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Abstract: A Monte Carlo (MC) model for the calculation of the percolation threshold in the
composite filled with ellipsoids of revolution is developed to simulate the real experimental
situation of percolative composites in which functional additives do not penetrate each other. The
important advantage is that the MC model can be easily applied to multi-components composites,
e.g., containing graphene nanoplatelets, carbon black and carbon nanotubes, by means of utilising
the ellipsoids of different aspect ratios with the filling fraction corresponding to concentrations of
each type of inclusion. The developed model could be used in a pre-experimental step for producing
effective close-to percolation and percolated nanocomposites for various electromagnetic applications
to avoid time and resources consuming the “sort-out” experimental phase of composition optimization,
and could be utilized as the first step of the bottom-up material approach to touch the macroscopic
platform for antennas/circuit realization.

Keywords: Monte Carlo simulation; ellipsoid of revolution; percolation threshold

1. Introduction

The modeling of nanoantennas and nanocircuits depending on the material concept,
i.e., a nanosized object as a working element of nano-device or a composite made of nano-inclusions
as a macroscopic platform for antennas/circuit realization, could be provided in “top-down” and
“bottom-up” approaches. The first one accesses the device realization by computation of microscopic
electromagnetic response of nanoparticle (e.g., carbon nanotube) [1–3], whereas the second one is
expected to describe the collective effects of nanoparticles electromagnetics in the final composition
caused by individual nanoparticles antennas’ properties through different homogenization and/or
averaging techniques [4–7].

This communication is one of the second sort. It is motivated by an exceptional interest in
nanocarbon based composites close or slightly above percolation concentration as the material

Appl. Sci. 2018, 8, 882; doi:10.3390/app8060882 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-5037-8074
https://orcid.org/0000-0003-3689-0837
http://dx.doi.org/10.3390/app8060882
http://www.mdpi.com/journal/applsci
http://www.mdpi.com/2076-3417/8/6/882?type=check_update&version=2


Appl. Sci. 2018, 8, 882 2 of 9

support for design light and ultrathin effective electric components, optical and optoelectronic devices,
constituent elements for electromagnetic compatibility realization [6,8]

Moreover, polymer nanocomposites close to or slightly above the electrical percolation
threshold are of tremendous interest as a material-science basis for conformal structurally integrated
microwave-to THz antennas [1,9].

The percolation threshold for multi-facial irregular media is a problem that was studied for a
long time (see [10,11] and Refs. therein). In modern material science, the main focus is the percolation
phenomena in composite with randomly distributed carbon nanoinclusions like graphite nanoplatelets,
carbon nanotubes, carbon black, onion-like carbon, etc. [12]. There are many approaches to simulate
the nanocarbon composite system. For the case of nanotubes or fibers, the most obvious is to simulate
it as a caped [13,14] or non-caped [15,16] cylinder. However, this approach is not universal because it
does not allow to simulate all possible geometries of nanoinclusions.

All mentioned objects may be roughly modeled as ellipsoids of revolution with a different
axial ratio. Many papers contribute to the modeling of the percolation threshold of overlapping
ellipsoids [17–19]. The method of overlapping inclusions is faster; it describes the transport properties
in porous media well [20], as well as the social phenomena [21], etc. However, it is not accurate in the
case of nanocarbon composites, because these particles are robust and cannot overlap. Very few papers
contribute to the modeling of the percolation threshold for the suspension of the non-overlapping
ellipsoids [22,23].

We report the Monte Carlo model for the calculation of the percolation of the ellipsoids distributed
inside a cubic unit cell. The dependence of the percolation threshold on the ellipsoids’ distribution,
unit cell size and the aspect ratio for the case of oblate ellipsoids will be discussed.

2. Modelling

The model generates the system of non-overlapping ellipsoids of revolution located inside the
cubic unit cell. The dimensions UC = nd, where d is the maximal diameter of the ellipsoid and n > 1.

