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Abstract 

During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, 
especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent 
degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict 
the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation 
company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model 
needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were 
obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D 
rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The 
overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a 
model can be useful in the goal of predicting turbine blade life, given a set of FDR data. 
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Abstract

Elastic parameters of a cortical bone tissue at the macrolevel can vary for various bones, as well as in different parts or anatomical
quadrants, of the same bone. In this paper, an approach to finite-element modelling of the nonlinear anisotropic and isotropic
distribution of elastic properties of tubular bones is proposed. Dependences of the Young’s moduli, shear moduli and the Poisson’s
ratios on the spatial coordinates determining the position of the element in the bone model are used. They were obtained on the
basis of experimental data on anisotropic elastic properties of tubular bone. A comparative finite-element analysis of the principal
stresses and deformations caused by the action of own weight on the human femur was carried out for nonlinear anisotropic and
isotropic distributions of elastic properties. Differences between the levels of maximum principal stresses and deformations for the
three cases of elastic properties can reach approximately 10% and 30%, respectively.
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1. Introduction

A bone tissue possesses anisotropy of mechanical properties both at microscale (osteons, havers channels, lamellae)
and macroscale (entire bone) (Hoc et al. (2006); Rho et al. (1997); Roy et al. (1999)). In accordance with Goldstein
(1987); Orı́as (2005); Li et al. (2013), values of the elastic parameters of a cortical bone tissue at the macroscale can
vary between different bones, as well as in different parts (upper, middle and lower thirds) or anatomical quadrants
(anterior, lateral, posterior and inner) of the same bone. These facts significantly affect the behavior of the bone
tissue during routine human activities and traumatic effects on the entire bone (Currey (2012); Li et al. (2012)).
At the same time, according to Hambli (2013), in most cases of finite-element modelling of bone tissue behavior
under arbitrary loading, the bone tissue is simulated as an inhomogeneous and isotropic material. It usually employs
empirical relations between the bone density and the modulus of elasticity to assign a single isotropic elastic modulus
for each mesh element on the basis of computed tomography data.
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Bonnet et al. (2009); Gray et al. (2008); Koivumäki et al. (2012) and Yang et al. (2010) proposed approaches for the
determination of anisotropic orientation of bone tissue, based on the dependence of cortical and trabecular structural
morphology on mechanical behavior, as well as the use of anatomical directions corresponding to the shape of the
bone. Models with an anisotropic distribution of elastic properties using the magnitudes of Hounsfield units of com-
puted tomography based on micromechanical considerations were suggested by Hellmich et al. (2008); Schneider et
al. (2009); Tabor and Rokita (2007); Trabelsi and Yosibash (2011) . A procedure for orienting of orthotropic prop-
erties in a proximal part of the finite-element model of femur based on directions of the principal stresses forced by
the physiological load was presented by San Antonio et al. (2011). Hambli (2012); Hellmich et al. (2008); Juszczyk
et al. (2011); Kaneko et al. (2003); Kotha and Guzelsu (2003) and Keaveny et al. (1999) proposed empirical relations
between orthotropic mechanical constants and bone density.

In this study, an approach to modeling the elastic properties of a femur, based on the dependences of the elastic and
shear moduli, and the Poisson’s ratios on the coordinates for two-dimensional (2D) and one-dimensional (1D) cases
are suggested; they are obtained on the basis of experimental data for various thirds and anatomical quadrants of the
tubular bone.

2. Numerical and analytical modelling

2.1. 2D distribution of nonlinear anisotropic elastic poroperties

To describe the elastic properties of the femur bone, 2D regression functions were derived using the method of least
squares on the basis of the elastic and shear moduli, and Poisson’s ratios for twenty points located in the cortical bone
tissue of diaphysis and approximately between trabecular and cortical bone in the different parts of femur. Twelve
points Ak, Lk, Pk and Mk were located in corresponding anterior, lateral, posterior and medial anatomical quadrants
of the femur cross section; every four points are in one of three different levels l1, l2 and l3 of the diaphysis part of the
thigh, k = 1..3. The eight points A(n)

0 , L(n)
0 , P(n)

0 and M(n)
0 , n = 1, 2 were located in a trabecular bone tissue at levels m1

and m2 in the distal and proximal femur, respectively. The schematic location of the interpolation nodes at different
levels of the femur is indicated in the Fig. 1.

