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Introduction

Astrophysical evidence strongly suggests the existence of dark matter (DM) in the uni-

verse [1]. Whether the DM has a particle origin remains a mystery [2]. There are a number

of well-motivated theories beyond the standard model (SM) of particle physics that pre-

dict the existence of a particle, x, that could serve as a DM candidate. To date, only

gravitational interactions between DM and SM particles have been observed. However, the
discovery of a Higgs boson by both the ATLAS and CMS Collaborations at the CERN

LHC in 2012 [3-5] provides a new way to probe DM-SM particle interactions.

Collider experiment searches have typically looked for DM recoiling against an as-

sociated SM particle. Since any produced DM is unlikely to interact with the detector
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Figure 1. Leading order Feynman diagrams for DM associated production with a Higgs boson for
two theoretical models: Z’-2HDM (left) and baryonic Z’ (right).

material, it creates an imbalance in the recorded momentum yielding a large amount of
missing transverse momentum, p%iss. This paper presents a search for DM recoiling against
an SM-like Higgs boson (h) using the h + p%iss signature. This SM-like Higgs boson can
be produced from initial- or final-state radiation, or from a new interaction between DM
and SM particles. However, initial-state radiation of an SM-like Higgs boson from a quark
or gluon is suppressed by Yukawa or loop processes, respectively [6-8].

Previous searches for h + piiss have been performed at both the ATLAS and CMS
experiments. No excesses were observed in either h — bb or h — ~+ decay channels
with 20.3 (36) fb~! of data at /s = 8(13)TeV [9-11] or with 2.3-36.1fb~! of data at
Vs = 13 TeV [12-14]. This paper examines two Higgs boson decay channels: h — v+ and
h— 777"

Two simplified models for DM+h production are used as benchmarks for this search,
both of which were recommended by the LHC Dark Matter Forum [15]. The leading order
(LO) Feynman diagrams for these models are shown in figure 1. The first benchmark model
(figure 1 left) is a Z'-two-Higgs-doublet model (Z’-2HDM) [7]. In this scenario, the SM is
extended by a U(1)z group, with a new massive Z’ boson mediator, while a Type-2 2HDM
framework [16, 17] is used to formulate the extended Higgs sector. At LO, the Z’ boson is
produced resonantly and decays into an SM-like Higgs boson and an intermediate heavy
pseudoscalar particle (A). The A then decays into a pair of Dirac fermionic DM particles.
This analysis does not consider the contribution of the decay Z’ — Zh which can have a
h + piss signature if Z — vv. The second diagram (figure 1 right) describes a baryonic 7’
model [8]. In this scenario, a new massive vector mediator Z’ emits a Higgs boson and then
decays to a pair of Dirac fermionic DM particles. Here, the baryonic gauge boson Z’ arises
from a new U(1)g baryon number symmetry. A baryonic Higgs boson (hp) is introduced
to spontaneously break the new symmetry and generates the Z’ boson mass via a coupling
that is dependent on the hg vacuum expectation value. The Z’ couplings to quarks and
DM are proportional to the U(1)p gauge couplings. There is a mixing between hp and the
SM Higgs boson, allowing the Z’ to radiate an SM-like Higgs boson. The stable baryonic
states in this model are the candidate DM particles.



In the Z'-2HDM, there are several parameters that affect the predicted cross section.
However, when the A is on-shell, only the Z’ and A masses affect the kinematic distributions
of the final state particles studied in this analysis. This paper considers a Z’ resonance
with mass between 450 and 2000 GeV and an A pseudoscalar with mass between 300 and
700 GeV, in accordance with the LHC Dark Matter Forum recommendations [15]. The
ratio of the vacuum expectation values of the Higgs doublets (tan 8) in this model is fixed
to 1. As given in ref. [13], the DM particle mass is fixed to 100 GeV, the DM-A coupling
strength gpyp is fixed to 1, and the Z’ coupling strength gz is fixed to 0.8.

For the baryonic Z’ model, this paper considers a Z’ resonance with a mass between
100 and 2500 GeV and DM particle masses between 1 and 900 GeV. As suggested for this
model [18], the mediator-DM coupling is fixed to 1 and the mediator-quark coupling (gq) is
fixed to 0.25. The mixing angle between the baryonic Higgs boson and the SM-like Higgs
boson is set to 0.3 and the coupling between the Z’ boson and the SM-like Higgs boson is
proportional to the mass of the Z' boson.

For both models, values of the couplings and mixing angle are chosen to maximize
the predicted cross section. Results for other values can be obtained by rescaling the
cross section since these parameters do not affect the kinematic distributions of the final
state particles. The SM-like Higgs boson is assumed to be the already observed 125 GeV
Higgs boson, since the SM-like Higgs boson has similar properties to the SM Higgs boson.
Therefore, in this paper the observed 125 GeV Higgs boson is denoted by h.

Although the SM Higgs boson branching fractions to 4y and 777~ are smaller than
the branching fraction to bb, the analysis presented here exploits these two decay channels
because they have unique advantages compared with the h — bb channel. The h — v~
channel benefits from higher precision in reconstructed invariant mass and the h — 777~
channel benefits from smaller SM background. Additionally, the h — vy and h — 777~
channels are not dependent on p%iss trigger thresholds, as such searches in these channels
are complementary to those in the h — bb channel since they can probe DM scenarios
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with lower pp'°. The search in the h — v channel uses a fit in the diphoton invariant
mass spectrum to extract the signal yield. In addition to a high—p%liSS category, a low—p?iSS
category is also considered to extend the phase space of the search. In the h — 777~
channel, the three decay channels of the 7 lepton with the highest branching fractions are
analyzed. After requiring an amount of p%iss in order to sufficiently suppress the quan-
tum chromodynamic (QCD) multijet background, the signal is extracted by performing a
simultaneous fit to the transverse mass of the p?iss and the two 7 lepton candidates in the

signal region (SR) and control regions (CRs).

The paper is organized as follows. Section 2 gives a brief description of the CMS
detector and the event reconstruction. Section 3 details the data set and the simulated
samples used in the analysis. Then sections 4 and 5 present the event selection and analysis
strategy for each decay channel, respectively. The systematic uncertainties affecting the
analysis are presented in section 6. Section 7 details the results of the analysis and their
interpretations. A summary is given in section 8.