2.1. Positioning the Ellipsoid in 3D Space

The ellipsoid with semiaxes bi, i = 1, 3 is a set of points X, that satisfy the condition:

(X− X0)
TQ(X− X0) ≤ 1, (1)

where X0 is vector of ellipsoid center, Q � 0 is positively defined matrix.
Any Q can be converted to diagonal matrix A as follows:

Q = RT(φ, θ, Φ)AR(φ, θ, Φ). (2)

Here A is diagonal matrix with elements aii and R(φ, θ, Φ) is Euler’s rotation matrix. The rotation
matrix can be generally evaluated as a series of rotations:

R(φ, θ, Φ) = Rz(φ)Rx(θ)Rz′(Φ) =

=

 cosφ sinφ 0
−sinφ cosφ 0

0 0 1

 ·
1 0 0

0 cosθ sinθ

0 −sinθ cosθ

 ·
 cosΦ sinΦ 0
−sinΦ cosΦ 0

0 0 1

. (3)

Let bi be the semiaxes of the ellipsoid then, elements of A may be computed as aii = 1/b2
i .

If b1 = b2 (for the ellipsoid of revolution), the rotation Rz′(Φ) turns to unitary. So, the total number of
the coordinates is 5: K = (X0, φ, θ). Using the described method, we can easily construct the ellipsoid
of revolution with known orientation and position as a combination of the diagonal matrix A and
5-component vector K.
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2.2. Distance between Ellipsoids

Minimal distance ∆Dmin between two ellipsoids (A, K) and (A′, K′), is a solution of the
minimisation problem:

∆Dmin = min|X− Y|, X ∈ S, Y ∈ S′, (4)

where S and S′ are the surfaces of ellipsoids. The equation 4 cannot be solved analyticaly, but there
is a variety of numerical methods. All methods may be divided into geometrical [24,25] and
algebraical [26,27].

Here we will use the geometrical approach developed by Lin and Han [25]. The idea of the
method is to construct two balls completely inside each ellipsoid (see Figure 1).

Figure 1. Illustration of the approach by Linn.

Then we check whether the line segment [c1, c2] between the two centers is entirely contained
in (A, K) ∪ (A′, K′). If it is, then the two ellipsoids have a nonempty intersection and the distance
∆Dmin = 0; otherwise, we continue and compute new point X(k + 1) as the intersection of the line
segment [c1, c2] with the boundary S, and also Y(k + 1) as the intersection of [c1, c2] with the boundary
S′. As the accuracy criteria the angles between segments ∠([c1, c2], [c1, X(k)]) and ∠([c1, c2], [c2, Y(k)])
can be used.

2.3. Composite Generation Procedure

The procedure of the composite creation is follows. On i-th step, we generate random K as:
X : xi ∈ (0, UC),

φ ∈ (0, 2π),

θ ∈ (0, π).

(5)

Next, two conditions should be satisfied:

i i-th the ellipsoid should not intersect the walls of the unit cell.
ii i-th ellipsoid should not penetrate into any ellipsoid of the already existing system of i−1.

For the real nanocarbon composite (ii), condition is more strict. Taking into account the Van der
Waals separation, the minimal separation between two ellipsoids here is considered as 0.34 nm. If both
conditions are satisfied then we store i-th ellipsoid, if not—we abandon it and make a new attempt for
i-th (see Figure 2).

2.4. Percolation Computation

Once the system is computed, well-known Dijkstra’s [28] algorithm may be applied for the
calculation of the percolation path. The tunnelling distance of 2 nm was used as a connection
criterion. Next, for Dijkstra protocol, we have to select an initial and final point (edge) of the graph.
Obviously, these points are the ellipsoids located near i-th border of the unit cell and the border
opposite to i-th correspondingly. Periodic boundary conditions are utilised. So the distance between
the ellipsoid near the i-th boarder, and the opposite one shifted along the chosen direction on the unit
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cell, should be less than the predefined separation of 2 nm. If this condition is satisfied, the ellipsoids
are considered as the initial and final points of the graph.

Finally, the boolean vector of the percolation may be computed. We consider the system percolated
if it is percolated in at least one direction.

Figure 2. Visualisation of the unit cell filled with different aspect ratio ellipsoids (2D inclusions vs 1D).