Fig. 1. Levels l1, l2 and l3 of the femur diaphysis part with interpolation nodes Ak , Lk , Pk and Mk , k = 1..3; levels m1 and m2 are between the
trabecular and cortical bone of femur with interpolation nodes A(0)

n , L(0)
n , P(0)

n and M(0)
n , n = 1, 2; MN is the anatomical axis of the femur; l is the

length of the femur part corresponding to cortical bone approximately; 1 is the upper third; 2 is the medium third; 3 is the lower third.

The trabecular bone tissue is modeled as a homogeneous isotropic material with the elastic modulus of 8.0 GPa
and the Poisson’s ratio of 0.3 according to Tanne and Sakuda (1991). Thus, in nodes A(n)

0 , L(n)
0 , P(n)

0 and M(n)
0 , n = 1, 2
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In this study, an approach to modeling the elastic properties of a femur, based on the dependences of the elastic and
shear moduli, and the Poisson’s ratios on the coordinates for two-dimensional (2D) and one-dimensional (1D) cases
are suggested; they are obtained on the basis of experimental data for various thirds and anatomical quadrants of the
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2. Numerical and analytical modelling

2.1. 2D distribution of nonlinear anisotropic elastic poroperties

To describe the elastic properties of the femur bone, 2D regression functions were derived using the method of least
squares on the basis of the elastic and shear moduli, and Poisson’s ratios for twenty points located in the cortical bone
tissue of diaphysis and approximately between trabecular and cortical bone in the different parts of femur. Twelve
points Ak, Lk, Pk and Mk were located in corresponding anterior, lateral, posterior and medial anatomical quadrants
of the femur cross section; every four points are in one of three different levels l1, l2 and l3 of the diaphysis part of the
thigh, k = 1..3. The eight points A(n)
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0 , n = 1, 2 were located in a trabecular bone tissue at levels m1

and m2 in the distal and proximal femur, respectively. The schematic location of the interpolation nodes at different
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Fig. 1. Levels l1, l2 and l3 of the femur diaphysis part with interpolation nodes Ak , Lk , Pk and Mk , k = 1..3; levels m1 and m2 are between the
trabecular and cortical bone of femur with interpolation nodes A(0)

n , L(0)
n , P(0)

n and M(0)
n , n = 1, 2; MN is the anatomical axis of the femur; l is the

length of the femur part corresponding to cortical bone approximately; 1 is the upper third; 2 is the medium third; 3 is the lower third.

The trabecular bone tissue is modeled as a homogeneous isotropic material with the elastic modulus of 8.0 GPa
and the Poisson’s ratio of 0.3 according to Tanne and Sakuda (1991). Thus, in nodes A(n)

0 , L(n)
0 , P(n)

0 and M(n)
0 , n = 1, 2
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for trabecular bone tissue E1 = E2 = E3 = 8 GPa, the Poisson’s ratio ν12 = ν13 = ν23 = 0.3 and the shear
modulus G12 = G13 = G23 = 3.08 GPa are assigned for each anatomical quadrants. Values of the elastic constants in
nodes Ak, Lk, Pk and Mk (k = 1..3) are given in Table 1 in accordance with Rho (1996). In Table 1 the indices 1, 2
and 3 correspond to the radial, circumferential and longitudinal directions; the longitudinal direction coincides with
anatomical axis MN of the femur (see Fig. 1).

Table 1. Average elastic constants of cortical bone at different interpolation nodes in anterior, lateral, posterior and medial anatomical quadrants
of femur cross section at levels l1, l2 and l3 (indices 1, 2 and 3 for elastic constansts correspond to the radial, circumferential and longitudinal
directions, respectively).

Interpolation E1, GPa E2, GPa E3, GPa G12, GPa G13, GPa G23, GPa ν12 ν13 ν23
node

A1 10.6 11.6 21.3 3.6 4.9 5.5 0.418 0.224 0.211
L1 11.4 12.6 20.9 4.0 4.9 5.6 0.382 0.240 0.228
P1 12.4 12.7 19.8 4.3 5.3 5.8 0.419 0.249 0.246
M1 11.4 11.9 20.4 3.9 5.1 5.8 0.425 0.239 0.232
A2 10.9 11.5 20.9 3.7 5.1 5.5 0.423 0.229 0.219
L2 11.5 11.9 20.6 4.0 5.0 5.7 0.420 0.239 0.234
P2 12.3 12.3 21.1 4.3 5.3 5.8 0.433 0.238 0.238
M2 12.6 12.9 21.2 4.4 5.5 6.1 0.419 0.239 0.236
A3 11.2 11.6 20.5 3.9 5.1 5.6 0.432 0.235 0.228
L3 11.8 12.3 20.9 4.1 5.2 5.8 0.427 0.235 0.229
P3 12.2 12.4 21.2 4.2 5.4 5.8 0.441 0.227 0.224
M3 11.9 12.3 19.9 4.2 5.3 5.7 0.405 0.249 0.243