2 The CMS detector and event reconstruction

The central feature of the CMS detector is a superconducting solenoid, of 6 m internal
diameter, providing an axial magnetic field of 3.8 T along the beam direction. Within
the solenoid volume are a silicon pixel and strip tracker, a lead-tungstate crystal electro-
magnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL).
Extensive forward calorimetry complements the coverage provided by the barrel and end-
cap detectors. Charged particle trajectories are measured by the silicon pixel and strip
tracker system, covering 0 < ¢ < 27 in azimuth and |n| < 2.50, where the pseudorapidity
ism = —In(tan#/2), and 6 is the polar angle with respect to the counterclockwise beam di-
rection. Muons are measured in gas-ionization detectors embedded in the steel flux-return
yoke. A more detailed description of the CMS detector can be found in ref. [19].

Events of interest are selected using a two-tiered trigger system [20]. The first level,
composed of custom hardware processors, uses information from the calorimeters and muon
detectors to select events at a rate of around 100 kHz within a time interval of less than
4 pus. The second level, known as the high-level trigger, consists of a farm of processors
running a version of the full event reconstruction software optimized for fast processing,
and reduces the event rate to around 1kHz before data storage.

Using information from all CMS subdetectors, a global event reconstruction is per-
formed using the particle-flow (PF) algorithm [21]. The PF algorithm optimally combines
all of the detector information and generates a list of stable particles (PF candidates),
namely photons, electrons, muons, and charged and neutral hadrons. The reconstructed
vertex with the largest value of summed physics-object p?r is taken to be the primary pp
interaction vertex (PV). The physics objects are the jets, clustered using the jet finding
algorithm [22, 23] with the tracks assigned to the vertex as inputs, and the negative vec-
tor sum of the pr of those jets. The PV is used as the reference vertex for all objects
reconstructed with the PF algorithm.

Photons are reconstructed from their energy deposits in the ECAL, which can involve
several crystals [24]. A photon that converts to an electron-positron pair in the tracker will
yield a shower spread out in azimuth due to the deflection of the electron and positron in the
strong magnetic field. In order to achieve the best photon energy resolution, corrections are
applied to overcome energy losses including those from photon conversions [24]. Additional
corrections, calculated from the mass distribution of Z — ete™ events, are applied to
the measured energy scale of the photons in data (<1%) and to the energy resolution in
simulation (<2%).

Electron reconstruction requires the matching of the cluster of energy deposits in the
ECAL with a track in the silicon tracker. Electron identification is based on the ECAL
shower shape, matching between the track and ECAL cluster, and consistency with the
PV. Muons are reconstructed by combining two complementary algorithms [25]: one that
matches tracks in the silicon tracker with signals in the muon system, and another in which
a global track fit seeded by the muon track segment is performed.

Jets are reconstructed from PF candidates using the anti-k7 clustering algorithm [22] as
implemented in FASTJET [23] with a distance parameter of 0.4. Jet energy corrections are



derived from simulation to bring the average measured response of jets to that of particle-
level jets. Hadronically decaying 7 leptons are reconstructed from jets using the hadrons-
plus-strips (HPS) algorithm [26]. The HPS algorithm uses combinations of reconstructed
charged hadrons and energy deposits in the ECAL to reconstruct the 7 lepton’s three most
common hadronic decay modes: 1-prong, 1-prong + 7%(s), and 3-prong. In the h — 77~
channel, events with jets originating from b quark decays are excluded in order to reduce
the background from tt events. The combined secondary vertex algorithm [27] is used to
identify jets originating from b quarks by their characteristic displaced vertices.

The missing transverse momentum vector (piis5), with magnitude pss, is the negative
vector sum of the pr of all PF candidates in an event. Jet energy corrections are propagated
to the ﬁ%ﬁss for a more accurate measurement [28]. Events may have anomalously large
p%iss from sources such as detector noise, cosmic ray muons, and beam halo particles, which
are not well modeled in simulation. Event filters [29] are applied to remove such events.

3 Observed and simulated data samples

The analysis is performed with pp collision data at /s = 13 TeV collected with the CMS
detector in 2016. The data correspond to an integrated luminosity of 35.9fb~1!.

The analysis strategy and event selection were optimized using Monte Carlo (MC)
simulated samples of associated DM+h production via the two benchmark models discussed
in section 1. The MADGRAPH5_aMCQ@NLO v2.3.0 [30] generator is used to generate both
the Z/-2HDM and baryonic Z’ signals at LO. The decay of the SM-like Higgs boson is
simulated by PYTHIA 8.205 [31].

A small but irreducible background for both decay channels in this analysis comes from
events in which the SM Higgs boson is produced in association with a Z boson that decays to
two neutrinos. Other SM Higgs boson production mechanisms are associated with resonant
but reducible backgrounds. These include gluon-gluon fusion (ggh), vector boson fusion
(VBF), and production in association with a pair of top quarks (tth). The production in as-
sociation with a vector boson (Vh) and other SM Higgs boson backgrounds are all generated
using MADGRAPH5_aMC@QNLO v2.2.2 at next-to-leading order (NLO) in perturbative QCD.

The dominant nonresonant backgrounds for the h — ~~ channel are events with mis-
measured p* and two photons that happen to have an invariant mass close to the mass of
the SM Higgs boson. The largest contributions to this are nonresonant v, y+jet, and QCD
multijet production. The simulated 7y sample is generated at LO with SHERPA v2.2.2 [32]
while the v + jet and QCD multijet samples are modeled at LO with pyTHIA. Additional
backgrounds originate from electroweak (EW) processes such as single top, tt, W, or Z
boson production in association with one or two photons, and Drell-Yan (DY) production
where the Z boson decays to pairs of electrons or muons. The DY and all other EW back-
grounds considered in the analysis are generated at NLO with MADGRAPH5_aMC@NLO.
These nonresonant background samples are used for optimizing the analysis selection, how-
ever, they are not used for the ultimate background estimation.

The largest backgrounds for the h — 777~ channel are W + jets, tt, and multiboson
processes. The MADGRAPHH_aMCQNLO v2.3.0 generator is used for W + jets processes,



which are generated at LO in perturbative QCD with the MLM jet matching and merging
scheme [33]. A pp-dependent correction factor is applied to the W + jets sample to account
for next-to-next-to-leading order QCD and NLO EW effects [34-37]. The tt process is
generated at NLO with the POWHEG 2.0 [38—41] generator. Single top quark production
is modeled at NLO with the POWHEG 1.0 [42] generator. The FxFx [43] merging scheme
is used to generate some smaller diboson backgrounds (including WZ samples) with the
MADGRAPH5_aMC@NLO generator at NLO, while the dominant diboson backgrounds, WW
and ZZ in two lepton final states, are generated using POWHEG 2.0. Another reducible
background considered in this analysis is Z/v* — ¢¢/77, where £ is e or pu. The Drell-Yan
background is corrected for differences in the dilepton mass myy /., and dilepton transverse
momentum prp(¢¢/77) distributions using dimuon events in data [44].