2.5. Total Algorithm

The total algorithm organized as Tabu search method [29–31] and performs as follows:

1. Generation of the composite of N(p) ellipsoids, where p is the volume fraction. A result of this
step is an array of ellipsoid coordinates K. The number of strings is N(p).

2. Checking if the system is percolated.

If it is, we then terminate, if not, we go back to (1) with p := p + δp and construct new composite.
The implementation of the algorithm is written with Fortran (see Figure 3).

Figure 3. Block scheme for the algorithm.
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3. Result and Discussion

3.1. Two-Phase system

For the ellipsoid of revolution b1 = b2, then the aspect ratio can be introduced as ρ = b1/b3, ρ ≥ 1.
In this paper we consider b3 = 2.38 nm, so the total thickness corresponds to 14 graphite interlayer
distances. The formation of the percolation paths depends on the concentration of filler, and also the
distribution of the inclusions. The distribution effect as studied for the system filled with ellipsoids
of ρ = 5. We made 10,000 observations for n = 3, 7000 for n = 4 and 3000 for n = 5. The percolation
probability function is presented in Figure 4.

0 . 0 3 0 . 0 6 0 . 0 9 0 . 1 2 0 . 1 5
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

F(p
c)

p c

 n = 3
 n = 4
 n = 5

Figure 4. The empiric percolation probability function for ρ = 5 ellipsoids inside cells of different sizes
(symbols); Weibull probability distribution functions(solid curves).

The empiric probability functions are governed by the Weibull probability function,
W(λ, k) = 1− e−(x/λ)k

[32]. The parameters of equation are follows: λ = 0.115, k = 8.797 for n = 3;
λ = 0.113, k = 12.092 for n = 4, and λ = 0.113, k = 14.90 for n = 5. The Weibull function describes
“time-to-failure” and it is typical for percolation processes [33–35]. All the probability functions for
different cell size are closely collapsed, but the diffusion is slightly decreased from n = 3 to n = 5,
that corresponds to the rise of k. This means that the percolation threshold is independent of the UC.
The diffusion difference may be explained by the finite volume fraction of the single ellipsoid inside
the unit cell. On the other hand, the calculation time increases drastically with UC rise, so the UC size
of n = 3 is optimal for the calculation of the composites with ellipsoids of higher aspect ratio.

Figure 5 shows the dependence of the percolation threshold on the ellipsoids aspect ratio.
As expected, the percolation threshold decreases with the aspect ratio rise. The resulting dependence
is in good agreement with experimental data [36–38] and theoretical modeling [17,39].

3.2. Three-phase system (Hybrids)

The calculation of the percolation of hybrid composite requires the modification of composite
generation procedure Section 2.3. The generation is organised “one in time”. We introduce the
parameter prob—the probability of the GNP appearance, then 1-prob is the probability of the CNT
appearance. So, upon the generation procedure, each i-th particle has the probability to be “born”
as GNP or CNT. After, the percolation was computed using the standard protocol. For the hybrid
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composite, we consider pc as a total volume fraction of the inclusions required for the percolation.
Obviously, for the hybrids total concentration may be presented as a sum of partial concentrations
as ptot

c = pGNP
c + pCNT

c . The dependence of the ptot
c (prob) is presented on Figure 6. For the case of

prob = 1 and 0, the data was verified with the model for 1 type of inclusions. For the calculations two
types of ellipsoids were used: b1

1 = b1
2 = 20 nm, b1

3 = 2 nm, and b2
1 = b2

2 = 2 nm, b2
3 = 20 nm

1 0 1 0 0
0 . 0 1

0 . 1

 

 
p c

A s p e c t  R a t i o
Figure 5. Dependence of the percolation concentration on the aspect ratio of the ellipsoid ( b3 = 2.38
and n = 3). Experimentally observed percolation concentrations: 4—[36];©—[37] ; ♦—[38].
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Figure 6. Dependence of the percolation concentration for hybrid composites of different composition.

The excluded volume theory states that the percolation for the hybrid composites [40] occurs if
the following condition is satisfied:

EVT =
pGNP

c
ptot

c (1)
+

pCNT
c

ptot
c (0)

= 1, (6)
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where pGNP
c and pCNT

c are partial concentrations of the GNP and CNT in hybrid composite, and ptot
c (1)

and ptot
c (1) are the critical concentrations for composites with GNP (prob = 1) and CNT (prob = 0).