Regression functions for elastic constants were formulated on the assumption that in the radial direction the elastic
properties of the femur bone within any cross section are unchanged. 2D dependences (A.1) – (A.9) of the elastic
moduli, and Poisson’s ratios on the longitudinal z and circumferential ϕ coordinates in the area between levels m1 and
m2 of the femur are presented in Appendix A. The length of the femur part between levels m1 and m2 hereinafter is
assumed to 0.31 m.

2.2. 1D distribution of anisotropic elastic poroperties

The elastic properties of the femur were modeled by using functions for the elastic and shear moduli, and Poisson’s
ratios only for the longitudinal coordinate z (varying along the anatomical axis of the femur MN indicated in Fig. 1).
In this case, the cortical bone tissue is also a nonlinearly elastic orthotropic material. For regression functions, the
averaged elasticity constants of bone are used in accordance with Rho (1996) at the level l2 of the femur (see Fig. 1).
The averaged values of the elastic moduli, shear moduli and Poisson’s ratios at the level l2 are given in the Table 2.

Table 2. Average elastic constants of cortical bone at interpolation nodes of the femur cross section at the level l2.

E1, GPa E2, GPa E3, GPa G12, GPa G13, GPa G23, GPa ν12 ν13 ν23

11.7 12.2 20.7 4.1 5.2 5.7 0.420 0.237 0.231

The trabecular bone at the levels m1 and m2 was assumed as an isotropic material, as well as in the 2D case
(see Section 2.1). As a result of the polynomial interpolation, functions (A.10) for the elastic and shear moduli, and
Poisson’s ratios in dependence of the longitudinal coordinate z were derived. These functions are given in Appendix
A.

2.3. Nonlinear isotropic elastic properties

The cortical bone tissue was modeled by a material with nonlinearly distributed isotropic properties along the
anatomical axis of the femur, assuming non-changing elastic properties in the radial and circumferential directions in

4 Author name / Structural Integrity Procedia 00 (2018) 000–000

any cross section of the bone. For the interpolation dependences of the elasticity modulus and the Poisson’s ratio on
the coordinate varying along the MN-axis (see the Fig. 1), the same elasticity moduli E1 = E2 = E3 = 14.9 GPa and
Poisson’s ratios ν12 = ν23 = ν13 = 0.298 of the cortical bone tissue were supposed at level l2. The trabecular bone at
levels m1 and m2 was also assumed as isotropic material, as in the two previous cases (see Sections 2.1 and 2.2).

Interpolation functions (A.11) for the elastic modulus and the Poisson’s ratio vs z-coordinate, varying between the
levels m2 and m1, are given in Appendix A.

3. Boundary conditions for static analysis

The load on the femur was applied along its biomechanical axis passing from the upper pole of the femoral head to
the middle of the distance between the extreme lower sections of the condyles of the femur in accordance with Letter
to the editor (2002) and Yoshioka et al. (1987). The region of application of the load was the third part of the upper
segment of the head of the femur; the load magnitude was 800 N. The boundary conditions were defined in such a
way that the femoral head (the acetabular contact region) and the lower sections of the condyles of the femur (the
sites of contact with the condyles of the tibia) were rigidly embedded for modeling the self-weight action according
to (Letter to the editor (2002)).

4. Discussion

The proposed approach to modelling the elastic properties of bone tissue makes it possible to assign their nonlinear
anisotropic distribution along the anatomical axes and in cross section of the bone. The advantage of this approach is
the use of statistical data on elastic and shear moduli, and Poisson’s ratios for various parts and anatomical quadrants
of bone, experimentally obtained for large amount of samples. Another advantage is the possibility of geometric
transformation and modification of the bone model, e.g., for simulation of implantation, surgical operations, etc.

