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Abstract

Genome-Wide Association Studies (GWAS) often measure Gene-Environment (GXE) interactions.
We consider the problem of accurately estimating a GXE interaction in a case/control GWAS when
a subset of the controls have silent, or undiagnosed, disease and the frequency of the silent disease
varies by the environmental variable. We show that using case/control status without accounting
for misdiagnosis can lead to biased estimates of the GXE interaction. We further propose a pseudo-
likelihood approach to remove the bias and accurately estimate how the relationship between the
genetic variant and the frue disease status varies by the environmental variable. We demonstrate
our method in extensive simulations and apply our method to a GWAS of prostate cancer.

INTRODUCTION

We are interested in studying gene-environment interactions (GxE) in case-control Genome-
Wide Association Studies (GWAS) where a substantial proportion of “controls” are actually
undiagnosed cases. We note there are numerous diseases that go undiagnosed in a large
segment of the population. For example, Atrial Fibrillation is undiagnosed in 5-17% of the
population above the age of 75 (Panisello-Tafalla et al. 2015), non-alcoholic fatty liver
disease is undiagnosed in 14-30% of the adult population (El-Kader et al., 2015), and acute
coronary thrombosis is undiagnosed in >10% of individuals at the time of death (Anderson
et al, 1989). These frequencies often vary by the environment, e.g. age, sex, race/ethnicity.
Our specific motivating example is a large GWAS of prostate cancer. At autopsy,
approximately 29%, 36%, and 47% of “healthy” men aged 60-69, 70-79 and 80+ years
have undiagnosed prostate cancer, with the exact frequencies varying by race and ethnicity
(Jahn et al, 2015).
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There is already an extensive literature (Carroll et al, 2006) discussing how the estimates of
the main effect of the genetic variant will be biased in the presence of undiagnosed controls.
Here, we extend the literature by showing how the estimates of the GXE interaction can be
biased when there is a relationship between the environmental variable and the rate of
misdiagnosis. In our motivating example of Prostate Cancer, the environmental variable is
age and the rate of misdiagnosis is known to increase with age. The result is that the effect of
the gene would appear to vary by age, even when, in truth, there is no such interaction. After
demonstrating the potential for bias in the GXE interaction, we propose a new method that
uses external knowledge about the rates of misdiagnosis to accurately estimate the GXE
interaction.

Our proposed method is based on the method of Chatterjee and Carroll (Chatterjee and
Carroll, 2005). Initially (Thomas, 2010), GXE in case-control GWAS were analyzed using
logistic regression, with the data treated as if it were collected prospectively (Prentice and
Pyke, 1979). However, Chatterjee and Carroll showed that when the data is collected
retrospectively and the gene and environmental variables are independent, there are more
efficient methods for estimating the GXE interaction. We adapt these fully efficient methods
to the scenario where the disease is undiagnosed in a subset of controls.

Our paper proceeds as follows. First, in the Material and Methods section, we describe our
notation, the proposed pseudo-likeilhood approach and its properties. Next, in the
Simulation Experiments section, we compare our proposed approach with standard
approaches that ignore misdiagnosis. Then, we apply our approach to a Prostate Cancer
GWAS (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?
study_id=phs000207.v1.p1, Yeager et al, 2007). Finally, we conclude our paper with a brief
Discussion section.

MATERIALS AND METHODS

Notation and Estimation in Pseudo-likelihood

For individual / let G;be the genotype, X;be the environmental variable potentially
interacting with the genotype, and Z;be a vector of other environmental variables. We will
assume that the genotype is independent of all environmental variables and the genotype
follows Hardy-Weinberg Equilibrium: G ~ Q(g. 6). LetD; = {0, 1} be a binary indicator of

the frue, and unobserved, disease status and let Dl.CL = {0, 1} be a binary indicator of
clinically diagnosed disease status. In the overall population, letz, = pr(DCL = 0) and

m = pr(DCL = 1) and in our study population let 77y be the number of controls (i.e. DL = 0),

n; be the number of cases (i.e. 0% = 1), andn = ny +n,.

