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A B S T R A C T

We show that the second law of thermodynamics is rooted in quantum mechanics, inasmuch as allowing the
substitution of the Boltzmann constant k and temperature with respectively the Planck constant and quantum
numbers. In particular, we will see that the entropy S becomes proportional to the natural logarithm of the
average of the squared quantum numbers n2, where each quantum number is associated with a quantum state of
the constituents of the thermodynamical system under consideration. It is important to stress that the present
approach furnishes the corrected Boltzmann entropy expression. Thus, instead of =S lnΩk , with Ω in the
former signifying the number of Boltzmann microstates, we land at =S nln 2k The results obtained are dis-
cussed.

Introduction

In the present paper, we will show that the second law of thermo-
dynamics can be understood in terms of a quantum mechanical de-
scription of the behavior of the ideal gas on the basis of an approach we
introduced previously [1–4].

As is known, both the first and the second laws of thermodynamics
plays a principal role in our understanding of the behavior of thermo-
dynamical systems [5–7]. The first law of thermodynamics, briefly
speaking, is the “law of energy conservation”. This law states that,
should a very small amount of heat δQ delivered to a given system –
such as an “ideal gas imprisoned in a cylinder” – and the system sub-
sequently effectuates a very small amount of work δW to the outside
(say, via outwardly pushing a piston situated at the upper base of the
cylinder filled by the gas), then the internal energy U of the system will
be increased on the whole as much dU; i.e.,

= −dU δQ δW . (1)

We remind that δQ and δW are not, in general, total differential
quantities (meaning, they are path-dependent, i.e. they are reliant on
the manner followed to achieve the given processes), while dU re-
presents a total differential, i.e., it is path-independent.

Let us add that the internal energy U of the ideal gas consisting of NA

molecules can be presented as the product of an average kinetic energy
K of the given molecules and the number of these molecules; i.e.,

=U N K .A (2)

It is common practice to take NA as the Avogadro’s number, so that
we deal with one mole of molecules.

One more way to express the internal energy U is based on the
notion of temperature T, and the link between U and T is established via
the Boyle and Mariotte law [7]; i.e.,

=PV nRT, (3)

where R is the gas constant, and n is the number of moles the gas at
hand embodies.

Based on the kinetic theory of gases [8], we can now bridge U and T
by first writing for one mole of gas

=PV U(2/3) , (4)

and then by considering the equivalent expression

=RT U(2/3) . (5)

The number 2 in the numerator of the fraction 2/3 right above
comes from the expression of the non-relativistic kinetic energy K
written for one molecule bearing the mass m and the velocity v, by
virtue of the classical mechanics formula K=(1/2)mv2; whereas, the
number 3 in the denominator of the fraction points to the three spatial
components of the velocity vector, which are expected to be equal to
each other for the average velocity the molecules delineate.

Further, we take into account that the internal energy U depends on
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just one parameter – i.e., the temperature T [9]. Accordingly, dU of Eq.
(1) can be expressed for one mole of gas as

=dU C dT,v (6)

where the quantity Cv is the energy to be furnished to one mole of gas
occupying a constant volume in order to increase its temperature by
1°K. As a first undertaking, we assume Cv to be a constant (even though,
in the derivation we will offer below, we do not really have to make
such an assumption, given that we will operate with just U instead of T).

Next, we retrieve δQ from Eq. (1):

= +δQ dU δW . (7)

The work δW, on the other hand, is as usual

=δW PdV . (8)

Therefore, we can rewrite Eq. (7) as

= +δQ C dT PdV .v (9)

We next divide it by T:

= +δQ T C dT T PdV T/ / / ,v (10)

and use Eq. (3) to rephrase it as

= +δQ T C dT T RdV V/ / / .v (11)

Since the rhs of the above equation constitutes a total differential, so
too must the lhs δQ/T; which we shall now call dS. It can be integrated
from an initial state (i) up to a final state (f):

∫ ∫ ∫ ∫= − = = +dS S S δQ
T

C dT
T

RdV
V
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where we demarcate

= −S S SΔ .f i (14)

The function S is the classic entropy; and the latter two equations
express its variation between the final state f and the initial state i of
concern. Henceforth Tf, Vf and Ti, Vi stand for temperatures and vo-
lumes at respectively the final and the initial states.

In light of the total differential characteristic, we can straightfor-
wardly write for a fully reversible closed cycle

∮ =δQ
T

0. (15)

This is basically the classic second law of thermodynamics for re-
versible processes; and we recall that one could arrive at it via merely
the law of ideal gases upon embarking from the first law of thermo-
dynamics.

The first law of thermodynamics – i.e., Eq. (1) – can similarly be
written thus for a closed cycle as

∮ =dU 0. (16)

Nothing new is advanced up to this point; we had reminded the
foregoing information for the sake of completeness and convenience for
the reader with regards to the upcoming presentation.

