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1 Introduction

The validity of the standard model (SM) of particle physics is corroborated by a wide set
of precise experimental results with an impressive level of accuracy. Nonetheless, there are
several open points where the SM fails to provide an explanation, either for experimental
observations, as in the case of the presence of dark matter in the universe, or for theoretical
questions, such as the omission of gravity from the SM, and the hierarchy problem.
Several SM extensions addressing the open questions of the SM predict the presence
of new heavy particles with an enhanced branching fraction for decays into pairs of vector
bosons. The existence of heavy spin-2 gravitons (G) is predicted in the Randall-Sundrum
model with warped extra spatial dimensions (WED) [1-3]. In the bulk scenario [4, 5], the
main free parameters are the mass of the first Kaluza-Klein graviton excitation (the bulk
graviton mass), and the ratio & = x/Mpj, where  is a curvature parameter of the WED
metric and Mp; = Mp / V81 is the reduced Planck mass. The introduction of a spin-1
triplet of Z’ and W’ bosons is described in the heavy vector triplet (HVT) model [6], which
generalizes a large number of explicit models in terms of a small set of parameters: cy,
controlling the interactions of the triplet with the SM vector and Higgs bosons; cp, which



describes the direct interaction with fermions; and gy, which represents the overall strength
of the new vector boson triplet interactions.

A variety of searches for heavy resonances decaying to two vector bosons have been car-
ried out in the past. The most recent results from the CERN LHC [7-11], with no evidence
of signal, have provided stringent upper limits on signal cross sections in these models.

This paper reports on the results of a search for heavy, narrow resonances (collectively
indicated as X) decaying into 2¢2q final states, with two charged leptons (¢ = e, u) produced
by the leptonic decay of a Z boson and a pair of quarks produced from the hadronic
decay of a vector boson (V = W or Z). In the narrow-width assumption, the width of
the heavy resonance is taken to be small in comparison to the experimental resolution.
Two complementary search strategies are defined to span the mass range 400 < myx <
4500 GeV, where mx is the mass of the heavy resonance. The first strategy, referred to as
the “high-mass analysis”, is optimized for the range 850 < myx < 4500 GeV by selecting
events where the vector bosons have a large Lorentz boost, resulting in the collimation
of their decay products. The high-mass analysis uses dedicated leptonic reconstruction
and identification techniques to reconstruct leptons in close proximity to each other in
order to retain high signal efficiency, as well as jet substructure techniques to identify the
hadronic decay of the W or Z boson into a pair of quarks contained in a single merged
reconstructed jet. For lower resonance masses, the quarks produced by the hadronic decay
of the V boson may be sufficiently separated to be reconstructed as two single narrow jets
(dijet). A second strategy, referred to as the “low-mass analysis”, is therefore defined in
this regime, exploiting dijet reconstruction in addition to the reconstruction of merged jets
to retain signal efficiency in the range 400 < mx < 850 GeV for those events in which no
merged V candidate is found. To increase the signal sensitivity, in the low-mass analysis a
categorization based on the flavor of the jets is used, to exploit the relatively large decay
branching fraction of the Z boson to pairs of b quarks.

This paper is organized as follows: in section 2, a description of the data and simulated
samples used in the analysis is provided; section 3 briefly describes the CMS detector;
section 4 provides a description of the event reconstruction; in section 5, the event selection
is discussed; section 6 contains the description of the signal and describes the estimation
of the SM background; the systematic uncertainties affecting the analysis are presented in
section 7; and the results of the search for heavy spin-1 and spin-2 resonances are presented
in section 8. Finally, results are summarized in section 9.

2 Data and simulated samples

This analysis uses data collected by the CMS detector during proton-proton (pp) collisions
at the LHC at /s = 13 TeV, corresponding to an integrated luminosity of 35.9fb~!. The
events were selected online by criteria that require the presence of at least one electron or
muon; these criteria are described in section 5.

Simulated signal samples are used in the analysis to optimize the search for the po-
tential production of heavy spin-1 or spin-2 resonances. For this purpose, signal sam-
ples are generated according to the HVT and WED scenarios, respectively. For both



scenarios, the samples are generated at leading order (LO) in QCD with the MAD-
GRAPHH_aMCQNLO 2.2.2 generator [12]. Two HVT models are considered as benchmarks,
“model A” and “model B”, with different values of the three defining parameters described
earlier: for “model A”, gy = 1, cg = —0.556, and cp = —1.316, while for “model B”,
gv =3, cy = —0.976, and cp = 1.024.

Different resonance mass hypotheses are considered in the range from 400 to 4500 GeV.
The resonance width is predicted to be between 0.4 and 2.3 GeV for a W’ candidate in
HVT model A, and between 14 and 64 GeV for HVT model B, depending on the W’ mass
hypothesis [6]; in the WED model with k = 0.1, the bulk graviton signal width is predicted
to range from 3.6 to 54 GeV [13]. Since the resonance width is small in comparison with the
experimental resolution, for simplicity, the width is taken to be 1 MeV in the simulation.
In the case of the spin-1 W’, the resonance is forced to decay into one Z and one W boson;
additionally, the Z boson is then forced to decay to a pair of electrons, muons, or tau
leptons, while the W boson is forced to decay into a pair of quarks. The generated spin-2
bulk graviton is instead forced to decay into two Z bosons, one decaying leptonically into any
pair of charged leptons, and the other Z boson decaying hadronically into a pair of quarks.

Several SM processes yielding final states with charged leptons and jets are sources
of background events for the analysis, and corresponding Monte Carlo (MC) simulated
samples have been generated and used in the analysis.