We make the following assumptions. We assume that individuals with a clinical diagnosis
have the true disease, i.e.pr(D = 1‘DCL = 1) = 1, and that a substantial proportion of

“controls” also have the true disease and that this proportion can vary by environmental
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factors:pr(D = 11DCL = o, X) = 7(X) > 0. We next assume that the probability of the frue
disease follows a logistic model

pr D=1|G=¢X=x,2Z=72) 1

~ exp{By+ By XX+ B, X2+ P X8+ Pgy x X 8 X x}
1+exp{ﬁ0+ﬁx><x+ﬁz><z+ﬁG><g+ﬂGxx><g><x}’

but note that our approach can be easily extended to other models, including those with
multiple disease states.

The observed data are collected using retrospective sampling design were the genetic and
environmental variables are measured after the disease status is ascertained. Instead,
however, we imagine that individuals were selected into the study using the following
Bernoulli scheme. Let § be the imaginary indicator of whether an individual is selected into

the case/control study with pr (5= 110" = ) & n e/ jel. Let

— _ cL _ clypy _
Kdd 4o Bog+ log(ndcl/zrdd),yddld(X) = pr (D =d’'|D=d, X),

Q= (chl PPy b Poxx 0) and

expl/(d = 0) X

kdcl,d+ﬂXXx+ﬂZXZ+ﬂGXg+ﬁGXXxgxx)]

sd.d g, x,z.0) = x 0(g: 0)

L exp{ By + By XX+ By X2+ P X g+ Py x XX )

We now have the pseudo-likelihood constructed based on the probability of
[, G1X, 2,6 = 1] in the following form

HN L(dfl,gi,xi,zi;.Q), 2

i=1

where

5(0,0,8,x,2;Q2) + 7dcl|1(x) X S(l, dd, 8. %,7; -Q)

L(dd, 8. X,7 .Q) =

2g*18(0,0, g%, x,2; 2) + ch[*ydcl*ll(x) xS

cly ’
.d g% x;Q

Interestingly, the intercept parameter kdcl y is now a function of the probability of the

clinical diagnosis in the population. Hence estimation can be improved by entering a reliable
estimate or a bound on the probability of the clinical disease in the population that is often
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available in epidemiologic studies. Furthermore, conditioning on { X, Z} makes it possible to
avoid specification of their distribution.

The use of pseudo-likelihood defined using (2) needs to be justified. Arguments provided in
Appendix demonstrate that the parameter estimates obtained by maximizing this pseudo-
likelihood (2) are consistent and that under suitable regularity conditions the parameters
have the asymptotic variance-covariance matrix described below.

Define ¥(d“, g, x, z: @) to be the derivative of log{L(dCl, g, x,z;Q)} with respect to Q and

Iy @ =Y 1‘P(D§L’ GpXp Zi;g);

0 N(.Q) .
002 ’

I=n""1

i

n
cl ) ) ) . T
A=Yy ILE{T(D‘L G.,X.,Z.;Q)‘D‘L = d‘l} x E{&”(DL.L,G.,X.,Z.;.Q)‘DCL = dd} ,
dC n l l 4 l l l l

where all expectations are taken with respect to the actual retrospective sampling scheme.
Then

1

n%(3 - @)= Normal {o, la-nr ).

SIMULATION EXPERIMENT

We compare three procedures for estimating the parameters in equation (1). The first is the
usual logistic regression model (ULR) that uses clinical diagnosis as a surrogate for the frue
diagnosis. The second is the pseudolikelihood approach (pMLE) proposed by Chatterjee and
Carroll (2006) where, again, the clinical diagnosis is used. The third is our approach (pMLE-
DX) which accounts for the frequencies of silent disease by maximizing equation (2).

