîU

î, D̂2 ≡ −η î̂jDîDĵ. (41)

The eliminated components are given by

Uîĵ = DîUĵ −DĵUî, U0̂ = − i

m
D̂ · φ. (42)

Next derivations are similar to those fulfilled in Refs. [33, 39]. In the approximation

used, we obtain the following equations for the wave functions φ and U :

iD0̂φ = mU +
1

m
D̂ × (D̂ ×U),

iD0̂U = mφ− 1

m
D̂(D̂ · φ).

(43)

An introduction of the spin matrices brings Eq. (43) to the form

iD0̂φ = mU − 1

m
(S · D̂)2U ,

iD0̂U = mφ +
1

m

[
(S · D̂)2 − D̂2

]
φ.

(44)

Similarly to Refs. [33, 39], the wave functions φ and U form the six-component Sakata-

Taketani wave function

Ψ =
1√
2


 φ +U

φ−U


 .

The resulting equation in the Sakata-Taketani representation has the form

iD0̂Ψ =

[
ρ3m+ iρ2

1

m

(
S · D̂

)2

− (ρ3 + iρ2)
1

2m
D̂2

]
Ψ, (45)
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where ρi are the 2× 2 Pauli matrices.

We need to bring this equation to the Hamiltonian form and then to perform the FW

transformation. Since

D0̂ = e0
0̂
D0 + ei

0̂
Di,

the use of Eq. (39) allows us to determine the operator D0:

D0 =
1√
g00

D0̂ −
g0i

g00
Di. (46)

The wave functions φ, U , and Ψ have tetrad components but not world ones. Therefore,

their first covariant derivatives are similar to covariant derivatives of a scalar wave function

and DµΨ = (∂µ + ieAµ)Ψ, DaΨ = eµaDµΨ.

As a result, the Hamiltonian form of Eq. (45) is given by

i
∂Ψ

∂t
= iD0Ψ = HΨ,

H =
1√
g00

[
ρ3m+ iρ2

1

m

(
S · D̂

)2

− (ρ3 + iρ2)
1

2m
D̂2

]
− g0i

g00
iDi + eA0.

(47)

We can now perform the FW transformation by the method described in Ref. [3]. Any

initial Hamiltonan can be presented in the form

H = βM+ E +O, βM = Mβ, βE = Eβ, βO = −Oβ, (48)

where the operators M and E are even and the operator O is odd. The matrix β is the

direct product of the Pauli matrix ρ3 and the 3× 3 unit matrix I. Even and odd operators

are diagonal and off-diagonal in two spinorlike parts of the bispinorlike wave function Ψ and

commute and anticommute with the operator β, respectively. Explicitly,

M =
1√
g00

(
m− 1

2m
D̂2

)
, E = − g0i

g00
iDi + eA0,

O =
iρ2√
g00m

[(
S · D̂

)2

− 1

2
D̂2

]
.

(49)

The noncommutativity of the operator Dµ with the metric tensor and with the tetrad

leads to the appearance of terms proportional to ~. Since we neglect such terms, we can

ignore the above-mentioned noncommutativity, and the transformed Hamiltonian takes the

form

HFW =
ρ3√
g00

√
m2 − D̂2 − g0i

g00
iDi + eA0. (50)
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The use of Eqs. (39) and (40) allows one to express the operator D̂2 in terms of covariant

derivatives. For any tetrad belonging to the Schwinger gauge, the following relation is valid:

gij = ei
0̂
e0̂j + ei

k̂
ek̂j =

g0ig0j

g00
+ ei

k̂
ek̂j . (51)

Equations (40) and (51) show that in the approximation used

GijDiDj ≡
(
gij − g0ig0j

g00

)
DiDj = ei

k̂
ek̂jDiDj = Dk̂D

k̂ ≡ D̂2 (52)

and

HFW =
ρ3√
g00

√
m2 −GijDiDj −

g0i

g00
iDi + eA0. (53)

Since covariant derivatives of the metric tensor are equal to zero, Gij commutes with Dµ.