The SM production of a Z boson in association with quarks or gluons in the final state
(Z + jets) represents the dominant background process for the analysis, having topological
similarities to the signal because of the presence of a pair of charged leptons and jets. How-
ever, since the quark- and gluon-induced jets are not associated with the decay of a vector
boson, the jet mass spectrum is characterized by a smooth distribution and the distribution
of the 2+ jet system invariant mass falls exponentially, in contrast with the peaking distri-
bution expected from the signal in both the jet and 2¢+ jet mass spectra. The Z + jets MC
samples are produced with MADGRAPH5_aMC@NLO at next-to-leading order (NLO), using
the FxFx merging scheme [14] between the jets from matrix element calculations and parton
showers, and normalized to the next-to-NLO cross section computed using FEWZ v3.1 [15].

Another important source of SM background arises from processes leading to top quark
production. Simulated samples describing the production of top quark pairs are generated
with MADGRAPH5_aMC@NLO at LO, with the MLM matching scheme [16]. Single top
quark production is also considered; s- and ¢-channel single top quark samples are pro-
duced in the four-flavor scheme using MADGRAPH5_aMC@QNLO and POWHEG v2 [17-20],
respectively, while tW production is simulated at NLO with POWHEG in the five-flavor
scheme [21]. Additional top quark background processes, such as the associated produc-
tion of a Z or W boson with pair-produced top quarks, and the production of tqZ, are also
considered in the analysis and produced at NLO with MADGRAPH5_aMC@NLO.

The SM diboson production of VV is an irreducible source of background for the
analysis, since the jet mass spectrum will contain a peak from the hadronic decay of W and
7Z bosons, like the expected jet mass spectrum for the signal; however, this process produces
a smoothly falling 2+ jet invariant mass distribution. The SM production of pairs of vector
bosons (WW, WZ, and ZZ) is simulated at NLO with MADGRAPH5_aMC@NLO.



For all the simulated samples used in the analysis, the simulation of parton showering
and hadronization is described by interfacing the event generators with PYTHIA 8.212 [22]
with the CUETP8MI1 [23] tune, while the parton distribution functions (PDFs) of the
colliding protons are given by the NNPDF 3.0 [24] PDF set. Additional pp interactions
occurring in the same or nearby bunch crossings (pileup) are added to the event simulation,
with a frequency distribution adjusted to match that observed in data. All samples are
processed through a simulation of the CMS detector using GEANT4 [25], and reconstructed
using the same algorithms as those for the data collected.

3 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal
diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel
and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass
and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap
sections. The silicon tracker covers the pseudorapidity range |n| < 2.5, while the ECAL and
HCAL cover the range |n| < 3.0. Forward calorimeters extend the coverage provided by the
barrel and endcap detectors to || < 5.2. Muons are detected in gas-ionization chambers
embedded in the steel flux-return yoke outside the solenoid, with detection planes made
using three technologies: drift tubes, cathode strip chambers, and resistive-plate chambers.
A more detailed description of the CMS detector, together with a definition of the
coordinate system used and the relevant kinematic variables, can be found in ref. [26].

4 Event reconstruction

The event reconstruction is performed globally using a particle-flow (PF) algorithm [27],
which reconstructs and identifies each individual particle with an optimized combination
of information from the various elements of the CMS detector.

The reconstructed vertex with the largest value of summed physics-object p% is taken
to be the primary pp interaction vertex. The physics objects chosen are those that have
been defined using information from the tracking detector. These objects include jets, the
associated missing transverse momentum, which was taken as the negative vector sum of
the transverse momentum (pr) of those jets, and charged leptons.

In the silicon tracker, isolated charged particles with pr = 100 GeV and |n| < 1.4 have
track resolutions of 2.8% in pp and 10 (30) um in the transverse (longitudinal) impact
parameter [28]. The energy of charged hadrons is determined from a combination of their
momenta measured in the tracker and the matching ECAL and HCAL energy deposits,
corrected for zero-suppression effects and for the response function of the calorimeters
to hadronic showers. The energy of neutral hadrons is obtained from the corresponding
corrected ECAL and HCAL energies.

Electrons are required to be within the range |n| < 2.5 covered by the silicon tracker,
and are reconstructed from a combination of the deposited energy of the ECAL clusters
associated with the track reconstructed from the measurements determined by the inner



tracker, and the energy sum of all photons spatially compatible with being bremsstrahlung
from the electron track. The identification of electrons is based on selection criteria relying
on the direction and momentum of the track in the inner tracker, its compatibility with the
primary vertex of the event [27], and on observables sensitive to the shape of energy deposits
along the electron trajectory. The momentum resolution for electrons with pp ~ 45 GeV
from Z — ee decays ranges from 1.7% to 4.5% [29]. It is generally better in the barrel
region than in the endcaps, and also depends on the amount of bremsstrahlung emitted by
the electron as it traverses the material in front of the ECAL.

Muons are reconstructed in the entire CMS muon system acceptance region of |n| < 2.4
by combining in a global fit the information provided by the measurements in the silicon
tracker and the muon spectrometer. Candidate muons are selected using criteria based
on the degree of compatibility of the inner track, which is reconstructed using the silicon
tracker only, and the track reconstructed using the combination of the hits in both the
tracker and spectrometer. Further reconstruction requirements include the compatibility
of the trajectory with the primary vertex of the event, and the number of hits observed in
the tracker and muon systems. The relative pr resolution achieved is 1.3-2.0% for muons
with 20 < pr < 100 GeV in the barrel and better than 6% in the endcaps. The pr resolution
in the barrel is better than 10% for muons with pt up to 1 TeV [30].