We simulate data assuming that the relationship between the frue disease status and the
combination of gene (G) age (X) and family history (2) can be described by equation (1). In
all simulations, we let G be a Bernoulli variable with probability 0.1. We let X'be an
unordered categorical variable that takes values 0, 0.8, 1 with probabilities 0.488, 0.165, and
0.347. The values of Xare chosen to reflect main effect of age, and frequencies of categories
of Xare defined to reflect prostate cancer rates in the general population. We let Zbe a
Bernoulli variable with probability 0.07. We vary the coefficients, sample size, and
frequency of undiagnosed disease in the four settings. For each simulation setting, we
simulate 500 datasets and then look the bias and RMSE of the parameters using each of the
three methods.
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We first simulate datasets assuming there is no GxE interaction and
pr(D =1 p¢L=o, X)=0.29 for X=0, 0.36 for X'=1, and 0.44 for X=0.8. Furthermore, we

let g, = — 1.035, py=1, p,=2.5, B, x=0 and varyp from log(1.05) to log(3.5). Table 1
describes performance of the three methods in studies wheren, = n; = 3000; while

Supplementary Table 1 describes the performance when in studies where
ng = n; € {1000, 5000} The estimates of both Sz and j; , yare biased when using uLR and

pMLE, while the estimates for these parameters are effectively unbiased when using pMLE-
DX. For example, when ng = n, = 3000 and S = log(2.5)=0.92 andj; . = 0, the ULR and

PMLE bias in  is =0.34 and i , the bias is —0.10; while the bias is only 0.009 and
0.007 when using pMLE-DX.

We simulate datasets with g, =0.5and pr(D:l\DCL =0.29 for X=0, 0.44 forx=0.8, and
0.36 forx=1. Specifically, we letp, = - 1.035, . = - 0311, f, = 1,4, =2.5. These
parameters result in a prevalence of disease of 30%, 47.5%, 52.2% in X =0, 0.8, and 1.
Furthermore, for setting 2a, we let the relationship between the #rue and clinically diagnosed
disease statuses be defined by pr(D = \DL = 0, X)=0.10 forx=0, 0.30 forx=0.8 and 0.5 for

X=1 For setting 2b, we let the same relationship be defined bypr(D = 1\DF = 0, X)=0.10 for
X=0, 0.30, for x=0.8 , and 0.5 for X=1 so that there is greater variability in the rate of
misdiagnosis with lower frequency in the first category. Tables 2 (setting 2a) and 3 (setting
2b) describe of performance of the three methods in studies where n, = n; = 3000 while

Supplementary Tables 2 (setting 2a) and 3 (setting 2b) describe the performance when in
studies withn, = n; € {1000, 5000} As expected, in both settings 2a and 2b, pMLE-DX

produces nearly unbiased estimates of all parameters. In contrast, both uLR and pMLE
produce estimates ofg, f,, f,, B  x that are biased. Note, these biases persist in the larger

case/control studies with n, = n; € {1000, 5000} (Supplementary Table 3, setting 2b). The

bias in standard approaches (ULR and pMLE) was larger when the frequency of silent
disease was higher (setting 2a vs. 2b). For example, in setting 2a, the bias of @ is 1.9, the

bias of ﬁAZ is —1.5, and the bias of ﬂ;;X is —0.11, while in setting 2b the corresponding biases
are —0.74, -0.31 and 0.05.