The calculated principal stresses and deformations caused by the action of own weight on the femur are significantly
different for models with a nonlinear anisotropic and isotropic distributions of elastic properties. These differences can
increase for more complex combined loading on the femur, e.g., for simultaneous action of self-weight and bending
moments (for flexion-tension, aduction-abduction) or torque.
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Appendix A. Spatial variation of elastic constants

E(1)
1 (ϕ, z) = 0.00246775ϕ3 − 0.0231933ϕ2 + 0.0483053ϕ − 1.56228ϕ3z3 + 3.707ϕ2z3−
−156.394ϕz3 + 236.667z3 + 1.68187ϕ3z2 − 19.6999ϕ2z2 + 57.3801ϕz2 − 237.495z2−
−0.378222ϕ3z + 2.74996ϕ2z − 2.3469ϕz + 51.7636z + 8.0274,

(A.1)

E(1)
2 (ϕ, z) = 0.00335998ϕ3 − 0.0324159ϕ2 + 0.0710288ϕ − 10.936ϕ3z3 + 108.328ϕ2z3−
−248.909ϕz3 + 11.4181z3 + 5.68217ϕ3z2 − 51.9547ϕ2z2 + 102.118ϕz2 − 158.814z2−
−0.698451ϕ3z + 5.53273ϕ2z − 7.1894ϕz + 49.6513z + 8.04116,

(A.2)



 Sergei Bosiakov  et al. / Procedia Structural Integrity 13 (2018) 636–641 639
Author name / Structural Integrity Procedia 00 (2018) 000–000 3

for trabecular bone tissue E1 = E2 = E3 = 8 GPa, the Poisson’s ratio ν12 = ν13 = ν23 = 0.3 and the shear
modulus G12 = G13 = G23 = 3.08 GPa are assigned for each anatomical quadrants. Values of the elastic constants in
nodes Ak, Lk, Pk and Mk (k = 1..3) are given in Table 1 in accordance with Rho (1996). In Table 1 the indices 1, 2
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directions, respectively).

Interpolation E1, GPa E2, GPa E3, GPa G12, GPa G13, GPa G23, GPa ν12 ν13 ν23
node

A1 10.6 11.6 21.3 3.6 4.9 5.5 0.418 0.224 0.211
L1 11.4 12.6 20.9 4.0 4.9 5.6 0.382 0.240 0.228
P1 12.4 12.7 19.8 4.3 5.3 5.8 0.419 0.249 0.246
M1 11.4 11.9 20.4 3.9 5.1 5.8 0.425 0.239 0.232
A2 10.9 11.5 20.9 3.7 5.1 5.5 0.423 0.229 0.219
L2 11.5 11.9 20.6 4.0 5.0 5.7 0.420 0.239 0.234
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A3 11.2 11.6 20.5 3.9 5.1 5.6 0.432 0.235 0.228
L3 11.8 12.3 20.9 4.1 5.2 5.8 0.427 0.235 0.229
P3 12.2 12.4 21.2 4.2 5.4 5.8 0.441 0.227 0.224
M3 11.9 12.3 19.9 4.2 5.3 5.7 0.405 0.249 0.243

Regression functions for elastic constants were formulated on the assumption that in the radial direction the elastic
properties of the femur bone within any cross section are unchanged. 2D dependences (A.1) – (A.9) of the elastic
moduli, and Poisson’s ratios on the longitudinal z and circumferential ϕ coordinates in the area between levels m1 and
m2 of the femur are presented in Appendix A. The length of the femur part between levels m1 and m2 hereinafter is
assumed to 0.31 m.

2.2. 1D distribution of anisotropic elastic poroperties

The elastic properties of the femur were modeled by using functions for the elastic and shear moduli, and Poisson’s
ratios only for the longitudinal coordinate z (varying along the anatomical axis of the femur MN indicated in Fig. 1).
In this case, the cortical bone tissue is also a nonlinearly elastic orthotropic material. For regression functions, the
averaged elasticity constants of bone are used in accordance with Rho (1996) at the level l2 of the femur (see Fig. 1).
The averaged values of the elastic moduli, shear moduli and Poisson’s ratios at the level l2 are given in the Table 2.

Table 2. Average elastic constants of cortical bone at interpolation nodes of the femur cross section at the level l2.

E1, GPa E2, GPa E3, GPa G12, GPa G13, GPa G23, GPa ν12 ν13 ν23

11.7 12.2 20.7 4.1 5.2 5.7 0.420 0.237 0.231

The trabecular bone at the levels m1 and m2 was assumed as an isotropic material, as well as in the 2D case
(see Section 2.1). As a result of the polynomial interpolation, functions (A.10) for the elastic and shear moduli, and
Poisson’s ratios in dependence of the longitudinal coordinate z were derived. These functions are given in Appendix
A.