In Section “Second law of thermodynamics and the quantum mechan-
ical description of gases” we introduce a quantum mechanical framework
for the second law of thermodynamics based, particularly, on the
quantum mechanical expression of the classical adiabatic constancy of
Pressure× Volume5/3 obtained from the laws of gas and the first law of
thermodynamics, where the constant coming into play can be evaluated
via non-relativistic or relativistic quantum mechanics (QM) [1–4]. Fi-
nally, in Section “Discussion”, we discuss the results obtained.

Second law of thermodynamics and the quantum mechanical
description of gases

At this stage, we introduce our novel approach. Thus, via referring
to the first law of thermodynamics (9), we combine it with Eq. (7) and
divide both sides of the outcome by U (thus replacing the temperature T
with the internal energy U as the important step in the realization of our
approach):

= +δQ U dU U PdV U/ / / . (17)

We may further use Eq. (3) along with Eq. (5) to arrive at:

= +δQ U dU U dV V/ / (2/3) / . (18)

Here again, as long as the rhs constitutes a total differential, so must the
lhs δQ/U (i.e., “the infinitesimal heat input over the total internal ki-
netic energy of one mole of gas”), which we designate below as dS.

Eq. (18) can be integrated from an initial state (i) up to a final state
(f):
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which leads to
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where we designated

= −Δ .f iS S S (21)

Here, Uf and Ui stand for the internal energies of one mole of gas
under consideration at the given final and initial states respectively.
Similarly, Vf and Vi are respectively the volumes of the gas at the given
final and initial states.

It is clear that S corresponds to the classic entropy S divided by the
Boltzmann constant k ; and just for the purpose of distinction, we will
denominate it as “sentropy”. In such a way, “sentropy” is still a measure
of “disorder” like classic entropy is.

Based on the sentropy function S, and for a closed and entirely
reversible cycle, we can write:

∮ = ∮ =δQ
U

d 0,S (22)

which can be considered as an expression for the second law of ther-
modynamics that incorporates the sentropy function.

Further, we can explicitly write the function S as referred to a
“reference quantity” RefS :
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where the subscript “Ref” signifies the “given state of reference”, while
the quantities U and V refer to the actual state the system assumes.

Let us further use Eq. (4) to present Eq. (23) in the equivalent form
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We would like to recall that the combination PV 5/3 is classically
coined as a constant quantity under an adiabatic transformation, though
its particular value (C) had remained undetermined since a long time in
the classical approach. So it was evermore considered as an adiabatic-
transformation-invariant rather than bearing anything special.

Whereas, we have recently shown that the given constant can well
be evaluated within the framework of QM [1–4]. Accordingly, as a first
approximation, we consider the molecules of gas as non-relativistic
non-interacting particles confined in a box of a macroscopic size (e.g.,
that of a gas container), and solve the corresponding Schrödinger
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equation. In particular, for N molecules enclosed in a cube (for sim-
plicity’s sake, but without any loss of generality), the constant of con-
cern had been revealed to be [1–4]:

∑= + +
=

C h
m

n n n
12

( ).
i

N

xi yi zi

2

1

2 2 2

(25a)

Here h is the Planck constant, and m the mass of the molecule of the gas.
We have to stress the fact that, even in a cubic geometry, each state is
normally characterized by the three quantum numbers nx, ny and nz.We
anticipate that each molecule would occupy a given set of the three
quantum numbers nx, ny, and nz, and normally we would have N such
sets.

In order to simplify the notation, we call ni
2 the summation of the

squared quantum numbers in question:

= + +n n n n ,i xi yi zi
2 2 2 2 (25b)

no matter whether or not ni
2 may be an integer square. Note that ni

2 is
proportional to the total quantum mechanical energy of the molecule
situated at the given state [1–4]. Note further that we do not necessarily
have to have = = =n n n 1xi yi zi for i=1; on the contrary, the quantum
numbers for the lowest and highest energy states are determined by
temperature; i.e. the average of ni

2.
We now rewrite Eq. (25a):
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In any case, the rhs of Eq. (25a) for an adiabatic transformation
indeed stays as a constant, given that the quantum numbers of concern
will not get changed throughout such a transformation. In other words,
the temperature of the gas under those circumstances will increase (for
an adiabatic compression), or decrease (for an adiabatic expansion)
with respect to a change of volume, whereas its molecules will remain
at their original quantum levels [3].

Note that our approach is not restricted to a cube at all, and can well
be generalized to a rectangular parallelepiped [3], and therefore to any
other geometry, too.

Eq. (25a) directly establishes the bridge between QM and thermo-
dynamics. While it is true that =PV Constant5/3 is classically derived
with respect to an adiabatic transformation, it is at the same time true
that the relationship
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(25d)

can evidently be considered to hold for any gas at rest, as a whole, and
be characterized as a new “system equation”.