Both electrons and muons are required to be isolated from hadronic activity and other
leptons in the event. An isolation variable is defined as the scalar sum of the pr of charged
hadrons originating from the primary vertex, plus the scalar sums of the transverse mo-
menta for neutral hadrons and photons, in a cone of AR = V(An)? + (A¢)? < 0.3(0.4)
around the electron (muon) direction corrected to account for the contribution from neu-
tral candidates originating from pileup, where ¢ is the azimuthal angle in radians. In the
high-mass analysis, a specific muon isolation requirement is implemented to retain signal
efficiency for high resonance masses, where the large Z boson boost may result in extremely
close pairs of muons. For this reason, muon candidates in the high-mass analysis are re-
tained if they pass an isolation requirement based on the sum of reconstructed pr of all
tracks within AR < 0.3 from the muon trajectory, ignoring tracks associated with other
reconstructed muons.

Hadron jets are clustered from particles reconstructed by the PF algorithm using the
infrared- and collinear-safe anti-kt algorithm [31, 32] with distance parameters of 0.4 (AK4
jets) and 0.8 (AKS jets). The jet momentum is determined as the vectorial sum of all con-
stituent particle momenta. Contamination from pileup is suppressed using charged hadron
subtraction (CHS) which removes from the list of PF candidates all charged particles orig-
inating from vertices other than the primary interaction vertex of the event. The residual
contribution from neutral and charged particles originating from pileup vertices is removed
by means of an event-by-event jet-area-based correction to the jet four-momentum. Identi-
fication requirements, based on the estimation of the energy fraction carried by the different
types of PF candidates clustered into a jet, along with the multiplicity of the PF candidates,
are used to remove jets originating from calorimetric noise. Corrections to the jet energy
are derived from the simulation, and are confirmed with in situ measurements with the
energy balance of dijet, multijet, photon + jet, and leptonically decaying Z + jet events [33].



A jet grooming technique is used for AKS8 jets in this analysis to help identify and
discriminate between jets from boosted hadronic V decays, which we refer to as “merged
jets”, and jets from quarks and gluons. The AKS jets are groomed by means of the modified
mass drop tagger algorithm [34], also known as the soft drop algorithm, with angular
exponent = 0, soft cutoff threshold zq,; < 0.1, and characteristic radius Ry = 0.8 [35].
The soft drop algorithm does not fully reject contributions from the underlying event and
pileup. The mass of the AKS8 jet (m;) is therefore defined as the invariant mass associated
to the four-momentum of the soft drop jet, after the application of the pileup mitigation
corrections provided by the pileup per particle identification (PUPPI) algorithm [36].

Discrimination between AKS jets originating from vector boson decays and those orig-
inating from gluons and quarks is also achieved by the N-subjettiness jet substructure
variable [37]. This observable exploits the distribution of the jet constituents found in the
proximity of the subjet axes to determine if the jet can be effectively subdivided into a
number N of subjets. The generic N-subjettiness variable 7y is defined as the pp-weighted
sum of the angular distance of all the k£ jet constituents from the closest subjet:

1 .
™= ZPT,k min(ARy g, ARo g, ..., ARN k). (4.1)
k

The normalization factor dy is defined as dy = >, pr 1 Ro, with R the clustering parameter
of the original jet. In this analysis, which aims to select V. — qq') decays, the variable
that best discriminates V boson jets from those from quarks and gluons is the ratio of
the 2-subjettiness to the 1-subjettiness: 791 = 79/71. The 791 observable is calculated for
the jet before the grooming procedure, and includes the PUPPI algorithm corrections for
pileup mitigation.

For the identification of jets originating from the hadronization of bottom quarks, the
combined secondary vertex (CSVv2) algorithm [38, 39] is used, either directly on the AK4
jets or on the AKS soft drop subjets with CHS pileup mitigation applied.

Only AK4 and AKS jets reconstructed centrally in the detector acceptance, within
In| < 2.4, are considered in the analysis.

5 Event selection

Events are selected online by requiring the reconstruction at trigger [40] level of at least
one charged lepton. For the high-mass analysis, pr thresholds of 115 (50) GeV are used for
electrons (muons). No isolation requirements are applied at trigger level, to retain efficiency
for high-mass signals, where the large boost expected for the leptonically decaying Z boson
will cause the two charged leptons to be collimated in the detector. For the low-mass
analysis a larger separation between the leptons is expected because of the lower pt of the
7 boson, and isolation requirements are included in the trigger selection, allowing the use
of lower lepton pr thresholds. The online selection for the low-mass analysis requires at
least one electron with pp > 25 GeV and |n| < 2.1 passing tight identification and isolation
requirements, or at least one muon with pyr > 24 GeV and |n| < 2.4, subject to loose
identification and isolation requirements, using the variables described in ref. [40].



To reconstruct the Z boson candidate, at least two well-identified leptons with opposite
charge and the same flavor are required to be present in the event. The leading lepton in the
event is required to pass more stringent selection requirements than the online thresholds
to avoid inefficiencies induced by the trigger selections. In the high-mass analysis, the
leading (subleading) lepton is required to have pr > 135 (35) GeV for electrons, and pr >
55 (20) GeV for muons. Loose isolation and identification requirements are applied to the
leptons to retain high signal efficiency. For electrons, we use a set of requirements that have
been observed to have an efficiency of about 90% for both low and high mass points. For
muons, as the CMS standard requirements [41] only have an efficiency of about 65% for close
muons, we instead use a dedicated selection where one of the two muons is allowed to be
identified only in the tracker. The isolation variable is calculated removing the contribution
of the other muon if it falls within the isolation cone, therefore recovering a signal efficiency
of about 90% for high mass resonances. For the low-mass analysis, the leading (subleading)
lepton is required to have pr larger than 40 (30) GeV and to fall in the range |n| < 2.1(2.4).