Evidently, the Hamiltonian (53) agrees with the corresponding classical Hamiltonian

which has the form (Eq. (2.5) in Ref. [77])

H =

(
m2 −Gijpipj

g00

)1/2

− g0ipi
g00

, Gij = gij − g0ig0j

g00
. (54)

The Hamiltonian (53) covers the electromagnetic and gravitational interactions. It also

describes the inertial interactions taking place in flat noninertial frames. We should remind

the reader that the Hamiltonian (53) acts on the six-component wave function and the unit

matrices are omitted. The agreement of this Hamiltonian with the contemporary QM is

shown in the next section.

VI. COMPARISON OF FOLDY-WOUTHUYSENHAMILTONIANS INMINKOWSKI

AND RIEMANN SPACETIMES

It is instructive to compare the result obtained in the present work with the contemporary

Proca QM in the Minkowski spacetime. The comparison is nontrivial when curvilinear

coordinates are used. The momentum operator is proportional to the nabla one, p ≡
−(pi) = −i~(∇i) ≡ −i~∇. For particles with any spin, the terms in the FW Hamiltonians

proportional to the zero power of the Planck constant are given by [9, 32, 33]

HFW = ρ3
√
m2 + π2 + eA0, π = p− eA. (55)

These terms are independent of the spin.
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The four-potentials Aµ and Aµ defining the same electromagnetic field in the flat Rieman-

nian spacetimes (when curvilinear coordinates are used) and in the Minkowski spacetime,

respectively, substantially differ. For any diagonal metric tensor, the appropriate choice of

the Schwinger tetrad is eµa = δaν
√

|gµν |. In this case, Â = A but A 6= A.

It is well known that the nabla operator possesses nontrivial properties even in the

Minkowski spacetime. It is defined by

∇ =
∂

∂ρ
eρ +

1

ρ

∂

∂φ
eφ +

∂

∂z
ez (56)

and

∇ =
∂

∂r
er +

1

r

∂

∂θ
eθ +

1

r sin θ

∂

∂φ
eφ (57)

for the cylindrical (ρ, φ, z) and spherical (r, θ, φ) coordinates, respectively. Its action on

a scalar is trivial, but its convolution with a vector (divergence of the vector) in these

coordinates is nontrivial and has the form

∇ ·T =
1

ρ

∂(ρTρ)

∂ρ
+

1

ρ

∂Tφ

∂φ
+

∂Tz

∂z
,

∇ ·T =
1

r2
∂(r2Tr)

∂r
+

1

r sin θ

∂(sin θTθ)

∂θ
+

1

r sin θ

∂Tφ

∂φ
.

(58)

In this equation, T is a three-component vector and there is not any difference between its

covariant and contravariant components.

The operator p2 = −~
2∆ is proportional to the Laplace operator ∆ ≡ ∇ · ∇. It acts on

the scalar wave function. This operator is defined by

∆ =
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2
∂2

∂φ2
+

∂2

∂z2
(59)

and

∆ =
1

r2
∂

∂r

(
r2

∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
(60)

in the cylindrical and spherical coordinates, respectively.

We can mention that

T
;µ
µ =

1√−g
∂µ
√−ggµνTν .

For any curvilinear coordinates, g00 = 1 and the metric is static (g0i = 0). In this case,

T
;i
i =

1√−g
∂i(

√
−ggijTj).
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For the cylindrical and spherical coordinate systems, the metric tensor is defined by

gµν = diag(1,−1,−ρ2,−1) and gµν = diag(1,−1,−r2,−r2 sin2 θ), respectively. It can be

shown that the operatorsGijDiDj and−(∇−ieA)·(∇−ieA) are equivalent in the both cases.

In these cases, Gij = gij. First, it can be easily checked that the operators GijDiDj and

−∆ ≡ −∇·∇ are equivalent. Second, it is necessary to consider the divergence GijAj ;i = A;i
i .

For the cylindrical coordinates [A = −(Ai)],

−A;i
i =

1

ρ
∂ρ(ρAρ) +

1

ρ2
∂φAφ + ∂zAz =

1

ρ
∂ρ(ρAρ̂) +

1

ρ
∂φAφ̂ + ∂zAẑ = −∇ · Â = −∇ ·A.