We wanted to assess the effect of misspecifying z(X), the relationship between the fruve and
clinically diagnosed disease statuses. We therefore simulated data as described in setting 1,
but misspecified the z(X) = 0.29 for all three age groups. As shown in Supplementary Table
4, pMLE-DX no longer resulted in unbiased estimates, but the bias was significantly lower
than when using either of the other two methods.
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Setting 4.5, andp,:

To better understand the nature of the bias noted in estimates of 4, and s, we conducted a

study with these parameters varying from 0 to 2.5 in steps of 0.5. The other coefficients are
set to be By= =105 p;=10g3), Pgy x=10202). The relationship between the clinical

and frue disease status was pr(D =1p¢r=o, X) =0.10 for X = 0, 0.20 for X = 0.8 and 0.30

for X = 1. Supplementary Figures 1 and 2 present the probabilities of the frue disease status
and clinically diagnosed disease status across the different values of 4, and . When

By =0, the probabilities of the frue disease status vary only slightly across X categories,

while the probabilities of the clinically diagnosed disease status vary substantially across X
categories because the frequency of silent disease varies by Xx. Figures 1 A and B present the
bias and RMSE of ﬂAZ obtained by uLR with color-coded values of 4, and values of 4, on x-

axis. As the frue value of s, increases, the bias in its estimates increases as well. Figure 1 C
and D present ﬂAX obtained by uLR with color-coded values of 4, and values of 3, on x-axis.

The Bias in ﬂAX decreases when the true value increases.

Setting 5. fy, =0 and f;, x =0:

To better elucidate the underlying nature of biases noted in estimates of s, and 4, obtained

in ULR, we performed a simulation study varying the relationship between frue and clinical
disease statuses. For clarity, X is now simulated as Bernoulli with frequency 0.52. Both Z
and G are now Bernoulli with frequencies 0.07 and 0.10, respectively. The risk coefficients
are f,= —1.05, fpy=0, p,=1, P, yx=0.Thestudy consists of 3,000 cases and 3,000

controls. First, we examined situations when the frequency of the silent disease does not
vary by X, i.e.a = pr(D = 10" = 0,X = 0) - pr{D = 10" = 0,X = 1) = 0 and when the
difference is 0.05 and 0.10. We varied pr(D = 110> = 0,X = 1) from 0.5 t0 0.25 in steps of
0.05. Shown on Figure 2 A-B are biases and RMSE of estimates of 3, across color-coded
values of pr(D = 110" = 0,X = 1) and across differences A on the x-axis. Similarly, shown
on Figure 2 C-D are biases and RMSEs of estimates of 4,,. When the clinical diagnosis is a
surrogate of the true diagnosis (x-axis= A=0), then both @ and ﬂAZ are nearly unbiased.

When the frequency of the silent disease varies more by age as A increases to 0.05 and 0.10,
there is a notable increase in the bias and RMSE of 4, , while bias in 3, remains

approximately the same. The bias and RMSE in estimates of ﬁAX increase with the proportion

of undiagnosed controls. When frequencies of the silent disease increase, the biases in both
p, and g, increase with the bias in j,, taking on a more rapid increase.
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PROSTATE CANCER DATA ANALYSES

We performed GXE analyses for Prostate Cancer using data collected as part of the Prostate,
Lung, Colon and Ovarian (PLCO) Screening trial (dbGAP: https://www.nchi.nIm.nih.gov/
projects/gap/cgi-bin/study.cgi?study_id=phs000207.v1.p1, study accession
phs000207.v1.pl, Yeager et al, 2007). The study included 965 cases and 1,035 controls of
European ancestry with 550,000 genotyped SNPs. The number of cases in 50-59, 60-69,
70-79, and 80-89 year age groups were 111, 525, 326 and 3, respectively; the number of
controls in same groups were 129, 598, 306 and 2. Furthermore, 11.3% of cases and 6.2% of
controls had a family history of prostate cancer. In the following, we focused on the 81 SNPs
that have well established associations documented in the National Human Genome
Research Institute and the European Bioinformatics Institute (NHGRI-EBI) GWAS catalog
(https://lwww.ebi.ac.uk/gwas/search?query=prostate) as of April 26, 2017. For each of the 81
SNPs, we assumed the relationship between the #rue disease status and the combination of
SNP, family history, and age can be described by logistic regression and equation (3).

logit{pr(D = 1lAge, FamHist,G)} = f, + B age X AZE + Brampis X FamHist 3
+ 'BFamHistxAge X FamHist X Age + p X G + ﬂGxAge XGXAge.