The selection of the Z boson candidate relies on the invariant mass of the dilepton
pair, myge. This is required to satisfy 70 < mygy < 110 GeV, except for the low-mass analysis
in the resolved category (discussed below) where the requirement is 76 < my < 106 GeV
to enhance the sensitivity to the signal by reducing the nonresonant contribution in the
sample with b tagged jets.

Different strategies are used in the low- and high-mass analyses to identify and recon-
struct the hadronically decaying V boson, as described below, to cope with the different V
boson boost regimes expected for low- and high-mass signal candidates.

In the high-mass analysis a merged jet is required in the event, and its mass m; is
used to select the hadronically decaying W or Z. The signal is expected to be almost fully
contained in the mass range 65 < m; < 105 GeV, which is thus defined as the signal region
(SR). In order to select candidate signal events, where a heavy massive particle decays
into a pair of boosted vector bosons, both the dilepton pair and the leading jet selected
in an event are required to have pr > 200 GeV; this is motivated by the pr spectrum of
the V bosons observed in simulation. Events are divided into categories depending on the
flavor of the charged leptons (e or p) and the value of the jet 751 variable. As the signal is
expected to have lower values of 791, two different purity categories are defined: events with
791 < 0.35 are defined as the high-purity (HP) category, while events with 0.35 < 19; < 0.75
fall into a low-purity (LP) category, used to retain some sensitivity to signal although a
larger amount of background is expected with respect to the HP category. The 191 > 0.75
region is expected to be dominated by the background, and is therefore not used in the
high-mass analysis. In total, four exclusive categories (from the two purity and two lepton
flavor categories) are defined for the high-mass analysis.

In the low-mass analysis, events are divided into two categories depending on whether
the two quarks from the hadronic V decay merge into a single reconstructed jet or can
be resolved as two distinct jets. In the merged category, merged jets with pt > 200 GeV
and 791 < 0.40 are selected. The choice of a looser 791 selection with respect to the cutoff
applied in the HP category of the high-mass analysis is driven by the higher expected signal
efficiency for merged events, which are selected in the low-mass analysis using only one 791



category. As in the high-mass analysis, the jet mass is required to be in the range 65 <
mj < 105 GeV for the jet to be considered a candidate W or Z boson, which is also defined
as the SR for the merged low-mass analysis. The resolved category contains events that do
not contain a merged V candidate, but instead two AK4 jets, both with pr > 30 GeV that
form a dijet candidate with invariant mass mj; > 30 GeV and pt > 100 GeV. In both the
merged and resolved cases, the pr selection is determined by comparing the pr spectrum
of simulated signal events with the expected background. Both the merged and resolved
categories are further split into two b tag categories. Events in the merged tagged category
are required to have at least one subjet satisfying a b tagging requirement corresponding
to ~65% efficiency for b quark identification and ~1% light-flavor jet mistag rate; events
not passing this requirement are placed in the merged untagged category. For the resolved
tagged category, events are required to have at least one jet satisfying the same b tagging
requirement used in the merged category; a looser b tag selection is instead required for the
other jet, with ~80% efficiency and ~10% light-flavor jet mistag rate. Events failing these
requirements fall in the so-called resolved untagged category. An arbitration procedure is
used to select the dijet candidate in case of events containing more than two selected narrow
jets: first, if a dijet passing the b tagging requirements is selected in the event, the candidate
in the b tag category is chosen; then the dijet candidate closest in mass to the Z boson
mass is selected as the candidate V boson. The signal region for the low-mass resolved
category accepts events in the dijet mass range 65 < mj; < 110 GeV. Eight categories are
defined in the low-mass analysis, based on the lepton flavor, the b-tag category, and the
merged or resolved reconstruction of the hadronically decaying V candidate.

The 71 and merged jet pr distributions of the V candidate for events selected in the
merged category of the low-mass analysis are shown in figure 1, where the m; and my;
distributions for events with a V candidate are also shown for the merged and resolved
low-mass analysis categories, respectively.

6 Background estimation

6.1 High-mass analysis

The main source of background events in the final state of the analysis arises from the
production of a leptonically decaying Z boson in association with quark and gluon jets.
A second background source relevant for the analysis is SM diboson production, mainly
77 and ZW, with a leptonically decaying Z boson together with a W or Z boson decaying
hadronically. These diboson events are an irreducible background for the analysis, as the
mass distribution of the SM V jet peaks in the same region as the signal. Finally, top
quark production is considered as a source of background in the analysis, despite having a
much smaller contribution with respect to other SM backgrounds in the region probed by
this analysis, mostly because of the Z boson invariant mass selection and the large boost
required in the event.

All SM background processes are characterized by a smoothly falling distribution of
the invariant mass of the dilepton pair and the jet selected (myz), whereas the signal is
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Figure 1. Upper row: distribution of the merged V candidate 72; (left), where the 1797 < 0.4
requirement has been removed, and the jet pr (right) in data and simulation for events in the
signal region of the low-mass analysis. Lower row: V candidate m; (left) and mj; (right) in data
and simulation for events in the signal regions of the low-mass search. The points show the data
while the filled histograms show the background contributions. The gray band shows the statistical
and systematic uncertainties in the background, while the dashed vertical region (“Higgs”) shows
the expected SM Higgs boson mass range, which is excluded from this analysis. A 600 GeV bulk
graviton signal prediction is represented by the black dashed histogram; for visibility, the signal
cross-section is increased by a factor of 5 in the merged category and 50 in the resolved category.
With the exception of the jet pr, which typically peaks at approximately half of the resonance mass,
the quantities shown have minimal dependence on the mass of the resonance. The background
normalization is derived from the final fit to the mvyy observable in data.



instead expected to appear as a narrow peak at a value of myy close to the actual value of
the mass of the resonance mx.