While the rhs of the above equation remains constant throughout an
adiabatic transformation as mentioned, this is not generally the case,
and is in effect shaped by the internal properties of the system at hand.

Henceforth Eq. (25d) becomes the quantum mechanical root of the
second law as framed by Eq. (24).

One could wonder how the temperature of the gas, at rest as a
whole, can now be determined. The temperature is linked to the
average energy of molecules via the Boltzmann constant, while the
average energy of molecules is given by the average of ni

2. That being
the case, the higher the temperature, the greater the quantum numbers
appearing in Eq. (25b) for a given volume. In contrast, as mentioned,
they stay the same throughout for an adiabatic transformation regard-
less of the fact that the volume the gas occupies varies together with its
pressure (thereby fulfilling the relationship =PV C5/3 ). In short, this
latter relationship, where C is coined by Eq. (25c), furnishes a general
description of the given gas at rest as a whole, and constitutes a com-
plete quantum mechanical scaffold at any “given particular status” the
system should assume.

Under the given circumstances, the sentropy quantity S, as referred

to the reference sentropy RefS , along with the self-explanatory addi-
tional notations, becomes
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Let us call nRef
2 the average of the squared quantum numbers at the

reference state. This is directly linked to the average energy of the
molecules at this state.

At the same time, let us call n2 the average of the squared quantum
numbers pertaining to the “overall status” the system of concern as-
sumes, which is directly linked to the average energy of the molecules
at the given status. We can, accordingly, simplify Eq. (26) as
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Further, we can choose the reference state practically with T=0,
and simultaneously infer in tandem that this reference state is char-
acterized with the lowest average quantum number – i.e., unity (e.g.,
molecules of Helium-4 at a very low temperature and very low pressure
confined in a macroscopic container). Therefore,

− = − = −n n nln( ) ln( ) ln( ) ln (1)Ref Ref
2 2 2S S (28)

Via correlating RefS with ln(1)=0, we can finally write

= nln( )2S (29)

with regards to the “overall status” of the system we are dealing with.
Remarkably, the sentropy S we introduced exactly corresponds to

the natural logarithm of the “average of squared quantum numbers”;
where each integer quantum number is associated with a constituent of
the thermodynamical system under consideration. On top of this, one
does not even have to bother with what kind of energy distribution
governs the system under scrutiny to write the above equation, nor does
one need to take into account which quantum numbers the constituents
of the system exhibit. When everything is taken into consideration, it
may just as well be a question of a classical Boltzmann distribution, or a
Maxwellian distribution [10], etc., and this really does not matter for
the present derivation. In any case, the determination of energy dis-
tribution within the framework of the present approach is a very in-
teresting problem, and we propose to deal with it elsewhere.

Whatever the case may be, the relationship (29) holds valid. We
could furthermore discern that S is independent of the number of
molecules the system is composed of. In other words, what counts as
important is just the average of the squared quantum numbers coming
into play, no matter how many of these there may be.

Nevertheless, one still has to be able to show that Eq. (29) is
somehow related to the classical Boltzmann relationship, i.e.,

= = =n Sln( ) / ln (Ω),2 kS (30)

where Ω is, as known classically, the “number of microstates” the
system delineates.

Recall that the Boltzmann entropy expression S=k ln(Ω) is based
on the Boltzmann distribution, which yet is only an approximate dis-
tribution; whereas, Eq. (29) has a more general character and does not
depend on the choice of any concrete distribution.

Anyway, the average n2 is the straight average of the summation of
squared N quantum numbers, so that

∑=
=

n
N

n1 ,
i

N

i
2

1

2

(31)

where N is the number of constituents making up the system.
Resuming from where we last left, Eq. (31) necessitates that
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∑= =
=
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(32)

This means the average of the squared quantum numbers (each
associated with a constituent making the system at hand) – i.e., con-
sequentially the average energy of the constituents of the system –
would be proportional to the number of Boltzmann microstates.

It is, most likely, not exact, and the reason is the following:
First of all, we can affirm that our expression of S in Eq. (29) is

exact. Whereas, Boltzmann’s entropy expression =S ln(Ω)k , is, as
known, limited by the validity of the classical Boltzmann distribution.

As it so happens, the Boltzmann distribution constitutes only an
approximation.

Henceforth, as a result of our quantum thermodynamics derivations,
we are now entitled to jot down the corrected Boltzmann entropy for-
mula:

=S nln( );2k (33)

at which point, we can just as well write (cf. Eq. (32))
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⎝
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nln 1 ,
i

N

i
1

2k
(34)

which represents the “exact Boltzmann equation” derived out of the
present approach.

Discussion

Among known works in the area of quantum thermodynamics one
can cite [11,12], where few tens of papers on the subject had been
encapsulated. Nevertheless, it was seen that none of these studies ap-
pear to have achieved anything similar to what we have presented
herein; i.d., the disclosing of the quantum mechanical roots of the
second law of thermodynamics.