However, a lot of experimental works evident the percolation even if the condition Equation (6) is not
satisfied [41–43]. In our case, the exact number of GNP and CNT is known for each configuration, so we
can easily calculate the EVT-parameter. The result is presented in Figure 7. The mean value of EVT is
below 1 for all studied configurations. The dependence demonstrates minimum at prob = 0.7–0.8. We can
preliminarily conclude that there is some optimum combination of CNT and GNP in hybrid composites.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

0 . 8

0 . 9

1 . 0

1 . 1

 

 
EV

T

p r o b
Figure 7. Dependence of the left part of Equation (6) for percolated hybrid composites of different composition.

4. Conclusions

This study is the next computational physics step in the series of our papers [44–46] to approach
electromagnetic components such as antennas, filters, polarizers, shields by using conductive/dielectric
composite materials based on carbon additives. We present a Monte Carlo model for the calculation of the
percolation threshold in the irregular system filled with ellipsoids of revolution. We demonstrate that the
percolation concentration is independent of the unit cell size. The percolation concentration dependence
on the aspect ratio of nanoinclusions is in the good agreement with that previously reported [17,22,23,39].

The reported model can be applied for nanocarbon containing composites as it supports the
real experimental situation when percolated additives do not penetrate each other. The important
advantage of the present model is that it can be easily applied for the modelling of multi-components
composites, e.g., containing graphene nanoplatelets, carbon black and carbon nanotubes, by means of
utilising the ellipsoids of different aspect ratio with the filling fraction corresponding to concentrations
of each type of inclusion. This tested in simple case of one- and two-component composite (two and
three-phase systems respectively) MC model could be used in a pre-experimental step for producing
effective close-to percolation and percolated nanocomposites for various mechanical, thermal and
electromagnetic applications to avoid time- and resources consuming “sort-out” experimental phase,
that should lead to the design of optimal composition of many functional components providing e.g.,
the lowest overall percolative concentration at the lowest content of the most expensive functional
additive, retaining at the same time high performance and functionality.

Author Contributions: A.P. and P.L. designed the computational experiments, A.P. developed the M.C. model,
J.M. and G.S. tested the model vs. real experimental situation, A.P. and P.K. conceived the task as well as
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Appl. Sci. 2018, 8, 882 8 of 9

Funding: This research was funded by H2020 Marie Skłodowska-Curie Actions, grant number 734164 Graphene
3D, and Tomsk State University Competitiveness Improvement Program.

Acknowledgments: The authors acknowledge financial supports of Multifunctional Graphene-based
Nanocomposites with Robust Electromagnetic and Thermal Properties for 3D-printing Application, project H2020
RISE 734164 Graphene 3D. PK is thankful for support by Tomsk State University Competitiveness Improvement
Program. Authors are thankfull to Oleg Plyushch for valuable discussion.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shuba, M.; Paddubskaya, A.; Plyushch, A.; Kuzhir, P.; Slepyan, G.Y.; Maksimenko, S.; Ksenevich, V.; Buka, P.;
Seliuta, D.; Kasalynas, I.; et al. Experimental evidence of localized plasmon resonance in composite materials
containing single-wall carbon nanotubes. Phys. Rev. B 2012, 85, 165435. [CrossRef]

2. Hanson, G.W. Fundamental transmitting properties of carbon nanotube antennas. IEEE Trans. Antennas Propag.
2005, 53, 3426–3435. [CrossRef]

3. Burke, P.J.; Li, S.; Yu, Z. Quantitative theory of nanowire and nanotube antenna performance.
IEEE Trans. Nanotechnol. 2006, 5, 314–334. [CrossRef]

4. Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C. Carbon nanotube–polymer composites: Chemistry, processing,
mechanical and electrical properties. Prog. Polym. Sci. 2010, 35, 357–401. [CrossRef]