To minimize the dependency on the accuracy of the simulation, the contribution of the
dominant background, Z+jets SM production, is estimated using data. Two signal-depleted
regions are defined by selecting events with jet mass outside the m; signal mass window
defined in section 5; these are the sideband (SB) regions. A lower sideband (LSB) region
is defined for events with 30 < m; < 65 GeV, close to the SR of the analysis, while a higher
sideband (HSB) region contains events with 135 < m; < 300 GeV. The region 105 < m; <
135 GeV is not used in the analysis, to exclude events containing the hadronic decays of a
SM Higgs boson, which are targeted in other CMS analyses, such as that described in [42].

The Z + jets background myy shape and normalization are obtained by extrapolation
from fits to data in the SB regions.

The m; distribution for the SM background sources considered in the analysis is mod-
eled by means of analytic functions describing the spectrum of each background in the
mass region 30 < m;j < 300 GeV. In the LP category, the m; spectrum in Z + jets events is
described by a smoothly falling exponential distribution, while a broad structure centered
around the mass of the W boson present in the HP category is modeled with an error
function convolved with an exponential distribution, which is of particular importance for
describing the behavior at large values of m;. The peaking structure of the diboson back-
ground, originating from the presence of a jet from a genuine W or Z boson in the event, is
described in both the LP and HP categories with a Gaussian distribution. The remaining
component of the distribution, consisting of tails extending far from the SR, is modeled in
the LP category with an exponential function, similarly to the Z + jets case. In the HP
category, the VV events are mostly contained in the SR, and the small fraction of events
present in the Higgs boson and LSB regions is described with an additional broad Gaussian
contribution. The top quark background (tt, single top quark, tZq, and ttV production)
is mostly similar in shape to the Z + jets background; in the LP category, in addition to
the exponentially falling component, a Gaussian is included to model the top quark peak
appearing in the HSB for m; ~ 170 GeV.

The expected yield of the Z + jets background in the SR is extracted by a fit of the m;
distribution in the SBs taking into account all background contributions. The parameters
describing the m; shape and normalization of the subdominant background processes are
fixed to those extracted from the simulation. All the parameters used to describe the
7 + jets contribution are left free to float in the fit to the data SBs. Alternative functions
modeling the mj; shape of the main Z + jets background are used to evaluate the impact of
the function choice on the signal normalization.

The m; distribution for expected and observed events is shown in figure 2.

To describe the shape of the myy variable for the Z + jets background in the SR, the
following transfer function is defined from simulation:
MC,Z+jets (mVZ)

SR

. , (6.1)
fé\%;c,z-'r‘]ets (mVZ)

Oé(mvz) =
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Figure 2. The m; distributions of the events in data, compared to the expected background shape,
for the high-mass analysis in the electron (upper) and muon (lower) channels, and for the high-
purity (left) and low-purity (right) categories. The expected background shape is extracted from a
fit to the data sidebands (Z+jets) or derived from simulation (“top quark” and “VV”). The dashed
region around the background sum represents the uncertainty in the Z + jets distribution, while
the dashed vertical region (“Higgs”) shows the expected SM Higgs boson mass range, excluded
from the analysis. The bottom panels show the pull distribution between data and SM background
expectation from the fit, where oqa., is the Poisson uncertainty in the data.

where fMC 24 () and fé\fgc’zﬂets (mvyz) are the probability density functions describ-

ing the myyz spectrum in the SR and SBs, respectively, of the simulated Z + jets sample.
The shape of the Z + jets background in the SR is then extracted from a simultaneous
fit to data in the SBs, and to simulation in both the SR and SBs, to correct the functional
form obtained from data using the a(myz) ratio. The myyz shape is described by two-
parameter exponential functions for both data and simulation. The final estimate of the
background myz shape predicted in the SR is then given by the following relation:

Z+Jetsfobs Z+JetS(

NEY () myz)a(myz)

NMCVV pMCvY
Jor7

NMC:t MO
Jer 7 (

myz) + mvyz),
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where N§;° 4(myz) is the predicted background in the SR and fggs’zﬂm(mvz) is the prob-
ability distribution function describing the Z+jets background in the SBs. This is obtained
from a fit of the overall background components to data in the SBs, after subtracting the
subdominant top quark and VV components, which are derived from simulation. The
functions fé\éc’t(mvz) and fé\%{c’vv(mvz) are the probability distributions of the top quark
and diboson components, respectively, also in this case fixed to the shapes derived from
the simulated samples in the SR. The normalization of the Z + jets background in the SR,

NSZ;{ jets, is provided by the result of the fit on the m; data sidebands described above, while

the normalization of the top quark and VV backgrounds, Né\g{c’t and Né\éc’vv

, are fixed to
the expected yields from simulation.

The a(myzy) function accounts for differences and correlations in the transfer process
from the SB regions to the SR, and is largely unaffected by uncertainties in the overall
7 + jets cross section and distribution shapes.

The final myyz spectra in the SR are shown in figure 3, compared to the expected
estimated background.

The validity and robustness of the background estimation method is demonstrated
by the agreement observed between the shape and normalization for events selected in an
intermediate m; mass region (50 < m; < 65GeV), corresponding to the part of the LSB
shown in figure 2 above 50 GeV, and the prediction made using the events in the remaining
part of the LSB and the full HSB regions.