All simulated samples mentioned above use the NNPDF 3.0 parton distribution func-
tion (PDF) sets [45, 46] with the order matching that used in the matrix element calcula-
tions. For parton showering and hadronization, as well as for 7 lepton decays, the samples
are interfaced with PYTHIA using the CUETP8MI1 tune [47] for all samples except tt, for
which the M2 tune is used. The MC samples are processed through a full simulation of
the CMS detector based on GEANT4 [48] and are reconstructed with the same algorithms
that are used for the data. All samples include the simulation of additional inelastic pp
interactions in the same or neighboring bunch crossings (pileup). Minimum-bias collision
events generated with PYTHIA are added to the simulated samples to reproduce the pileup
effects in the data. Additionally, the simulated events are weighted so that the pileup vertex
distribution matches that of the data, with an average of 27 interactions per bunch crossing.

4 Analysis strategy in the h — ~+ channel

The search for DM+h in the h — v channel is performed by selecting events with two
photons and a large amount of p%ﬁss. The set of requirements detailed in section 4.1 is
applied to select well-identified photons and to enhance the signal significance. A fit to the
diphoton invariant mass distribution, described in section 4.2, is performed to extract the

background and signal yields.

4.1 Event selection

The events used in this analysis were selected by a diphoton trigger with asymmetric
pr thresholds of 30 and 18 GeV and diphoton invariant mass above 90 GeV. The trigger
also has loose photon identification criteria based on the cluster shower shape, isolation
requirements, and a selection on the ratio of hadronic to electromagnetic energy deposits
of the photon candidates.

The photons that enter the analysis are required to fall within the fiducial range of
the ECAL (|n| < 1.44 or 1.57 < |n| < 2.50) and to satisfy various preselection criteria
that are slightly more stringent than the trigger requirements. An additional veto on the
presence of a track pointing to the ECAL cluster is applied to reject electrons that could
be reconstructed as photons. Scale factors, extracted from Z — e*e™ events using the tag-



Variable LOW—QD%1iss category High—p%iSS category
praiss >50 GeV, <130 GeV >130 GeV
PT1/ My >0.45 >0.5

P2/ My >0.25 >0.25

DTy >75 GeV >90 GeV

miss

Table 1. Optimized kinematic requirements for the low- and high-p§'*° categories.

and-probe method [49], are applied to the simulated samples to account for any discrepancy
in identification efficiency between data and simulation.

The isolation variables that are used in the photon identification are calculated by
summing the pt of PF photons, neutral hadrons, or charged hadrons associated with the PV
in a cone of radius AR = vV (An)? + (A¢)? = 0.3. The isolation variables are corrected by
the median transverse momentum density of the event to mitigate the effects of pileup [50].
Some of the signals considered can have Lorentz-boosted topologies. For example, high-
mass mediators could result in a large boost to the Higgs boson. When a boosted Higgs
boson decays to two photons, the resulting photons hit the ECAL close to each other. This
effect leads to large contributions from one photon to the photon isolation sum of the other.
In order to maintain high efficiency for high-mass mediator signals, the photon isolation
requirement is not applied to photons that are within AR < 0.3 of each other.

Preselected photons are required to have leading (subleading) photon pr above 30
(20) GeV and diphoton invariant mass m.., above 95 GeV. Simulated signal and background
samples that pass the preselection were used to study the discriminating power of variables
such as p%liss, the pr of the diphoton system pr.,, and the ratio pr/m., for each photon.
A selection on pt that scales with m., is chosen so that it does not distort the shape
of the m,, distribution. The pr,, variable is included in the selection because it has
higher resolution than the event’s measured p%liss and is expected to be large for signal
events, since the Higgs boson is produced back-to-back with ﬁ%ﬁss. A high—p%liss category
(p%liSS > 130 GeV) is optimal for the two benchmark models presented in this paper. A low-
PSS category (50 < piiss < 130 GeV), optimized using as reference the baryonic Z' signal
model, is also included to probe softer signals, namely signals that may not be observed in
other h + p%iss searches because they rely heavily on p%iss for background rejection. The
chosen requirements, found to optimize the signal sensitivity for both models in the low-
and high—p%liSS categories, are given in table 1.

Further background rejection is achieved using two topological requirements. The
azimuthal separation |A@(ps, piis)| between piis> and the Higgs boson direction recon-
structed from the two photons must be greater than 2.1 to select events in which the Higgs
boson and ﬁ%niss are back-to-back. Events with highly energetic jets collinear to ﬁ?r“iss are
removed by the requirement that the min|A¢(pjet, )| be greater than 0.5 for any jet
with pt above 50 GeV. This rejects events with a large misreconstructed p%iss arising from
mismeasured jet pr. Finally, events are vetoed if they have three or more jets each with pr
above 30 GeV, to reject multijet backgrounds while maintaining a high efficiency for the two

benchmark signal models. The p%liss distribution of the selected events is shown in figure 2.
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Figure 2. Distribution of pi** for events passing the requirements given in table 1. Events with
PRI below 50 GeV are not used in the analysis. The cross sections of the signals are set to 1 pb. The
total simulated background is normalized to the integral of the data. The statistical uncertainty in
the total background is shown by the hatched bands. The data-to-simulation ratio is shown in the
lower panel.

4.2 Background estimation and signal extraction

A narrow resonance search similar to the SM Higgs boson diphoton analysis of ref. [51]
is performed. The diphoton invariant mass between 105 and 180 GeV is fit with a model
that is the sum of the signal and background shapes. The signal shape, taken from the
simulated events, is allowed to change independently in each of the two p?iss categories.
The background shape includes a smooth function, estimated from the data, to model the
continuum background, and a resonant contribution from the SM Higgs boson. The fit is
performed with an unbinned maximum-likelihood technique in both the low- and high- p%iss
categories discussed above.