The same result can be obtained for the spherical coordinates.

Since GijAiAj = AaAa = −Â2 = −A
2, the equivalence of the operators GijDiDj and

−(∇− ieA) · (∇− ieA) is proven.

Thus, the result obtained in the present study fully agrees with the contemporary QM in

the Minkowski space.

VII. UNIFICATION AND CLASSICAL LIMIT OF RELATIVISTIC QUANTUM

MECHANICS IN THE FOLDY-WOUTHUYSEN REPRESENTATION

The Hamiltonian (53) also fully agrees with the corresponding FW Hamiltonians for a

scalar particle [34] and for a Dirac one [18]. In the latter Hamiltonians, we can disregard

terms of the first and higher orders in the Planck constant. The Hamiltonians differ only

in the dimensions of contained matrices defined by the dimensions of the corresponding

wave functions. For states with a positive total energy, lower spinors (or lower parts of

spinorlike wave functions) are equal to zero for any particles. Their nullification unifies a

normalization of the wave functions. For any spin, the FW wave functions are normalized

to unit, and their probabilistic interpretation is restored. It should be underlined that

the quantum-mechanical Hamiltonians become rather similar for bosons and fermions. A

difference between the Hermiticity of the initial Hamiltonians for fermions [18] and the β-

pseudo-Hermiticity of the corresponding Hamiltonians for bosons [34] disappears after the

FW transformation. These properties indicate the unification of relativistic QM for particles

with different spins in the FW representation.

In this paper, we do not analyze terms of the first order in the Planck constant. Such terms

define spin interactions. However, it has been shown in Ref. [33] that the spin-dependent
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terms in the FW Hamiltonians for spin-1/2 and spin-1 particles with the AMMs and EDMs

interacting with arbitrary electromagnetic fields in Minkowski spacetimes perfectly agree.

These terms define equations of spin motion, which coincide with each other in the classical

limit. These equations also coincide with the corresponding classical equations (see Ref. [72]

and references therein). Of course, the FW Hamiltonian for spin-1 particles additionally

contains bilinear in spin terms which also influence spin dynamics [39, 73–75].

It can be concluded that the use of the FW representation allows one to unify the main

equations of relativistic QM for particles with different spins and to demonstrate that their

classical limit agrees with the corresponding classical equations. This conclusion fully agrees

with the results obtained in Ref. [76] in which the specific quantum-mechanical approach

has been used.

VIII. SUMMARY

A comparison of fundamentals of Dirac and Proca QM shows that the problem of quanti-

zation with an introduction of interactions can be solved more easy for a Dirac particle than

for a Proca (spin-1) one. However, the solution of this problem for the Proca particle is pos-

sible [57–63, 65–67] while it meets some difficulties. A consideration of the results obtained

for the Proca particle in electromagnetic fields [31, 33, 39] demonstrates an importance of

the ST and FW transformations which result in the Schrödinger form of the PCS equations.

After this, the classical limit of Proca QM in electromagnetic fields can be easily determined.

Therefore, a development of Proca QM needs not only a formulation of general covariant

Proca equations in electromagnetic and gravitational fields but also a determination of the

Hamiltonian form and of the classical limit of these equations with the use of the ST and

FW transformations. These results in turn allow one to establish a connection of QM of the

Proca particle with QM of particles with other spins.

The present work proposes the extension of relativistic QM of a Proca particle on Rie-

mannian spacetimes. The formulated covariant Proca equations take into account the AMM

and the EDM of a spin-1 particle and are based on the PCS equations in special relativity

and precedent studies of the Proca particle in curved spacetimes. It is important to mention

that the covariant derivatives in the Dirac and Proca equations substantially differ. As an

example, the relativistic FW transformation with allowance for terms proportional to the
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zero power of the Planck constant has been performed. The Hamiltonian obtained agrees

with the corresponding Hamiltonians derived for scalar and Dirac particles and with their

classical counterpart. This conclusion is in agreement with the results obtained in Ref.

[76]. The consideration presented demonstrate the unification of relativistic QM in the FW

representation.
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