The description of the signal myy shape is extracted from simulated signal samples.
Several signal samples generated with resonance mass ranging from 400 to 4500 GeV in
the narrow width approximation are modeled independently for each channel with a Crys-
tal Ball (CB) function [43]. The power-law component of the CB function improves the
description of the myy signal distribution by accounting for the small contribution from
lower myz tails appearing for high signal masses. The resolution of the reconstructed myzy
can be extracted from the Gaussian core width of the CB function, and is estimated to be
2-3.5% in the electron channel and 3-4% in the muon channel, depending on the mass of
the resonance.

6.2 Low-mass analysis

For the low-mass analysis, the Z + jets background is characterized using simulated
Drell-Yan + jets events. Because of the limited number of simulated events, the myy
distributions in the b-tagged categories are susceptible to sizable statistical fluctuations,
which affect the quality of the background modeling. It has been observed, however, that
within simulation uncertainties, the Z + jets mass shape is the same for events with and
without b-tagged jets. Therefore, the Z + jets shape in the b-tagged category is described
using the myy shape obtained from the simulation without making any b tag requirements.

Sideband regions are defined depending on the mass of the hadronic V boson candidate.
The mass ranges 30 < m; < 65GeV and 135 < m; < 180 GeV are used for the merged
category, whereas for the resolved event selection the upper mass threshold is raised to
300 GeV to take advantage of the increased number of events in that region.
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Figure 3. Expected and observed distributions of the resonance candidate mass myy in the high-
mass analysis, in the electron (upper) and muon (lower) channels, and separately for the high-purity
(left) and low-purity (right) categories. The shaded area represents the post-fit uncertainty in the
background. The bottom panels show the pull distribution between data and post-fit SM back-
ground fit, where ogata is the Poisson uncertainty in the data. The expected contribution from W'
signal candidates with mass mx = 2000 GeV, normalized to a cross section of 100 fb, is also shown.

In the final fit to the data, the Z + jets background normalization in the SR is con-
strained by the observed yield in the SBs; this procedure is applied independently to each
category. The shape predictions from the NLO Z + jets simulation are taken as a baseline
myyz shape in the SR of every category; additionally, a family of linear correction functions:

Corr(mx, s) = 1+ s(mx — 500 GeV) /(500 GeV), (6.3)

with individual members of the family defined by the slope parameter s, is considered.
Figure 4 shows fits to the SB myy distributions where the slope parameter s, allowed to
float freely, is constrained by the observed shapes in data. The two-standard-deviation
uncertainties in the fitted linear correction functions, which are in the range from 2 x 10
to 6 x 10 GeV~!, depending on the category, are observed to cover the residual shape
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differences in the SBs. In the signal region fit of each category, the SB-constrained slope
parameter s is treated as a Z + jets shape systematic effect. In this way the background
shape can be corrected to that observed in data. Statistical uncertainties associated with
the simulated Z + jets distributions are also taken into account in the fit. The fits in the
merged V categories include the peaking region of the background; figure 4 shows that the
SB data in this particular region are described well by the fit.

Dilepton backgrounds that do not contain a leptonic Z boson decay are estimated
from data using ey events passing the analysis selection. This approach accounts for tt
production, WW —+ jets, Z — 77 + jets, single top quark, and hadrons misidentified as
leptons, which we collectively refer to as t + X. The relative yield of ee and uu events with
respect to ey events has been estimated on a top quark-enriched control sample and shown
to be consistent with expectations. Also, the ey myy distribution was compared with the
prediction from simulated background events with symmetric lepton flavor, and found to
be in agreement. The contribution of this t + X background is 2% and 20% of the total
background in the untagged and tagged categories of the resolved analysis, respectively.
The merged analysis has a t + X contribution of 0.5% and 1% in the untagged and tagged
categories, respectively.

The diboson background (ZZ and ZW, with Z — ¢¢) is estimated directly from simu-
lation. The contribution from these events represents 4% and 5% of the total background
in the untagged and tagged categories of the resolved analysis, respectively, while in the
merged analysis it is about 14% and 16% in the untagged and tagged categories, respec-
tively.

The myy distributions for the signal region for the merged and resolved categories are
depicted in figure 5.

7 Systematic uncertainties

Several sources of systematic uncertainties influence both the normalization and shape of
the backgrounds and signal distributions in the analysis.

In the high-mass analysis, where the Z + jets background component is estimated with
data, the main systematic uncertainties in the predicted normalization for the Z + jets
background arise from the statistical uncertainties in the fit of the m; sidebands in data.
Another uncertainty affecting the normalization of the main background is evaluated by
taking the difference between the expected Z + jets contribution in the SR obtained by the
main function used to describe the m; spectrum, and an alternative function choice. An
additional normalization uncertainty is related to the choice of the function used to describe
the m; spectrum for the subdominant top quark and VV backgrounds, evaluated from
simulation, and propagated to the Z + jets normalization prediction in the SR. Overall, the
Z + jets normalization uncertainties contribute from 9 to 15%, depending on the category.
The main shape uncertainties in the Z + jets background are extracted from the covariance
matrix of the fit to the myyz data SB spectrum, convolved with the uncertainties provided
by the a(myz) ratio, via the simultaneous fit procedure described in section 6.1.
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Figure 4. Sideband myyz distributions for the low-mass search in the merged V (upper), resolved
V (lower), untagged (left), and tagged (right) categories, after fitting the sideband data alone.
The points show the data while the filled histograms show the background contributions. Electron
and muon categories are combined. The gray band indicates the statistical and post-fit systematic
uncertainties in the normalization and shape of the background. Larger bin widths are used at
higher values of myy; the bin widths are indicated by the horizontal error bars.

In the low-mass analysis, to account for background shape systematic effects not explic-
itly evaluated, data and simulation are compared in the sideband region, and the residual
shape difference is treated as an additional uncertainty, resulting in the dominant back-
ground shape systematic uncertainty of the low-mass analysis.