The resonant background, arising from the SM Higgs boson decays to two photons,
appears as a peak under the expected signal peak. This contribution from all SM Higgs
boson production modes is estimated with the simulated events by including a mass dis-
tribution template, scaled to the NLO cross section, as a resonant component in the final
fitting probability density function (pdf).

The nonresonant background contribution, mostly due to v+ and to various EW pro-
cesses, is estimated using data. The nonresonant diphoton m.. distribution in the data is
fit, in each pRi category, with an analytic function. Because the exact functional form of
the background is unknown, the parametric model must be flexible enough to describe a

variety of potential underlying functions. Using an incorrect background model can lead to



biases in the measured signal yield that can artificially modify the sensitivity of the anal-
ysis. Three functions are considered as possible models for the nonresonant background;
they are analytical forms that are frequently used in dijet [52] and diphoton [53] resonance
searches. The best functional form found to fit the nonresonant diphoton m.. distribu-
tion, in both pss categories, is a power law function f(x) = az~° where a and b are free
parameters constrained to be positive.

A detailed bias study has been performed in order to choose this function. The m.,
shape of the simulated nonresonant events is used as a template to generate 1000 pseudo-
experiments for each p%iss category. For each pseudo-experiment, the number of events
generated is equal to the number of events observed in data in that category. The resulting
m.~ distribution is fit with each analytic function considered. The exercise is also repeated
injecting a potential signal contribution. The pulls of each pseudo-experiment, defined as
the difference in the number of simulated events and those predicted by the fit function
divided by the statistical uncertainties of the fit, are calculated. If the bias (the median of
the pulls) is five times smaller than the statistical uncertainty in the number of fitted signal
events, any potential bias from the choice of background model is considered negligible.
Since this criterion is satisfied for the power law function, any systematic uncertainty in
the bias from the background fit function is neglected in this analysis.

The final background-only fit for both p%iss categories is shown in figure 3. Both the
resonant and nonresonant background pdf contributions are shown. The slight excess of
events observed in data around 125 GeV in the lovv—p?iSS category is compatible with the
SM Higgs boson expectation within 2.0 standard deviations.

5 Analysis strategy in the h — 777~ channel

5.1 Event selection

The three final states of 7 lepton pairs with the highest 77 branching fractions (em,, pum,
and 7,7y,) are considered in this analysis. In the e, and p7, channels, one of the 7 leptons
decays leptonically to an electron or a muon and two neutrinos, while the other 7 lepton
decays hadronically (7,) with one neutrino. In the third channel, m,7,, both 7 leptons
decay hadronically. The ey, ee, and pu final states are not included because of the low
branching fraction of the 77 pair to purely leptonic final states. The ee and pu final states
are not considered, since they are overwhelmed by DY background.

Triggers based on the presence of a single electron (muon) are used to select events in
the er, (um,) channel. In the 7,7, channel, the triggers require the presence of two isolated
T objects. Each 7, candidate reconstructed offline is required to match a 7, candidate at
the trigger level, with a AR separation less than 0.5.

The electrons and muons in the e, and p7y, channels are required to have pr greater
than 26 GeV, exceeding the trigger thresholds for the single-electron and single-muon trig-
gers. Electrons (muons) with || < 2.1 (2.4) are used. An er, (um,) event is required to
have an electron (muon) passing a multivariate MVA identification discriminator [26] and

an isolation requirement of IS, < 0.10 (I*, < 0.15), where I is defined as in eq. (5.1),

rel
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Figure 3. The background-only fit to data is performed, for low-p2is (left) and high-piiss (right)
categories, with the sum of a power law (dashed black) fit function to describe the nonresonant
contribution, and a resonant shape (dashed red), taken from simulation, to take into account the SM
h — v contribution. The SM h contribution is fixed to the theoretical prediction in the statistical
analysis. The sum of the nonresonant and resonant shapes (solid blue) is used to estimate the total
background in this analysis.

with an isolation cone of size AR = 0.3 (0.4) surrounding the electron (muon):

o= (A s 0,3 4 04— 05 % YY) ek 6

Here p%narged, > preu“al, and Zp% are the scalar sums of transverse momentum from
charged hadrons associated with the primary vertex, neutral hadrons, and photons, re-
spectively. The term ) ng is the sum of transverse momentum of charged hadrons not
associated with the primary vertex and pff is the pr of the electron or muon.

Hadronically decaying 7 leptons in all channels are required to satisfy a loose (7,1,
channel) or a tight (er, and p7, channels) working point of an MVA isolation measure. The
loose (tight) working point corresponds to a 65 (50)% efficiency with a 0.8 (0.2)% misiden-
tification probability. The 7 leptons are required to be identified as decaying via one of the
three modes recognized with the HPS algorithm, and also pass discriminators that reduce
the rate of electrons and muons misreconstructed as 7, candidates [54]. For the ery, and pm,
channels, the 7, candidates are required to have pp > 20GeV and |n| < 2.3. In the m,m,
channel, the leading (subleading) 7 lepton pr is required to be greater than 55 (40) GeV,
both 73, transverse momenta exceeding the double-hadronic 7 lepton trigger thresholds of
35 GeV. The selection criteria are summarized in table 2 for all three final states.

The pss is further required to be greater than 105GeV and the visible pr of the 77
system is required to be greater than 65 GeV. These stringent criteria reduce the need for
tighter isolation in the 7,7, channel. Additionally, the mass reconstructed from the visible
pr of the 77 system is required to be less than 125 GeV, to ensure that the 77 system is com-

~10 -



Lepton selection

Final state Trigger type pr [GeV] n Isolation
et e(25 GeV) Pt > 26 In°] < 2.1 I, <0.1

P >20  |p™| <23 Tight MVA 7,
UTh 1(24 GeV) P > 26 In*| < 2.4 Il <0.15

p>20  |y™| <23 Tight MVA 7,
ThTh T (35 GeV) & 1, (35GeV)  p >55&40 |n™| < 2.1 Loose MVA 7,

Table 2. Selection requirements for the three 77 decay channels. The pr thresholds for the triggers
are given in the second column in parentheses.

patible with an SM Higgs boson. In order to minimize diboson and W + jets contributions,
the two 7 lepton candidates must pass a loose collinearity criterion of AR, < 2.0.

Two types of event veto are employed for background reduction. Events with jets
tagged as originating from hadronization of b quarks are vetoed, to reduce tt and single
top processes. The working point used in the b tagging algorithm corresponds to about a
66% efficiency for a 1% misidentification probability. In addition, events with additional
muons or electrons beyond those from the 7 lepton candidates are discarded, to reduce the
contribution of multilepton backgrounds.