5. Kuzhir, P.; Paddubskaya, A.; Bychanok, D.; Nemilentsau, A.; Shuba, M.; Plusch, A.; Maksimenko, S.; Bellucci,
S.; Coderoni, L.; Micciulla, F.; et al. Microwave probing of nanocarbon based epoxy resin composite films:
Toward electromagnetic shielding. Thin Solid Films 2011, 519, 4114–4118. [CrossRef]

6. Bauhofer, W.; Kovacs, J.Z. A review and analysis of electrical percolation in carbon nanotube polymer
composites. Compos. Sci. Technol. 2009, 69, 1486–1498. [CrossRef]

7. Qin, F.; Brosseau, C. A review and analysis of microwave absorption in polymer composites filled with
carbonaceous particles. J. Appl. Phys. 2012, 111, 4. [CrossRef]

8. Sandler, J.; Kirk, J.; Kinloch, I.; Shaffer, M.; Windle, A. Ultra-low electrical percolation threshold in
carbon-nanotube-epoxy composites. Polymer 2003, 44, 5893–5899. [CrossRef]

9. Slepyan, G.Y.; Shuba, M.; Maksimenko, S.; Lakhtakia, A. Theory of optical scattering by achiral carbon
nanotubes and their potential as optical nanoantennas. Phys. Rev. B 2006, 73, 195416. [CrossRef]

10. Grimmett, G. What is Percolation? In Percolation; Springer: Berlin, Germany, 1999; pp. 1–31.
11. Stauffer, D.; Aharony, A. Introduction to Percolation Theory; CRC Press: Boca Raton, FL, USA, 1994.
12. Celzard, A.; McRae, E.; Deleuze, C.; Dufort, M.; Furdin, G.; Marêché, J. Critical concentration in percolating

systems containing a high-aspect-ratio filler. Phys. Rev. B 1996, 53, 6209. [CrossRef]
13. Balberg, I.; Binenbaum, N.; Wagner, N. Percolation thresholds in the three-dimensional sticks system.

Phys. Rev. Lett. 1984, 52, 1465. [CrossRef]
14. Bug, A.; Safran, S.; Webman, I. Continuum percolation of rods. Phys. Rev. Lett. 1985, 54, 1412. [CrossRef]

[PubMed]
15. De Vivo, B.; Lamberti, P.; Spinelli, G.; Tucci, V. A morphological and structural approach to evaluate the

electromagnetic performances of composites based on random networks of carbon nanotubes. J. Appl. Phys.
2014, 115, 154311. [CrossRef]

16. De Vivo, B.; Lamberti, P.; Spinelli, G.; Tucci, V. Numerical investigation on the influence factors of the
electrical properties of carbon nanotubes-filled composites. J. Appl. Phys. 2013, 113, 244301. [CrossRef]

17. Garboczi, E.; Snyder, K.; Douglas, J.; Thorpe, M. Geometrical percolation threshold of overlapping ellipsoids.
Phys. Rev. E 1995, 52, 819. [CrossRef]

18. Yi, Y.B.; Sastry, A. Analytical approximation of the two-dimensional percolation threshold for fields of
overlapping ellipses. Phys. Rev. E 2002, 66, 066130. [CrossRef] [PubMed]

19. Yi, Y.B.; Wang, C.W.; Sastry, A. Two-dimensional vs. three-dimensional clustering and percolation in fields
of overlapping ellipsoids. J. Electrochem. Soc. 2004, 151, A1292–A1300. [CrossRef]

20. Feng, S.; Halperin, B.; Sen, P. Transport properties of continuum systems near the percolation threshold.
Phys. Rev. B 1987, 35, 197. [CrossRef]

21. Fujie, R.; Odagaki, T. Effects of superspreaders in spread of epidemic. Phys. A Stat. Mech. Appl. 2007,
374, 843–852. [CrossRef]