The top quark and VV background components have a systematic uncertainty in the
normalization arising from the degree of knowledge of the respective process production
cross sections. The value of the VV production cross section, taken from a recent measure-
ment by the CMS collaboration [44, 45], is assigned an uncertainty of 12%. The top quark
background uncertainties are estimated differently in the low- and high-mass analyses: in
the low-mass analysis, where a dedicated eu control region is exploited to measure the
t + X background normalization, a 4% uncertainty is estimated by comparing the yield of
ep events with ee + pp data; in the high-mass analysis, where the top quark production
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Figure 5. The signal region myy distributions for the low-mass search, in the merged V (up-
per), resolved V (lower), untagged (left), and tagged (right) categories, after fitting the signal and
sideband regions. Electron and muon categories are combined. A 600 GeV bulk graviton signal
prediction is represented by the black dashed histogram. The gray band indicates the statistical
and post-fit systematic uncertainties in the normalization and shape of the background. Larger bin
widths are used at higher values of myy; the bin widths are indicated by the horizontal error bars.

is taken from simulation, a 5% uncertainty in the cross section is used, which is extracted
from the recent CMS measurement of top quark pair production in dilepton events [46].

Uncertainties associated with the description in simulation of the trigger efficiencies,
as well as the uncertainties in the efficiency for electron and muon reconstruction, identifi-
cation, and isolation, are extracted from dedicated studies of events with leptonic Z decays,
and amount to 1.5-3%, depending on the lepton flavor. The uncertainties in the lepton
momentum and energy scales are taken into account, and propagated to the signal shapes
and normalization, with a typical impact on the normalization of about 0.5-2%, depending
on the lepton flavor.

Uncertainties in the jet energy scale and resolution [47] affect both the normalization
and the shape of the background and signal samples. The momenta of the reconstructed
jets are varied according to the uncertainties in the jet energy scale, and the selection
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efficiencies and myy signal shapes are reevaluated using these modified samples, resulting
in a change of 0.1 to 1.8%, depending on the jet selection. The impact of the jet energy
resolution is also propagated, and a smaller impact is observed compared with that due to
the uncertainty in the energy scale.

The dominant uncertainty in the signal selection efficiency is the uncertainty in the
V boson identification efficiency, corresponding to 11% (23%) for the HP (LP) category
in the high-mass analysis, and 6% for the merged category of the low-mass analysis [48].
The V boson identification efficiency, the groomed mass resolution of V jets, and the
related systematic uncertainty are measured in data and simulation in an almost pure
selection of semileptonic tt events where boosted W bosons produced in the top quark
decays are separated from the combinatorial tt background by means of a simultaneous
fit to the soft drop mass. The uncertainties in the soft drop mass scale and resolution are
propagated to the groomed jet mass, and the impact on the expected selection efficiency
of signal and VV background is taken into account. An additional uncertainty affecting
the signal normalization is included to account for the extrapolation of the uncertainties
extracted from a tt sample at typical jet pr of 200 GeV to higher regimes, estimated from
the differences between PYTHIA 8 and HERWIG +-+ [49] showering models, yielding an
uncertainty from 2.5 to 20% depending on the category. For the high-mass analysis, the
uncertainties in the V boson identification efficiency and the extrapolation are treated as
anticorrelated between the low- and high-purity categories.

For the low-mass analysis, one of the largest signal selection uncertainties is the uncer-
tainty in the b tagging efficiency for the tagged categories of the analysis. The b tagging
efficiencies and their corresponding systematic uncertainties are measured in data using
samples enriched in b quark content, and their propagation to the signal region of the
low-mass analysis produces an uncertainty of up to 4.3%. The uncertainties in the mistag
efficiency are also considered; the uncertainties in the b tagging and mistag efficiencies are
treated as anticorrelated between the tagged and untagged categories.

The impact of the uncertainties in the factorization and renormalization scales is prop-
agated both to the normalization and the myy shapes for signal, and for the high-mass
analysis to top quark and VV backgrounds. The corresponding scales are varied by a factor
of 2 to measure the effect, resulting in an uncertainty of 2% for the diboson background
normalization and 15% for top quarks. The impact on the signal acceptance is evaluated
to be 0.1-3%, depending on the resonance mass and analysis category.

A systematic uncertainty associated with the choice of the set of PDFs used to gen-
erate the simulated samples is evaluated by varying the NNPDF 3.0 PDF set within its
uncertainties, and its effect is propagated to both the signal and background myy shapes
and normalization, resulting in a measured uncertainty of approximately 1%.

Additional systematic uncertainties affecting the normalization of backgrounds and
signal from the contributions of pileup events and the integrated luminosity [50] are also
considered and are reported in table 1, together with the complete list of uncertainties
considered in the analysis. In the high-mass analysis, the typical total uncertainty in the
background normalization is in the range 10-60%, depending on the signal mass, and it is
1-5%, depending on the category, in the low-mass analysis.
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High-mass Low-mass Low-mass
Merged Merged Resolved

Source Background Signal | Background Signal | Background Signal
Electron trigger and ID 2.0-3.0 2.0 2.0