In this way, using the laws of gases, we first derived Eq. (21), where
we introduced a dimensionless quantity named “sentropy” in the form
of = S/kS , which turned out to be nailed to PV 5/3 (Eq. (24)). This is the
constant quantity (C) coming along with an adiabatic transformation;
where we have deployed C in quantum mechanical terms (Eqs. (25a)
and (25b)). Henceforth, entropy S and thereby the second law of
thermodynamics becomes straightly grounded in QM [3].

We emphasize that, in the derivation of Eq. (25a), we applied the
Schrödinger equation to each particle of gas confined in a closed con-
tainer of a macroscopic scale; assuming that, in the ideal gas, the in-
teraction between molecules of the gas can be neglected [1–4]. The
known solution of the Schrödinger equation yields a set of discrete
energy levels En for each particle confined in the container and char-
acterized by a set of quantum numbers nx, ny, and nz associated with the
spatial directions x, y and z correspondingly; i.e.

⎜ ⎟= ⎛

⎝
+ + ⎞

⎠
=

+ +
E h

m
n
L

n
L

n
L

h n n n
mL8

( )
8

.n
x y z x y z2 2

2

2

2

2

2

2 2 2 2

2
(35)

Based on Eqs. (24) and (25d), we obtain

=PV N h
m

n
12

.A
5/3

2
2

(36)

Let us hence work out the square root of =n n2 2 in the above
equation for 1mol of H2, which delineates the pressure of 105 Pascal (1
atmosphere) in a volume of 1m3. We thus get

≅ × × × × ×
× × ×

≈ ×
−

−n 10 12 2 1839 0.9 10
6.023 10 6.62 10

1.2 10 .
5 30

23 2 68
11

(37)

As indicated in Ref. [3], our approach can be naturally extended
from an ideal gas to a real gas via introducing into the Schrödinger
equation a perturbation term, describing an interaction between mo-
lecules. In this case, we would obtain, in general, another set of

principal quantum numbers than for the ideal gas. However, this does
not affect the validity of Eq. (25a) and subsequent equations derived on
this basis; which thus have the general character and are applicable to
any kind of gas, where the interaction between molecules, excepting
their collision, can be considered small.

Assuming thatS takes the value of null at the lowest state, the above
relationships – given that the average of squared quantum numbers at
the given state is unity – finally leads to Eq. (29).

To formulate this latter equation, we did not even have to bother
with what kind of energy distribution governs the system under scru-
tiny, nor did we need to take into account which quantum numbers the
constituents of the system actually exhibit. When everything is taken
into consideration, it may just as well be a question of a classical
Boltzmann distribution, or a Maxwellian distribution, etc. Whatever the
case, Eq. (29) would still remain valid – although, its calculation will
certainly yield different results based on a given particular distribution.

We have moreover shown that the exact expression of entropy (34)
formally coincides with the classical Boltzmann formula for entropy
(30) at =n Ω2 (see Eq. (32)), where Ω is the number of Boltzmann
microstates the system assumes. We point out that the equality (32) is
only an approximate one, given that the classical Boltzmann formula

= lnΩkS , which is ultimately based on the classical Boltzmann dis-
tribution, constitutes an approximation too.

Thereby, we have, in effect, a new and exact formulation of entropy
rooted in quantum mechanics (see Eqs. (33) and (36))

⎜ ⎟= ⎛
⎝

⎞
⎠

S mPV
N h

ln 4 ,
A

5/3

2k
(38)

written for one mole of gas.
We are, at this stage, ready to lay down the foundation for a

quantum thermodynamics involving no temperatures, but energies and
quantum numbers instead, and no Boltzmann constant, but just the
Planck constant as delineated by Eq. (36). Recall that this latter equa-
tion becomes a universal gas equation rooted in QM, with its rhs re-
maining constant only in the case of adiabatic transformations.

Finally, it is important to enumerate the approximations we made.
Our first assumption was that we overlooked any irreversibility, which
would lead to the Clausius inequality instead of Eq. (15) [13]. We have
worked with just one kind of constituent. With respect to an adiabatic
transformation, we considered the formula =PV Constant5/3 , assuming
that Cp/Cv (i.e., the ratio of specific heat under constant pressure to the
specific heat under constant volume) is 5/3.

At the same time, we emphasize that the key relationship (25d) is of
a universal character, and can further be straightforwardly recast into
fully relativistic cases. At any rate, we were able to demonstrate herein
the foundational steps for a natural symbiosis of the second law of
thermodynamics with quantum mechanics.

Last but not the least, the present work can be extended readily to
the case of irreversibility, allowing us to tap a complete second law of
thermodynamics rooted in QM. But this topic is left for a future work.
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