5.2 Signal extraction and background estimation

The signal is extracted from a maximum-likelihood fit to the total transverse mass (Mi")
distributions in the different channels for the SR, and for the W + jets and QCD multijet
background CRs. The Mt is defined as:

M =V (P} + p + p)2 — (pIt + pi2 + p=)2 — (pt + pJ2 + P2, (5.2)
where p™ss and pgliss are the magnitudes of the x and y components of ﬁlfniss, respectively.

The W + jets and the QCD multijet background are estimated directly from the
data. The procedure to estimate these processes relies on CRs, which are included in
the maximum-likelihood fit, to extract the results. The other backgrounds, tt, Z + jets,
SM Higgs boson, single top quark, and diboson production processes, are extracted from
simulation.

The shape of the M distribution of the W + jets background is estimated from sim-
ulation by requiring the same selection as for the SR, but the isolation of the 7 lepton can-
didates is relaxed to increase the statistical precision of the distribution. To constrain the
normalization of the W + jets background, a CR enriched in W + jets events is constructed
by inverting the isolation criteria on the 7, candidates while keeping a loose isolation. The
CR obtained by inverting the isolation criterion is included in the maximum-likelihood fit
to constrain the normalization of the W + jets background in the SR.

To estimate the QCD multijet background, a CR in data is obtained by requiring the 7
lepton candidates to have the same sign. No significant amount of signal and of background
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with opposite-sign 7y, is expected in this CR because the 7, charge misidentification is of
order 1% and the charge misidentification for electrons and muons is even smaller. All
simulated backgrounds are subtracted from observed events in the CR, and the remaining
contribution is classified as QCD multijet background. The contribution of QCD multijet
events with opposite-sign 7 lepton candidates in the SR is obtained by multiplying the
QCD multijet background, obtained in the same-sign CR, by a scale factor. The scale
factor, approximately unity with an uncertainty of 20%, is determined from events with
7, candidates failing the isolation requirement and with low p%‘iss, which do not overlap
with events selected in the SR. To increase the statistical precision of the QCD multijet
distribution, the isolation of the 7 lepton candidates is relaxed for the 7, channels, while
conserving the normalization obtained as detailed above. The same-sign 7 lepton candidate
CR constrains the QCD multijet background normalization in the SR and the other CRs
in the maximume-likelihood fit.

The normalizations of the W + jets and QCD multijet background are strongly cor-
related since both processes contribute to both CRs. The simultaneous fit of the SR and
CRs takes into account this correlation. The SR distributions included in the simulta-
neous maximume-likelihood fit are shown in figure 4. For the signal extraction, W + jets
and QCD multijet background CRs are considered separately, whereas in figure 4, the two
backgrounds are presented merged together.

6 Systematic uncertainties

In both analysis channels, an uncertainty of 2.5% is used for the normalization of simulated
samples to reflect the uncertainty in the integrated luminosity measurement in 2016 [55].
Common to both analysis channels are systematic uncertainties related to the theoretical
production cross section of the Higgs boson. The PDF, and renormalization and factoriza-
tion scale uncertainties are addressed using the recommendations of PDF4LHC [56] and
LHC Higgs Cross Section [57] working groups, respectively. The value of these uncertainties
range from 0.3 to 9.0%. The systematic uncertainties associated with each of the analy-
sis channels are detailed below. Uncertainties affecting normalizations are represented by
log-normal pdfs in the statistical analysis.

6.1 The h — ~+ channel

In the h — ~~ channel, there are several sources of experimental and theoretical uncer-
tainties that affect the signal and the SM h — ~v yields. However, the largest source
of uncertainty is statistical. As mentioned in section 4.2, no systematic uncertainties are
applied to the nonresonant background, which is extracted from a fit to data, since the
bias of the fit is negligible compared to the statistical uncertainty of the data set. The
systematic uncertainties for the h — ~- channel are summarized in table 3. In addition to
the theoretical uncertainties mentioned above, a 20% cross section uncertainty is included
for the ggh sample, based on the CMS differential measurements of h — ~+, for diphoton
pr above 70 GeV [58]. The branching fraction uncertainty [57] of 1.73% is also included.
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Figure 4. Distributions of the total transverse mass M in the SR for the er, (upper left), um
(upper right), and 7,7, (lower) final states are shown after the simultaneous maximum-likelihood
fit. Representative signal distributions are shown with cross sections normalized to 1pb. The data
points are shown with their statistical uncertainties. The statistical uncertainty of the observed
distribution is represented by the error bars on the data points. The overflow of each distribution is
included in the final 400-500 GeV bin. Single top processes are included in the “Diboson” contribu-
tion. The “Other DY” contribution includes background from Z — £¢. The systematic uncertainty
related to the background prediction is indicated by the shaded band.
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Signal (%] SM h [%)]

Theoretical sources
PDF — 2-4
Renorm. and fact. scale — 0.3-9
Cross section (ggh) — 20
Higgs boson branching fraction 1.73
Experimental sources
Integrated luminosity 2.5
Trigger efficiency 1.0
Photon identification efficiency 2.0
Photon energy scale Shape, 0.5
PSS mismeasurement (ggh and VBF) — 50
A¢ selection efficiency (ggh and VBF) — 14

Table 3. Systematic uncertainties affecting the signal and resonant backgrounds in the h — ~v
channel.

In addition to the integrated luminosity uncertainty, several other experimental sources
of systematic uncertainty are included in this analysis. The trigger efficiency uncertainty
(approximately 1%) is extracted from Z — eTe™ events using a tag-and-probe tech-
nique [49]. The photon identification uncertainty of 2% arises from the observed difference
in efficiencies between data and simulation. A 0.5% energy scale uncertainty is assigned to
take into account the knowledge of the photon energy scale at the Z boson mass peak and

its extrapolation to the Higgs boson mass. Additionally, several p%liss—related uncertainties

are applied. The systematic uncertainty from mismeasured pl}liss is evaluated by comparing
the tail of the p%ﬁss distributions in data and simulation in a 7 + jet enriched CR. The effi-
ciencies with which data and simulated events pass the p%liss selection are compared. The
difference in efficiency is 50% and is included as a systematic uncertainty associated with

mismeasured p%iss. However, the contribution of simulated backgrounds with mismeasured

p%iss is quite small since only the ggh and VBF SM h — v production modes contribute.
Finally, a systematic uncertainty, which is less than 4%, is applied to take into account
the difference in efficiency between data and simulation when applying the topological A¢
requirements in the lovv—p%iSS region. This uncertainty is evaluated using Z — eTe™ events,

and only affects the ggh and VBF simulated samples.