Muon trigger and ID 1.5-3.0 1.5 1.5
Electron energy scale <0.1 1.0 0.8 0.1-0.5 1.3 1.2-2.5
Muon momentum scale <0.1 0.5-2.0 0.6 0.1-0.4 1.4 0.2-2.0
Jet energy scale 0.1-0.5 0.1 1.0 0.3-0.6 1.3 0.6-1.8
Jet energy resolution <0.1 <0.1 0.6 0.1 0.2 0.1-0.2
b tag SF untagged — — 0.2 0.3-0.4 0.1 0.6
b tag SF tagged — — 2.0 2.0-2.3 3.8 4.1-4.3
Mistag SF untagged — — 0.5 0.5-0.6 0.4 0.2-0.4
Mistag SF tagged — — 1.5 0.4-0.6 4.3 0.5-1.4
SM VZ production 12 — 12 — 12 —
SM t quark production 5 — 4 (ep) — 4 (ep) —
V identification (721) — 11-23 6 (VZ) 6 — —
V identification (extrapolation) — 2.5-20 — 2.6-6.0 — —
V mass scale 0.5-2.5 1.0-2.0| 0.2 (VZ) 0.5-1.1 — —
V mass resolution 5.5 5-6 5.6 (VZ) 5.7-6.0 — —

7 + jets normalization 9-15 — — — — —
Pileup 0.5-4.0 0.4 0.5 0.1-0.3 0.1 0.3-0.5
PDFs 0.3-1.5 0.5 — 1.5-1.6 — 0.3-1.1
Renorm. /fact. scales 2 (VZ), 15 (Top) 1.0-3.0 — 0.1-0.3 — 0.2-0.3
Integrated luminosity 2.5 2.5 2.5

Table 1. Summary of systematic uncertainties, quoted in percent, affecting the normalization of
background and signal samples. Where a systematic uncertainty depends on the resonance mass
(for signal) or on the category (for background), the smallest and largest values are reported in the
table. In the case of a systematic uncertainty applying only to a specific background source, the
source is indicated in parentheses. Systematic uncertainties too small to be considered are written
as “<0.1”, while a dash (—) represents uncertainties not applicable in the specific analysis category.

8 Results and interpretation

Results are extracted separately for the high- and low-mass analyses from a combined
maximum likelihood fit of signal and background to the myy distribution, simultaneously
in all the categories used in the respective analysis. An unbinned fit is performed in
the high-mass analysis, while a binned fit is performed in the low-mass one; this choice is
determined by the fact that in the high-mass analysis, the signal and background shapes are
described with analytical functions, while in the low-mass analysis, the background shapes
are described by binned histograms. The systematic uncertainties discussed in section 7 are
included as nuisance parameters in the maximum likelihood fit, and the background-only
hypothesis is tested against the combined background and signal hypothesis [51, 52].
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Figure 6. Observed and expected 95% CL upper limit on owB(W’' — ZW) (left) and ogB(G —
Z7) (right) as a function of the resonance mass, taking into account all statistical and systematic un-
certainties. The electron and muon channels and the various categories used in the analysis are com-
bined together. The green (inner) and yellow (outer) bands represent the 68% and 95% coverage of
the expected limit in the background-only hypothesis. The dashed vertical line represents the tran-
sition from the low-mass to the high-mass analysis strategy. Theoretical predictions for the signal
production cross section are also shown: (left) W’ produced in the framework of HVT model A with
gv = 1 and model B with g, = 3; (right) G produced in the WED bulk graviton model with & = 0.5.

The largest excess of events with respect to the background-only hypothesis, with a
local significance of 2.5 standard deviations, is observed in the vicinity of mx =~ 1.2 TeV,
and arises predominantly from a localized excess of events in the dimuon HP category of
the high-mass analysis.

The limit at 95% confidence level (CL) on the signal cross section for the production of
a heavy spin-1 or spin-2 resonance is set using the asymptotic modified frequentist method
(CLg) [51-54].

The results of the low- and high-mass analyses should agree for the intermediate mass
range 800-900 GeV, which is accessible to both strategies with similar expected efficiencies
for signal candidates. The results of the analysis are therefore presented based on the
low-mass strategy up to resonance masses mx < 850GeV, and based on the high-mass
analysis for mx > 850 GeV. At the intermediate mass point mx = 850 GeV, the results of
both strategies are presented, and the expected limits at 95% CL of the low- and high-mass
analyses on the signal cross sections are found to be in agreement within 3 and 6% for the
W’ and bulk graviton signal model, respectively.

The observed upper limits on the resonance cross section, multiplied by the branching
fraction for the decay into one Z boson and a W or Z boson, owB(W' — ZW) or g B(G —
Z7), are reported as a function of the resonance mass in figure 6 assuming a W' or G
produced in the narrow-width approximation, and the local p-value [55] is shown in figure 7.

Based on the observed (expected) upper limits on the signal cross section, a W’ signal
is excluded up to 2270 (2390) GeV in the framework of HVT model A (¢gyv = 1), and up
to 2330 (2630) GeV for HVT model B (gv = 3); a WED bulk graviton is excluded up to
masses of 925 (960) GeV for k = 0.5.
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Figure 7. Observed local p-values for W’ (left) and G (right) narrow resonances as a function of
the resonance mass. The dashed vertical line represents the transition from the low-mass to the
high-mass analysis strategy.

9 Summary

A search for a heavy resonance decaying into a Z boson and a Z or a W boson in 2/2q final
states has been presented. The data analyzed were collected by the CMS experiment in
proton-proton collisions at /s = 13 TeV during 2016 operations at the LHC, corresponding
to an integrated luminosity of 35.9fb~!. The final state of interest consists of a Z boson
decaying leptonically into an electron or muon pair, and the decay of an additional W or Z
boson into a pair of quarks. Two analysis strategies, dedicated to the low- and high-mass
regimes (below and above 850 GeV, respectively), have been used to set limits in the range
of resonance mass from 400 to 4500 GeV. Depending on the resonance mass, expected
upper limits of 3-3000 and 1.5-400 fb have been set on the product of the cross section of
a spin-1 W’ and the ZW branching fraction, and on the product of the cross section of a
spin-2 graviton and the ZZ branching fraction, respectively.
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