As in the simulations, we estimate the coefficients using uLR, pMLE and pMLE-DX where
we assumed the relationship between clinical disease status and the frue disease status is

pr(D =1D¢ =0, Age) =0.22, 030, 0.35and 0.46 for age groups of 50-59, 60-69, 70-79

and > 80 years, respectively (Jahn et al, 2015). Statistical significance was assessed using
permutation-based p-value <0.05.

The estimates of coefficients based on the three methods are quantitatively different. Table 4
and Supplementary Table 5A present the estimates of the risk coefficients for the 18 SNPs
with p-value <0.05 for A/)’GxAge in pMLE-DX. Values of all risk coefficient estimates are

generally larger in the relationship to the #rue (pMLE-DX) than to the clinical disease status
(ULR, pMLE). And the estimates are similar in uLR and pMLE. For example, consider
rs103294 that is located on LILRA3, a key component in the regulation of inflammatory
inhibition. This SNP was previously identified as being significantly associated with prostate
cancer in a Chinese population (OR=1.28) (Xu et al, 2012). In our analyses of the PLCO
dataset, rs103294 is estimated to be related to the observed clinical diagnosis with main
effect OR=1.26 in uLR and pMLE and is associated with the latent #rue diagnosis with main
OR=1.39 in pMLE-DX. In addition, in pseudolikelihood analyses (pMLE-DX), the effect of
the interaction between this SNP and age was found to be significant with p-value <0.05/81
and OR = 1.5. Estimates of the effect of age are OR=1.9, p=0.015 and OR=2.5, p=0.014 in
ULR, pMLE and pMLE-DX, respectively. Estimates of the effect of family history are
OR=1.4, p=0.001 and OR=1.1, p<0.001 in uLR and pMLE-DX, respectively. Supplementary
Table 5B shows the estimates of the additional 16 SNPs whose ﬁG has p-value <0.05
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(pMLE-DX) with similar tendency in the estimates, i.e. the risk coefficient estimates are
generally larger in the relationship to the frue disease status than the clinical disease status.

Four SNPs (rs339331 (6p22), rs1983891 (6p21), rs7501939 (17q12), rs6983267 (8q24),)
have p-values <0.05/81 for ﬁG for both the clinical and #rue disease statuses. Two of these

SNPs, rs339331 (6p22) and rs1983891 (6p21), were previously found to be associated with
prostate cancer risk in an Asian population as well as European descent (Lindstrom et al,
2012) with OR=0.93, p=0.002 and OR=1.09, p=2.48 x 10™*. In our analyses OR = 1.8 and
2.4 as a result of ULR and pMLE-DX. The third SNP, rs7501939 (17¢12), was previously
found to contribute to risk of early-onset prostate cancer (Levin et al, 2008 and references
herein) with OR=1.19-1.44, p<0.008. In our analyses, OR was estimated to be 1.7 and 2.4 in
ULR and pMLE-DX. The fourth SNP, rs6983267, is one of five SNPs used (with family
history as a sixth factor) to cumulatively predict the overall risk of the diagnosis (Zheng, et.
Al, 2008). On its own, the rs6983267(G;G) and (G;T) risk genotypes yield an odds ratio for
developing prostate cancer of 1.37, p=3.4—10e-5) and were estimated to account for 22.2%
of population attributable risk (Zheng et al, 2008). In our analyses the estimated OR are 1.7
and 2.2 in ULR and pMLE. While the estimates of uLR and pMLE are approximately the
same, p-values as a result of pMLE are generally smaller. For example, as shown in Table 4,
3 SNPs have p-value for AﬁGXAge that are <0.05/81 in pMLE, while for the other two

approaches the p-value is >0.01.