6.2 The h — 777~ channel

The systematic uncertainties in the h — 777~ channel are related to the normalization
of signal and background processes and, in several instances, the shapes of the signal and
background distributions. As mentioned earlier, the simultaneous maximum-likelihood fit
is performed in the SR and CRs, where the shape and normalization uncertainties are rep-
resented by nuisance parameters in the likelihood. Uncertainties affecting the distribution

— 14 —



Change in acceptance or shape

Theory: Higgs boson branching
fraction

Theory: renorm. and fact. scale

Theory: PDF

Limited number of events
(bin-by-bin)

Source Affected processes €T, Th ThTh
7 identification (correlated) simulation 4.5% 4.5% —
7 identification (uncorrelated) simulation 2% 2% 9%
High pt m simulation Shape, up to 8%
e identification & trigger simulation 2% — —
u identification & trigger simulation — 2% —
T, trigger simulation — — Shape only
e misidentified as 7, 7 — ee 12% — —
1 misidentified as 7, Z — up —  25% —
Jet misidentified as 7, 7 + jets Shape only

Th energy scale (per decay mode) simulation 1.2% on energy scale
Jet energy scale and effect on QDIT“iSS simulation Shape, up to 10%
p%liss energy scale simulation Shape, up to 11%
Integrated luminosity simulation 2.5%
Norm. W + jets/QCD multijet W + jets/QCD multijet up to 20%
Norm. tt tt 6%

Norm. diboson Diboson 5%

Norm. single top Single top 5%

Norm. SM Higgs boson SM Higgs boson up to 5%

Z + jets LO-NLO reweighting 7 + jets Shape, up to 26%
W + jets NLO EW correction W + jets Shape, up to 6%
WW NLO EW correction WwW Shape, up to 12%
77 NLO EW correction 77 Shape, up to 2%
Top quark pr reweighting tt Shape, up to 5%

Signal + SM Higgs boson

Signal
Signal

All processes

1.7%

4%
2%
Shape only

Table 4. Systematic uncertainties affecting signal and background in the h — 777~ channel.

of M* (shape uncertainties) are represented by Gaussian pdfs, whereas log-normal pdfs

are used for normalization, as stated above. The largest overall uncertainty is statistical.

Table 4 summarizes the different sources of systematic uncertainty in this channel.

An uncertainty of 2% is assigned to simulated events containing an electron or muon

candidate. In simulated events with a 7, candidate, an additional uncertainty of 5% per
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7, is applied. These uncertainties account for the observed differences in the performance
of electron, muon, and 7, identification, isolation, and trigger algorithms, between data
and simulation. The hadronic 7, efficiency is not fully correlated across all 77 final states
because there are different discriminators used in each channel. The 7,7, channel has a
9% 7 uncertainty due to a correlation with the 7,7, trigger systematic uncertainty. An
uncertainty of 12% is assigned to simulated events containing an electron misidentified as a
7, candidate, and 25% for a muon misidentified as a 7, candidate [44]. A 2 (4)% uncertainty
is assigned to the yield of multiboson and single top (tt) processes to account for changes
in overall normalization arising from uncertainties in the b tagging performance. Similarly,
a 5% b tagging uncertainty is assigned to Z + jets and SM Higgs boson processes, while
all other processes, including signal, receive a 2% uncertainty. A systematic uncertainty of
up to 20% is applied to QCD multijet background to account for yield differences in the
same-sign CR. All of the background systematic uncertainties in the same-sign region are
propagated to the total QCD multijet background uncertainty, which is taken to be 40%.

The W+ jets background has a pr-dependent uncertainty, which approaches 10%, from
predicted NLO EW K-factors where the full EW correction is treated as the systematic
uncertainty [34-37]. Cross section uncertainties of the order of 5% are applied to the tt
(6%), top quark (5%), and diboson (5%) processes [59-62]. In simulated Z + jets samples,
a shape uncertainty of 10% of the Z boson pt reweighting correction, to account for higher-
order effects, is used. The uncertainty in the Z -+ jets background contribution is about 12%
in the SR. The tt contribution includes a shape systematic uncertainty equivalent to 5%
related to the top quark prt spectrum, since there is evidence that the spectrum is softer
in data than in simulation [62].

A 1.2% uncertainty in the 7 lepton energy scale [44] is propagated through to the final
signal extraction variables. The 7 lepton energy scale depends on the 7, decay mode and
is correlated across all channels. A shape uncertainty is used for the uncertainty in the
double 7, trigger. A shift of 3% of the pr of the trigger-level 7, candidate leads to a 12%
normalization difference at 40 GeV, and a 2% difference at 60 GeV. For pt > 60 GeV, a
constant 2% systematic uncertainty is applied.

To account for potentially different rates of jets misidentified as 7, candidates between
data and simulation, an uncertainty, applied as a function of the pr of the 7, candidate,
is used for background events where the reconstructed 7, candidate is matched to a jet at
generator-level. The uncertainty increases to about 20% near a 7, candidate pp = 200 GeV,
and acts to change the shape of the M distribution. An asymmetric uncertainty related to
the identification of 7, with a high pr is applied to signal and background simulation. The
high-pt 7, efficiency measurement uses selected highly virtual W bosons and has limited
statistical precision in comparison to the lower pr Z — 77 and tt 7, efficiency studies.
Therefore the asymmetric uncertainty is used in combination with a constant scale factor.
It is proportional to pt and has a value of +5% and —35% per 1TeV. For the application
of all of the aforementioned 7 lepton uncertainties, simulated backgrounds are separated
depending on whether the reconstructed 7, candidates are matched to generated 7 leptons.