2.3. Nonlinear isotropic elastic properties

The cortical bone tissue was modeled by a material with nonlinearly distributed isotropic properties along the
anatomical axis of the femur, assuming non-changing elastic properties in the radial and circumferential directions in
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any cross section of the bone. For the interpolation dependences of the elasticity modulus and the Poisson’s ratio on
the coordinate varying along the MN-axis (see the Fig. 1), the same elasticity moduli E1 = E2 = E3 = 14.9 GPa and
Poisson’s ratios ν12 = ν23 = ν13 = 0.298 of the cortical bone tissue were supposed at level l2. The trabecular bone at
levels m1 and m2 was also assumed as isotropic material, as in the two previous cases (see Sections 2.1 and 2.2).

Interpolation functions (A.11) for the elastic modulus and the Poisson’s ratio vs z-coordinate, varying between the
levels m2 and m1, are given in Appendix A.

3. Boundary conditions for static analysis

The load on the femur was applied along its biomechanical axis passing from the upper pole of the femoral head to
the middle of the distance between the extreme lower sections of the condyles of the femur in accordance with Letter
to the editor (2002) and Yoshioka et al. (1987). The region of application of the load was the third part of the upper
segment of the head of the femur; the load magnitude was 800 N. The boundary conditions were defined in such a
way that the femoral head (the acetabular contact region) and the lower sections of the condyles of the femur (the
sites of contact with the condyles of the tibia) were rigidly embedded for modeling the self-weight action according
to (Letter to the editor (2002)).

4. Discussion

The proposed approach to modelling the elastic properties of bone tissue makes it possible to assign their nonlinear
anisotropic distribution along the anatomical axes and in cross section of the bone. The advantage of this approach is
the use of statistical data on elastic and shear moduli, and Poisson’s ratios for various parts and anatomical quadrants
of bone, experimentally obtained for large amount of samples. Another advantage is the possibility of geometric
transformation and modification of the bone model, e.g., for simulation of implantation, surgical operations, etc.

The calculated principal stresses and deformations caused by the action of own weight on the femur are significantly
different for models with a nonlinear anisotropic and isotropic distributions of elastic properties. These differences can
increase for more complex combined loading on the femur, e.g., for simultaneous action of self-weight and bending
moments (for flexion-tension, aduction-abduction) or torque.
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Appendix A. Spatial variation of elastic constants

E(1)
1 (ϕ, z) = 0.00246775ϕ3 − 0.0231933ϕ2 + 0.0483053ϕ − 1.56228ϕ3z3 + 3.707ϕ2z3−
−156.394ϕz3 + 236.667z3 + 1.68187ϕ3z2 − 19.6999ϕ2z2 + 57.3801ϕz2 − 237.495z2−
−0.378222ϕ3z + 2.74996ϕ2z − 2.3469ϕz + 51.7636z + 8.0274,

(A.1)

E(1)
2 (ϕ, z) = 0.00335998ϕ3 − 0.0324159ϕ2 + 0.0710288ϕ − 10.936ϕ3z3 + 108.328ϕ2z3−
−248.909ϕz3 + 11.4181z3 + 5.68217ϕ3z2 − 51.9547ϕ2z2 + 102.118ϕz2 − 158.814z2−
−0.698451ϕ3z + 5.53273ϕ2z − 7.1894ϕz + 49.6513z + 8.04116,

(A.2)
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E(1)
3 (ϕ, z) = 8.92417ϕ5z5 − 141.19ϕ4z5 − 465.113ϕ3z5 + 8914.43ϕ2z5 − 16535.7ϕz5 − 47549z5+

+0.499524ϕ5z4 + 24.663ϕ4z4 + 21.1731ϕ3z4 − 1930.78ϕ2z4 + 4399.36ϕz4 + 14606z4−

−0.708928ϕ5z3 + 12.4988ϕ4z3 + 38.747ϕ3z3 − 804.607ϕ2z3 + 1530.39ϕz3 + 3946.05z3−

−0.337796ϕ5z2 − 1.43267ϕ4z2 + 7.74583ϕ3z2 + 167.768ϕ2z2 − 478.067ϕz2 − 2094z2+

+0.0707437ϕ5z − 0.149099ϕ4z − 2.26309ϕ3z − 1.50093ϕ2z + 25.5008ϕz + 285.982z + 8,

(A.3)

G(1)
12 (ϕ, z) = 0.000948699ϕ3 − 0.00846988ϕ2 + 0.0157647ϕ − 3.12457ϕ3z3 + 39.9656ϕ2z3−
−127.758ϕz3 + 117.295z3 + 1.81964ϕ3z2 − 19.8852ϕ2z2 + 53.1055ϕz2 − 84.0534z2−
−0.26233ϕ3z + 2.27077ϕ2z − 3.91129ϕz + 14.886z + 3.08892,

