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Abstract. We report the numerical study of PT -symmetry breaking in one-dimensional
structures with resonantly absorbing and amplifying layers described by the Maxwell-Bloch
equations. Temporal dynamics of light interacting with such a structure is governed by
strong field amplification and subsequent saturation of loss and gain above the exceptional
point resulting in the lasing-like regime with powerful pulses generated both in reflection and
transmission. In this regime, we predict and investigate the uniqueness of phase transition due
to saturation, transmission nonreciprocity, and the direction locking of the transmitted and
reflected radiation.

Optical PT -symmetric structures and the effects connected to PT -symmetry breaking is
one of the hot topics in modern photonics [1, 2, 3]. In one-dimensional (1D) geometry,
optical PT -symmetric structure can be realized as a photonic-crystal-like system composed
of alternating loss and gain layers. Such a multilayer should have proper spatial variation of the
complex permittivity satisfying the necessary condition ε(z) = ε∗(−z), i.e., the real part of the
permittivity is an even function of the coordinate, whereas the imaginary part is an odd function.
There is a number of phenomena associated with violation of the PT symmetry, such as sharp
change in polarization response of the system [4], enhanced sensitivity to external perturbations
near exceptional point [5, 6], new effects of lasing [7, 8] and anti-lasing [9].

In this work, we consider a 1D structure in which both loss and gain materials are described
as a two-level resonant medium. This allows us to describe self-consistently dynamics of field
and material parameters and to shed new light on change of system’s temporal response at the
exceptional point where the phase transition of PT -symmetry breaking occurs. The system
considered in this work is a periodic planar structure composed of 2N alternating loss and gain
layers. It is illuminated by normally incident monochromatic light of frequency ω. We describe
both loss and gain in a similar manner, using the model of a homogeneously-broadened two-level
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medium. Then light interaction with the structure is given by the Maxwell-Bloch equations for
microscopic polarization ρ, population difference w, and electric field amplitude A [10],

dρ

dτ
= ilΩw + iρδ − γ2ρ, (1)

dw

dτ
= 2i(l∗Ω∗ρ− ρ∗lΩ)− γ1(w − weq), (2)
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where τ = ωt and ξ = kz are respectively the dimensionless time and distance, Ω = (µ/h̄ω)A
is the normalized Rabi frequency, k = ω/c is the wavenumber in vacuum, c is the speed of
light, h̄ is the reduced Planck constant, µ is the dipole moment of the quantum transition,
α = ωL/ω = 4πµ2C/3h̄ω is the normalized Lorentz frequency, C is the concentration of active
atoms, δ = (ω0−ω)/ω is the normalized detuning of laser frequency from the atomic resonance,
γ1 = 1/(ωT1) and polarization γ2 = 1/(ωT2) are the normalized relaxation rates expressed by
means of the longitudinal T1 and transverse T2 relaxation times, l = (n2

d + 2)/3 is the local-field
enhancement factor, and nd is the real-valued refractive index of the background medium.

We describe both gain and loss materials with the same Maxwell-Bloch equations (1)-(3)
using the equilibrium population difference weq as a key parameter governing the level of
pumping. Indeed, in the stationary approximation the resonant medium can be characterized
by the effective permittivity εeff ≈ n2

d + 3il2ωLT2weq [11]. Since gain and loss correspond to
negative and positive weq, it is straightforward to obtain a PT -symmetric structure composed of
alternating layers with balanced loss (εeff+) and gain (εeff−), where εeff± ≈ n2

d±3il2ωLT2|weq|.
The necessary condition ε(z) = ε∗(−z) is obviously fulfilled for such a structure, providing even
(odd) function of z for the real (imaginary) part of the permittivity. It can be also shown that
PT symmetry approximately follows directly from the Maxwell-Bloch equations, if the steady
state is established.

Equations (1)–(3) are solved numerically using the FDTD approach developed earlier [12]. For
calculations, we use semiconductor doped with quantum dots as an active material characterized
by the following parameters: nd = 3.4, ωL = 1011 s−1, T1 = 1 ns, and T2 = 0.5 ps. We also
assume the exact resonance δ = 0. The multilayer structure contains N = 20 unit cells with
both loss and gain layers having the same thickness d = 1 µm.

We first explore the response of the system in PT -symmetric phase, i.e., below the exceptional
point. Our numerical simulations of monochromatic light propagation are in good agreement
with the transfer-matrix calculations performed in the stationary approximation with the
effective permittivities given above. This agreement is due to the rapid establishment of
stationary transmission and reflection example of which is shown in Fig. 1(a). It is also seen
that owing to reciprocity of the system, the transmission of oppositely propagating (forward and
backward) waves is the same (TLG = TGL = T ), but the reflection is different (RLG 6= RGL). In
particular, we are able to reproduce the anisotropic transmission resonances characteristic for
1D PT -symmetric structures when T = 1 and one of the reflection coefficients goes to zero [13].
PT -symmetry breaking occurs when the pumping parameter reaches a certain threshold

value, which can be determined in the stationary approximation as an exceptional point where
eigenvalues of the scattering matrix cease to be unimodular, whereas eigenvectors coincide
[13]. For the structure parameters given above, the position of this phase transition can be
found within the transfer-matrix method as weq ≈ 0.222. However, as the pumping parameter
approaches the exceptional point, the stationary approximation becomes inapplicable: the
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Figure 1. Temporal dynamics of the reflected (R) and transmitted (T) intensity for the pumping
parameter (a) |weq| = 0.23 and (b) |weq| = 0.24. The two directions of wave propagation are
denoted with subscripts LG and GL originating from the order of layers in the unit cell of the
structure.

discrepancy between the results given by the transfer-matrix method and numerical simulations
of the Maxwell-Bloch equations sharply increases. This means that near the phase transition
point we should solve the differential equations in time domain in order to correctly predict the
response of the system.

Above the exceptional point, a strong amplification of the electromagnetic field inside the
structure occurs, since loss and gain are not balanced anymore. This enhancement is limited by
saturation that develops in the resonant medium as the field becomes strong enough. Indeed,
whereas population difference preserves its initial value w(t) = weq in the PT -symmetric phase
below the exceptional point, it starts changing due to saturation above the exceptional point.
The resulting temporal profiles of transmitted and reflected intensity have the form of powerful
pulses due to the rapid release of energy stored in the gain layers [see Fig. 1(b)]. Therefore, the
PT -symmetry-broken phase can be called the lasing-like regime (in analogy with [11]), which
can be treated as a dynamical feature of this phase state.

Saturation is also the reason for the irreversibility of PT -symmetry breaking: since the
necessary condition ε(z) = ε∗(−z) is not fulfilled anymore due to changing population difference,
the return of the system with a further increase of the pumping parameter back into the PT-
symmetric state as predicted in the stationary approximation is now impossible.

In the lasing-like regime, the structure becomes nonreciprocal, since transmission is no more
symmetric (TLG 6= TGL) as clearly seen in Fig. 1(b). Moreover, the intensities of the pulses
escaping the system do not depend on the direction of the incident light: almost the same pulses
are emitted from the gain and loss ends of multilayer after reversing the input light direction
(TLG = RGL and TGL = RLG). This novel unusual feature due to PT -symmetry breaking can be
called the propagation direction locking of radiation transmitted and reflected by the structure.
Saturation is not enough to explain this effect as evidenced by calculations for relatively powerful
incident wave when PT symmetry is broken at every value of the pumping parameter. Therefore,
the PT -symmetry breaking is necessary for the locking effect to occur. This phenomenon can
be viewed as a possible basis for peculiar all-optical diodes and transistors.
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