In all simulated samples, uncertainties in the p%liss calculation related to unclustered
energy deposits are taken into account. Uncertainties in the jet energy scale are included
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Expected background Low—pl}liss category High—p%liSS category

SM h—~v (Vh) 2.9+0.1(stat) £0.2(syst) 1.26+£0.05(stat) £0.09 (syst)
SM h— 7 (ggh, tth, VBF) 5.3£0.3(stat)£1.2(syst) 0.1120.01 (stat)£0.01 (syst)
Nonresonant background 125.1+11.2(stat) 4.5+2.1(stat)

Total background 133+ 11 (stat) £ 1 (syst) 5.9+2.1(stat)£0.1(syst)
Observed events 159 6

Table 5. Expected background yields and observed numbers of events for the h — ~v channel

in the m,, range of 122-128 GeV are shown for the low- and high-p2 categories. The nonreso-

nant background includes QCD multijet, v, v + jet, and EW backgrounds and is estimated from
the analytic function fit to data. The SM Higgs boson background is presented separately for the
irreducible Vh production and for the other production modes. For the resonant background contri-
butions, both the statistical and the systematic uncertainties are listed. As detailed in section 4.2,
the systematic uncertainty associated with the nonresonant background is negligible.

on an event-by-event basis and propagated to the p%liss calculation. Lastly, an uncertainty
in the statistical precision of each process in each bin of the distribution is also included.

7 Results

The results of the analysis are derived from the maximum-likelihood fits presented in
sections 4 and 5 for the h — v+ and h — 777~ channels, respectively.

7.1 Observed yields

For the h — ~v channel, from the signal plus background fit to m.,,, the number of
expected events from background processes are determined. The background yields and
the observed number of events within 3 GeV of the SM Higgs boson mass are listed in
table 5 for both the low- and high—p?iSS categories. The excess at lovv—p$iSS has negligible
effect on the results when combined with the high-ps* category for the benchmark signals
considered in this paper.

In the h — 777~ channel, the final simultaneous fit to the Mi°* distributions for the
SR, and W + jets and QCD multijet CRs is performed in each of the three considered 7
decay channels (ery,, um,, and m,7,). The extracted post-fit yields for the expected number
of background events and the number of events observed in data are shown in table 6. The
number of events observed is in good agreement with the number of events predicted by
the SM backgrounds.

Aside from the small excess in the lovv—p%liSS category of the h — ~~ channel, the ob-
served numbers of events are consistent with SM expectations. All of the results presented
here are interpreted in terms of the two benchmark models of DM production mentioned
earlier. Expected signal yields and the product of the predicted signal acceptances and
their efficiencies (Ae) are summarized in table 7 for selected mass points, in both h — v
and h — 77~ channels.
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Expected background eTh WTh ThTh

W + jets/QCD multijet 13.1 £2.2 325+62 38+ 2.6

tt 13.7 £ 1.6 248 +2.0 42+ 1.3

SM Higgs boson 0.48 £0.08 0.72 £0.06 1.21 £0.08
Diboson 123 £ 1.0 21.5+1.5 7.3 £ 0.6

7 —TT 0.00 £+ 0.01 0.0 £ 0.5 3.6 1.2

7 — U 09+1.9 20+ 1.3 —

7 — vv — — 0.4+ 0.3

Total background 40.5 £33 81.8£6.3 205+ 3.0
Observed events 38 81 26

Table 6. Estimated background yields and observed numbers of events for M°* > 260 GeV, in the
SR of the h — 777~ channel. The uncertainties in the total expected yields include the statistical
and systematic contributions.

h — v channel h — 777~ channel
Signal Lovv—p%liSS High—p%iSS eTh WTh Th Th
Z'-2HDM
Expected yield 0.1 £04 4.5+0.6 6.5+ 03 11.1+0.5 14.3+1.2
Ae %) 0.1 42.6 2.2 3.6 4.4

Baryonic 7/
Expected yield 14.7 + 6.7 13.8 + 6.4 8.6 £0.3 16.8+ 0.5 20.9 £ 0.8
Ae [%) 6.4 6.0 0.1 0.3 0.3

Table 7. The expected signal yields and the product of acceptance and efficiency (Ae) for the two
benchmark models. The Z’-2HDM signal is shown for the parameters ma = 300 GeV and mz =
1000 GeV, and the baryonic Z’ signal, for the parameters mpy = 1 GeV and myz = 100 GeV.

A discussion of the results for the Z’-2HDM interpretation is presented in section 7.2.
The results in the context of the baryonic Z’ interpretation are given in section 7.3. The
baryonic Z’ results are also reinterpreted for comparison with direct detection experiments
in section 7.4 by looking at simplified DM models proposed by the ATLAS-CMS Dark
Matter Forum [15].

7.2 Interpretation in the Z’-2HDM model

For the event selection given in sections 4 and 5, the results interpreted in terms of the Z'-
2HDM associated production of DM and a Higgs boson are presented here. The expected
and observed yields are used to calculate an upper limit on the production cross section
of DM+h production via the Z’-2HDM mechanism. Upper limits are computed [63] at
95% confidence level (CL) using a profile likelihood ratio and the modified frequentist
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Figure 5. Expected and observed 95% CL upper limits on the Z’-2HDM cross section for dark
matter associated production with a Higgs boson (Z’ — xxh) are shown. Limits are given for the
h — 47 channel, h — 777~ channel, and their combined exclusion.

criterion [64, 65] with an asymptotic approximation [66]. The upper limits are obtained for
each Higgs boson decay channel separately and for the statistical combination of the two.
The two decay channels are combined using the Higgs boson branching fractions predicted
by the SM [57]. In the combination of the two analyses, the theoretical uncertainties in
the Higgs boson cross section and the systematic uncertainty in the integrated luminosity
are assumed to be fully correlated between the two decay channels.

Figure 5 shows the 95% CL expected and observed upper limits on the DM production
cross section (g5 cr,) as a function of Z’ mass. Both the h — vy and h — 777~ channels,
as well as the combination of the two, are shown for ma = 300 GeV. These upper limits,
although obtained with a DM mass of 100 GeV, can be considered valid for any DM mass
below 100 GeV since the branching fraction for decays of A to DM particles decreases
as the dark matter mass increases. The theoretical cross section (oyy) is calculated with
mpm = 100 GeV, gz = 0.8, and gpy = tan 8 = 1, as mentioned in section 1.