DISCUSSION

We examined the potential bias in the estimates of the gene-environment interaction in the
situation when a substantial portion of the population carries so-called silent disease that is
not visible clinically. The bias arises from the relationship between #rve disease and clinical
diagnosis varying across the environmental variable. We showed, both in simulation
experiments and in the data analyses, that the potential bias can either over- or under-
estimate the true interaction and that magnitude of this bias can be substantial. Moreover,
this bias cannot be eliminated by increasing the sample size.

Others have also investigated the effect of disease misclassification in GWAS, albeit
focusing on the bias occurring in the main effect. Their conclusions were similar, in that the
bias can be in either direction and the magnitude of the bias can be substantial. For example,
a recent study by Rekaya et al (2016) examined biases in the main estimates of the genetic
factors when disease misclassification varies by the diagnosis. In our scenario, we also had
disease misclassification varying by diagnosis (i.e.

pr(D = 1Dt =, X)\nepr(D = 00" = 1,x),, but the misclassification rate varied by an

environmental variable.

The proposed analyses rely on knowing the estimates of silent disease in the population
subgroups. These estimates are often available in epidemiologic studies or can be estimated
in an internal reliability study. We found that when the frequency of the silent disease is
either under— or over-estimated by less than 5%, then ignoring the presence of the silent
disease still results in a bias that is larger than observed using our proposed approach. In
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general, we advocate for a sensitivity analyses that varies the frequency of the silent disease
and examines the resulting differences in the estimates.

We note that the potential errors in estimating effects can have downstream consequences.
By underestimating the GXE interaction, we would also underestimate the heritability
explained by SNPs. Therefore, the prior use of simple logistic regression to estimate
interactions might contribute to the problem of missing heritability, or the difference
between GWAS-based and family-based estimates of heritability (Manolino et al, 2009). On
the other hand, the upward biases in these estimates might in part address the conclusion
reached by Hirschhorn et al (2002) that only 1% of the association found are likely to be
true.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1:
The bias and Root Mean Squared Error (RMSE) in estimates of 5, (8,15, (A-B) and

By (ﬂ Age) (C-D) obtained using the usual logistic regression with clinical diagnosis as the
outcome. In A-B, the true values of s (ﬁ Age) are listed along the x-axis and the true values
of B, (Brummis;) @ indicated by color. On C-D, the true values of 8, (fy.,,.:,,) are listed
along the x-axis and the true values of g (ﬁ Age) are indicated by color. The parameters are
set as follows: By= —105 pB;=10g3), gy x=10202); the relationship between the

clinical and #rue disease statuses is pr(D = 110" = 0,X) = 0.10 for X = 0,0.20 for X = 0.3,

and 0.30 for X = 1; both G and Z are Bernoulli with frequencies 0.10 and 0.07; variable X is
multinomial with frequencies 0.488 for X =0, 0.165 for X = 0.8 0.30 for X = 1;
no=n1=3000. The frequencies of the latent #rue diagnosis and the observed clinical diagnosis
are shown on Supplementary Figures 1 and 2.
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Figure 2:
The bias and Root Mean Squared Error (RMSE) in 8, (B,,.1:5,) (A-B) and g, (p Age) (C-

D) obtained in uLR across 500 simulated datasets with 3,000 cases and 3,000 controls when
the clinical diagnosis is used in place of the #rue diagnosis. Variables G, X (Age), and
Z (FamHist) are Bernoulli with frequencies 0.10, 0.52, 0.07, respectively. The risk

coefficients are g, = —1.05, py =0, p,=1, B, yx=0. Values of the difference

pr(D = 1D = 0,x = 1) - pr(D = 1ID" = 0, X = 0) are listed along the x-axis and values of
pr(D = 11D" = 0, x = 1) are indicated by color. Shown are only parameter values that keep

probability of the clinical diagnosis and probability of #ue diagnosis within 0 to 1 range.
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