(A.4)

G(1)
13 (ϕ, z) = −8.4718ϕ4z4 + 942.252ϕ3z4 − 2766.15ϕ2z4 + 1382.9ϕz4 − 2534.05z4+

+52.2155ϕ4z3 − 570.234ϕ3z3 + 1636.59ϕ2z3 − 723.157ϕz3 + 1694.45z3 − 9.74689ϕ4z2+

+105.7ϕ3z2 − 296.994ϕ2z2 + 110.904ϕz2 − 438.142z2 + 0.572878ϕ4z − 6.30793ϕ3z+

+18.0923ϕ2z − 6.75303ϕz + 49.7292z + 3.08,

(A.5)

G(1)
23 (ϕ, z) = −99.1473ϕ4z4 + 1106.29ϕ3z4 − 3579.05ϕ2z4 + 3406.66ϕz4 − 4963.65z4+

+62.957ϕ4z3 − 697.091ϕ3z3 + 2225.56ϕ2z3 − 2080.04ϕz3 + 3213.07z3 − 12.0779ϕ4z2+

+132.325ϕ3z2 − 413.578ϕ2z2 + 370.538ϕz2 − 747.317z2 + 0.666983ϕ4z − 7.21276ϕ3z+

+21.726ϕ2z − 17.2055ϕz + 72.7723z + 3.08,

(A.6)

ν(1)
12 (ϕ, z) = −6.06694ϕ4z4 + 81.7758ϕ3z4 − 355.482ϕ2z4 + 510.084ϕz4 − 246.139z4+

+4.03203ϕ4z3 − 53.1958ϕ3z3 + 225.005ϕ2z3 − 313.81ϕz3 + 162.615z3 − 0.871705ϕ4z2+

+11.1737ϕ3z2 − 45.4057ϕ2z2 + 60.3988ϕz2 − 38.7519z2 + 0.0648672ϕ4 − 0.807968ϕ3z+

+3.13773ϕ2z − 3.90792ϕz + 3.81429z + 0.3,

(A.7)

ν(1)
13 (ϕ, z) = 1.33336ϕ4z4 − 13.5821ϕ3z4 + 36.9715ϕ2z4 − 26.8389ϕz4 + 123.296z4−
−1.17659ϕ4z3 + 12.5201ϕ3z3 − 36.1896ϕ2z3 + 24.9636ϕz3 − 74.9134z3+

+0.332776ϕ4z2 − 3.6631ϕ3z2 + 11.1243ϕ2z2 − 7.82783ϕz2 + 16.6371z2−
−0.029697ϕ4z + 0.335189ϕ3z − 1.06546ϕ2z + 0.828095ϕz − 1.69293z + 0.3,

(A.8)

ν(1)
23 (ϕ, z) = 0.251753ϕ4z4 + 0.410099ϕ3z4 − 21.7872ϕ2z4 + 58.2554ϕz4 + 141.462z4−
−0.524144ϕ4z3 + 4.14318ϕ3z3 − 1.06259ϕ2z3 − 26.8755ϕz3 − 84.3593z3 + 0.210218ϕ4z2−
−2.10589ϕ3z2 + 4.64254ϕ2z2 + 1.82261ϕz2 + 18.3066z2 − 0.0218468ϕ4z + 0.236185ϕ3z−
−0.662882ϕ2z + 0.259906ϕz − 1.85513z + 0.3.

(A.9)

E(2)
1 (z) = −144.531z2 + 46.25z + 8.0, E(2)

2 (z) = −164.063z2 + 52.5z + 8.0,

E(2)
3 (z) = −496.094z2 + 158.75z + 8.0,G(2)

12 (z) = −48.4375z2 + 15.5z + 2.86,

G(2)
13 (z) = −90.2344z2 + 28.875z + 2.86,G(2)

23 (z) = −110.938z2 + 35.5z + 2.86,

ν(2)
12 (z) = −4.6875z2 + 1.5z + 0.3, ν(2)

13 (z) = 2.46094z2 − 0.7875z + 0.3,

ν(2)
23 (z) = 2.69531z2 − 0.8625z + 0.3.

(A.10)

E(3)(z) = −269.531z2 + 86.25z + 8, ν(3)(z) = 0.3 − 0.025z + 0.078125z2. (A.11)
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