http://dx.doi.org/10.1103/PhysRevB.85.165435
http://dx.doi.org/10.1109/TAP.2005.858865
http://dx.doi.org/10.1109/TNANO.2006.877430
http://dx.doi.org/10.1016/j.progpolymsci.2009.09.003
http://dx.doi.org/10.1016/j.tsf.2011.01.198
http://dx.doi.org/10.1016/j.compscitech.2008.06.018
http://dx.doi.org/10.1063/1.3688435
http://dx.doi.org/10.1016/S0032-3861(03)00539-1
http://dx.doi.org/10.1103/PhysRevB.73.195416
http://dx.doi.org/10.1103/PhysRevB.53.6209
http://dx.doi.org/10.1103/PhysRevLett.52.1465
http://dx.doi.org/10.1103/PhysRevLett.54.1412
http://www.ncbi.nlm.nih.gov/pubmed/10031025
http://dx.doi.org/10.1063/1.4871670
http://dx.doi.org/10.1063/1.4811523
http://dx.doi.org/10.1103/PhysRevE.52.819
http://dx.doi.org/10.1103/PhysRevE.66.066130
http://www.ncbi.nlm.nih.gov/pubmed/12513370
http://dx.doi.org/10.1149/1.1769272
http://dx.doi.org/10.1103/PhysRevB.35.197
http://dx.doi.org/10.1016/j.physa.2006.08.050


Appl. Sci. 2018, 8, 882 9 of 9

22. Sagalianov, I.Y.; Lazarenko, O.A.; Vovchenko, L.L.; Matzui, L.Y. Monte-Carlo study of the percolation in a binary
composites: Hardcore and softcore models comparison. In Proceedings of the 2017 IEEE 7th International
Conference on Nanomaterials: Application & Properties (NAP), Odessa, Ukraine, 10–15 September 2017.

23. Akagawa, S.; Odagaki, T. Geometrical percolation of hard-core ellipsoids of revolution in the continuum.
Phys. Rev. E 2007, 76, 051402. [CrossRef] [PubMed]

24. Kosolap, A. Quadratic Optimization Problems of Computer Geometry. Art. Int. 2009, 1, 70–75.
25. Lin, A.; Han, S.P. On the distance between two ellipsoids. SIAM J. Optim. 2002, 13, 298–308. [CrossRef]
26. Tamasyan, G.S.; Chumakov, A.A. Finding the distance between ellipsoids. J. Appl. Ind. Math. 2014, 8, 400–410.

[CrossRef]
27. Uteshev, A.Y.; Yashina, M. Computation of the distance from an ellipsoid to a linear surface and a quadric in

Rn. In Doklady Mathematics; Springer: Berlin, Germany, 2008; Volume 77, pp. 269–272.
28. Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
29. Glover, F. Tabu search—Part I. ORSA J. Comput. 1989, 1, 190–206. [CrossRef]
30. Glover, F. Tabu search—Part II. ORSA J. Comput. 1990, 2, 4–32. [CrossRef]
31. Glover, F.; Laguna, M. Tabu Search. In Handbook of Combinatorial Optimization; Springer: Berlin, Germany,

2013; pp. 3261–3362.
32. Weibull, W. A statistical distribution function of wide applicability. J. Appl. Mech. 1951, 18, 293–297.
33. Stathis, J. Percolation models for gate oxide breakdown. J. Appl. Phys. 1999, 86, 5757–5766. [CrossRef]
34. Kauerauf, T.; Degraeve, R.; Cartier, E.; Soens, C.; Groeseneken, G. Low Weibull slope of breakdown

distributions in high-k layers. IEEE Electron Device Lett. 2002, 23, 215–217. [CrossRef]
35. Long, S.; Lian, X.; Cagli, C.; Perniola, L.; Miranda, E.; Liu, M.; Suñé, J. A model for the set statistics of

RRAM inspired in the percolation model of oxide breakdown. IEEE Electron Device Lett. 2013, 34, 999–1001.
[CrossRef]

36. Li, B.; Zhong, W.H. Review on polymer/graphite nanoplatelet nanocomposites. J. Mater. Sci. 2011, 46, 5595–5614.
[CrossRef]

37. Araby, S.; Meng, Q.; Zhang, L.; Kang, H.; Majewski, P.; Tang, Y.; Ma, J. Electrically and thermally conductive
elastomer/graphene nanocomposites by solution mixing. Polymer 2014, 55, 201–210. [CrossRef]

38. Shen, J.W.; Huang, W.Y.; Zuo, S.W.; Hou, J. Polyethylene/grafted polyethylene/graphite nanocomposites:
Preparation, structure, and electrical properties. J. Appl. Polym. Sci. 2005, 97, 51–59. [CrossRef]