To produce exclusion limits in the two-dimensional plane of Z’ mass and A mass, an
interpolation is performed. Fully simulated signal samples (mentioned in section 3) were
generated in a coarse grid of ma and my . For the h — ~v channel, the m,, shape does
not depend on the mass of these particles, only the expected yield is affected by these
masses. Therefore, the product Ae of the fully simulated samples is parametrized and used
to extract the expected number of events for intermediate mass points. In the h — 77~
channel, this is not sufficient because the M{°* shape does depend on the particle masses.
A reweighting technique is used to extract the yields for the intermediate mass points.
Simulation samples were produced at generator-level for mys between 450 and 2000 GeV
in steps of 50 GeV and for ma between 300 and 700 GeV in steps of 25 GeV. These are
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Figure 6. Observed 95% CL upper limits on the Z’-2HDM signal strength for the h — v (left),
h — 777 (right), and combination of the two channels (lower center). The observed (expected)
two-dimensional exclusion curves are shown with thick red (dashed black) lines. The plus and minus
one standard deviation expected exclusion curves are also shown as thin black lines. The region
below the lines is excluded.

compared with the full-simulation samples at generator-level. The bin-by-bin ratio of
the SM-like Higgs boson pt between the two samples is used to weight the full-simulation
samples. This method was validated by applying the same procedure at the generator-level
among the samples for which full-simulation is available.

The interpolation between mass points is improved using kernel algorithms to display
smooth, continuous exclusion contours. The resulting two-dimensional exclusion for the Z’-
2HDM signal is shown in figure 6. The 95% CL expected and observed upper limits on signal
strength (0959 c1,/0oth) are shown. Regions of the parameter space with g5y o1, /ot < 1 are
excluded at 95% CL under the nominal oy, hypothesis. For ma = 300 GeV, the h — ~v
channel alone excludes at 95% CL the Z’ masses from 550 GeV to 860 GeV, while the
h — 777~ channel excludes the my masses from 750 GeV to 1200 GeV. The combination
of these two decay channels excludes the Z' masses from 550 GeV to 1265 GeV for mp =
300 GeV. The Z' mass range considered is extended from previous CMS searches to include
450 < my < 600 GeV.
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Figure 7. Expected and observed 95% CL upper limits on the baryonic Z’ cross section for dark
matter associated production with a Higgs boson (Z’ — xxh) are shown. Limits are given for the
h — 47 channel, h — 777~ channel, and their combined exclusion.

7.3 Baryonic Z’ model interpretation

Here the results presented in section 7.1 are interpreted in the context of the baryonic 7’
model. This paper presents the first baryonic Z’ model interpretation of h + p%iss searches
with the CMS detector. The 95% CL upper limits on DM+h cross section are calculated
for the baryonic Z’ production mechanism. The upper limits for each decay channel and
the combination of the two channels are shown in figure 7. The oy, is calculated assuming
the choice of parameters detailed in section 1. Results in the two-dimensional plane of mpy
and my, are produced using an interpolated grid produced in the same way as described
in section 7.2. The two-dimensional exclusion for this model is shown in figure 8, where
the 95% CL upper limits on the signal strength are shown for each decay channel and for
the combination of the h — ~v and h — 777~ channels. For mpy = 1 GéV, the h — vy
channel excludes myz masses up to 574 GeV. The h — 777~ channel similarly excludes
my, masses up to 450 GeV. The combination of the two decay channels excludes myz up
to 615 GeV for mpy = 1 GeV.

7.4 Simplified DM model interpretation

Limits from the baryonic Z' model are reinterpreted to infer limits on the s-channel sim-
plified DM models that were proposed by the ATLAS-CMS Dark Matter Forum [15] for
comparison with direct detection experiments. In the model considered in this analysis,
Dirac DM particles couple to a vector mediator, which in turn couples to the SM quarks. A
point in the parameter space of this model is determined by four variables: the DM particle
mass mpu, the mediator mass mmeq, the mediator-DM coupling gpm, and the universal
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Figure 8. Observed 95% CL upper limits on the baryonic Z’ signal strength for the h — ~+ (left),
h — 777 (right), and combination of the two channels (lower center). The observed (expected)
two-dimensional exclusion curves are shown with thick red (dashed black) lines. The plus and minus
one standard deviation expected exclusion curves are also shown as thin black lines. The region
below the lines is excluded.

mediator-quark coupling gq. The couplings for this analysis are fixed to gpm = 1.0 and
gq = 0.25, following the recommendation of ref. [18].

The results are interpreted in the spin-independent (SI) cross section oS! for DM
scattering off a nucleus. The value of ¢5! for a given point in the s-channel simplified DM
model is determined by the equation [18]:

oS — fQ(QQ)g%MMiDM’ (7.1)

T ed

where pinpM is the reduced mass of the DM-nucleon system and f(gq) is the mediator-
nucleon coupling, which is dependent on gq. The resulting oS limits as a function of DM
mass are shown in figure 9. In the same plot, exclusions from several direct detection
experiments are shown. For the baryonic Z’ model, the limits are more stringent than
direct detection experiments for mpy < 2.5 GeV.
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Figure 9. The 90% CL exclusion limits on the DM-nucleon ST scattering cross section as a func-
tion of mpy. Results obtained in this analysis are compared with those from a selection of direct
detection (DD) experiments. The latter exclude the regions above the curves. Limits from CDM-
SLite [67], LUX [68], XENON-1T [69], PandaX-II [70], and CRESST-II [71] are shown.

8 Summary

A search for dark matter particles produced in association with a Higgs boson has been
performed. The study focuses on the case where the 125 GeV Higgs boson decays to either
two photons or two 7 leptons. This analysis is based on proton-proton collision data col-
lected with the CMS detector during 2016 at /s = 13 TeV, corresponding to an integrated
luminosity of 35.9 fb~!. The results of the search are interpreted in terms of a Z’-two-Higgs-
doublet model (Z-2HDM) and a baryonic Z’ simplified model of dark matter production.

A statistical combination of the two channels was performed and these results were
used to produce upper limits on dark matter production. Limits on the signal production
cross section are calculated for both simplified models. For the Z’-2HDM signal, with
an intermediate pseudoscalar of mass ma = 300 GeV and mpy = 100 GeV, the Z’ masses
from 550 GeV to 1265 GeV are excluded at 95% confidence level. For the baryonic Z’ model,
with mpum = 1 GeV, Z' masses up to 615 GeV are excluded. This is the first search for dark
matter produced in association with a Higgs boson decaying to two 7 leptons and the first
to combine results from the vy and 777~ decay channels. The Z-2HDM interpretation
extended the Z' mass range compared with previous CMS searches. The interpretation of
the results include the baryonic Z’ model interpretation for CMS and an extrapolation to
limits on the spin-independent cross section for the dark matter-nucleon interaction.
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