39. Celzard, A.; Marêché, J.; Payot, F. Simple method for characterizing synthetic graphite powders. J. Phys. D
Appl. Phys. 2000, 33, 1556. [CrossRef]

40. Sun, Y.; Bao, H.D.; Guo, Z.X.; Yu, J. Modeling of the electrical percolation of mixed carbon fillers in
polymer-based composites. Macromolecules 2008, 42, 459–463. [CrossRef]

41. Kranauskaite, I.; Macutkevic, J.; Banys, J.; Talik, E.; Kuznetsov, V.; Nunn, N.; Shenderova, O. Synergy effects
in the electrical conductivity behavior of onion-like carbon and multiwalled carbon nanotubes composites.
Phys. Status Solidi B 2015, 252, 1799–1803. [CrossRef]

42. Drubetski, M.; Siegmann, A.; Narkis, M. Electrical properties of hybrid carbon black/carbon fiber
polypropylene composites. J. Mater. Sci. 2007, 42, 1–8. [CrossRef]

43. Yue, L.; Pircheraghi, G.; Monemian, S.A.; Manas-Zloczower, I. Epoxy composites with carbon nanotubes
and graphene nanoplatelets–Dispersion and synergy effects. Carbon 2014, 78, 268–278. [CrossRef]

44. Bychanok, D.; Angelova, P.; Paddubskaya, A.; Meisak, D.; Shashkova, L.; Demidenko, M.; Plyushch, A.;
Ivanov, E.; Krastev, R.; Kotsilkova, R.; et al. Terahertz absorption in graphite nanoplatelets/polylactic acid
composites. J. Phys. D Appl. Phys. 2018, 51, 145307. [CrossRef]

45. Shuba, M.; Yuko, D.; Kuzhir, P.; Maksimenko, S.; Kanygin, M.; Okotrub, A.; Tenne, R.; Lambin, P. How effectively
do carbon nanotube inclusions contribute to the electromagnetic performance of a composite material?
Estimation criteria from microwave and terahertz measurements. Carbon 2018, 129, 688–694. [CrossRef]

46. Guadagno, L.; Naddeo, C.; Raimondo, M.; Barra, G.; Vertuccio, L.; Russo, S.; Lafdi, K.; Tucci, V.; Spinelli, G.;
Lamberti, P. Influence of carbon nanoparticles/epoxy matrix interaction on mechanical, electrical and
transport properties of structural advanced materials. Nanotechnology 2017, 28, 094001. [CrossRef] [PubMed]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRevE.76.051402
http://www.ncbi.nlm.nih.gov/pubmed/18233654
http://dx.doi.org/10.1137/S1052623401396510
http://dx.doi.org/10.1134/S1990478914030132
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1287/ijoc.1.3.190
http://dx.doi.org/10.1287/ijoc.2.1.4
http://dx.doi.org/10.1063/1.371590
http://dx.doi.org/10.1109/55.992843
http://dx.doi.org/10.1109/LED.2013.2266332
http://dx.doi.org/10.1007/s10853-011-5572-y
http://dx.doi.org/10.1016/j.polymer.2013.11.032
http://dx.doi.org/10.1002/app.21729
http://dx.doi.org/10.1088/0022-3727/33/12/318
http://dx.doi.org/10.1021/ma8023188
http://dx.doi.org/10.1002/pssb.201451745
http://dx.doi.org/10.1007/s10853-006-1203-4
http://dx.doi.org/10.1016/j.carbon.2014.07.003
http://dx.doi.org/10.1088/1361-6463/aab1a5
http://dx.doi.org/10.1016/j.carbon.2017.12.067
http://dx.doi.org/10.1088/1361-6528/aa583d
http://www.ncbi.nlm.nih.gov/pubmed/28135206
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Modelling
	Positioning the Ellipsoid in 3D Space
	Distance between Ellipsoids
	Composite Generation Procedure
	Percolation Computation
	Total Algorithm

	Result and Discussion
	Two-Phase system
	Three-phase system (Hybrids)

	Conclusions
	References

