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Abstract

Genome-Wide Association Studies (GWAS) often measure Gene-Environment (GxE) interactions. 

We consider the problem of accurately estimating a GxE interaction in a case/control GWAS when 

a subset of the controls have silent, or undiagnosed, disease and the frequency of the silent disease 

varies by the environmental variable. We show that using case/control status without accounting 

for misdiagnosis can lead to biased estimates of the GxE interaction. We further propose a pseudo-

likelihood approach to remove the bias and accurately estimate how the relationship between the 

genetic variant and the true disease status varies by the environmental variable. We demonstrate 

our method in extensive simulations and apply our method to a GWAS of prostate cancer.

INTRODUCTION

We are interested in studying gene-environment interactions (GxE) in case-control Genome-

Wide Association Studies (GWAS) where a substantial proportion of “controls” are actually 

undiagnosed cases. We note there are numerous diseases that go undiagnosed in a large 

segment of the population. For example, Atrial Fibrillation is undiagnosed in 5–17% of the 

population above the age of 75 (Panisello-Tafalla et al. 2015), non-alcoholic fatty liver 

disease is undiagnosed in 14–30% of the adult population (El-Kader et al., 2015), and acute 

coronary thrombosis is undiagnosed in >10% of individuals at the time of death (Anderson 

et al, 1989). These frequencies often vary by the environment, e.g. age, sex, race/ethnicity. 

Our specific motivating example is a large GWAS of prostate cancer. At autopsy, 

approximately 29%, 36%, and 47% of “healthy” men aged 60–69, 70–79 and 80+ years 

have undiagnosed prostate cancer, with the exact frequencies varying by race and ethnicity 

(Jahn et al, 2015).
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There is already an extensive literature (Carroll et al, 2006) discussing how the estimates of 

the main effect of the genetic variant will be biased in the presence of undiagnosed controls. 

Here, we extend the literature by showing how the estimates of the GxE interaction can be 

biased when there is a relationship between the environmental variable and the rate of 

misdiagnosis. In our motivating example of Prostate Cancer, the environmental variable is 

age and the rate of misdiagnosis is known to increase with age. The result is that the effect of 

the gene would appear to vary by age, even when, in truth, there is no such interaction. After 

demonstrating the potential for bias in the GxE interaction, we propose a new method that 

uses external knowledge about the rates of misdiagnosis to accurately estimate the GxE 

interaction.

Our proposed method is based on the method of Chatterjee and Carroll (Chatterjee and 

Carroll, 2005). Initially (Thomas, 2010), GxE in case-control GWAS were analyzed using 

logistic regression, with the data treated as if it were collected prospectively (Prentice and 

Pyke, 1979). However, Chatterjee and Carroll showed that when the data is collected 

retrospectively and the gene and environmental variables are independent, there are more 

efficient methods for estimating the GxE interaction. We adapt these fully efficient methods 

to the scenario where the disease is undiagnosed in a subset of controls.

Our paper proceeds as follows. First, in the Material and Methods section, we describe our 

notation, the proposed pseudo-likeilhood approach and its properties. Next, in the 

Simulation Experiments section, we compare our proposed approach with standard 

approaches that ignore misdiagnosis. Then, we apply our approach to a Prostate Cancer 

GWAS (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id=phs000207.v1.p1, Yeager et al, 2007). Finally, we conclude our paper with a brief 

Discussion section.

MATERIALS AND METHODS

Notation and Estimation in Pseudo-likelihood

For individual i, let Gi be the genotype, Xi be the environmental variable potentially 

interacting with the genotype, and Zi be a vector of other environmental variables. We will 

assume that the genotype is independent of all environmental variables and the genotype 

follows Hardy-Weinberg Equilibrium: G ∼ Q(g,  θ). LetDi = 0,  1  be a binary indicator of 

the true, and unobserved, disease status and let Di
CL = 0,  1  be a binary indicator of 

clinically diagnosed disease status. In the overall population, letπ0 = pr(DCL = 0) and

π1 = pr(DCL = 1) and in our study population let n0 be the number of controls (i.e.DCL = 0), 

n1 be the number of cases (i.e.DCL = 1), andn = n0 + n1.

We make the following assumptions. We assume that individuals with a clinical diagnosis 

have the true disease, i.e.pr(D = 1 DCL = 1) = 1, and that a substantial proportion of 

“controls” also have the true disease and that this proportion can vary by environmental 
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factors:pr(D = 1|DCL = 0, X) = τ(X) ≫ 0. We next assume that the probability of the true 
disease follows a logistic model

pr (D = 1 G = g, X = x, Z = z)

=
exp β0 + βX × x + βZ × z + βG × g + βG × X × g × x

1 + exp β0 + βX × x + βZ × z + βG × g + βG × X × g × x ,

1

but note that our approach can be easily extended to other models, including those with 

multiple disease states.

The observed data are collected using retrospective sampling design were the genetic and 

environmental variables are measured after the disease status is ascertained. Instead, 

however, we imagine that individuals were selected into the study using the following 

Bernoulli scheme. Let δ be the imaginary indicator of whether an individual is selected into 

the case/control study with pr (δ = 1|DcL = dcl) ∝ ndcl/πdcl. Let 

κ
dcl, d

= β0d + log n
dcl/πdcl , γ

dcl |d
(X) = pr DcL = dcl |D = d, X ,

Ω = κ
dcl, d

, β0, βX, βz, βG, βG × X, θ  and

s(d, dcl, g, x, z; Ω) =
exp[I(d = 0) × k

dcl,d + βX × x + βZ × z + βG × g + βG × X × g × x ]

1 + exp β0 + βX × x + βZ × z + βG × g + βG × X × g × x
× Q(g; θ)

We now have the pseudo-likelihood constructed based on the probability of 

DcL, G | X, Z, δ = 1  in the following form

∏i = 1
N L di

cl, gi, xi, zi; Ω , 2

where

L dcl, g, x, z; Ω =
s(0, 0, g, x, z; Ω) + γdcl 1(x) × S 1, dcl, g, x, z; Ω

Σg* S(0, 0, g*, x, z; Ω) + ∑d cl*γdcl* 1(x) × S 1, d
cl*, g*, x; Ω

.

Interestingly, the intercept parameter k
dcl, d

 is now a function of the probability of the 

clinical diagnosis in the population. Hence estimation can be improved by entering a reliable 

estimate or a bound on the probability of the clinical disease in the population that is often 
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available in epidemiologic studies. Furthermore, conditioning on {X, Z} makes it possible to 

avoid specification of their distribution.

The use of pseudo-likelihood defined using (2) needs to be justified. Arguments provided in 

Appendix demonstrate that the parameter estimates obtained by maximizing this pseudo-

likelihood (2) are consistent and that under suitable regularity conditions the parameters 

have the asymptotic variance-covariance matrix described below.

Define Ψ (dcl, g, x, z; Ω) to be the derivative of log L(dcl, g, x, z; Ω)  with respect to Ω and

ℒN(Ω) = ∑i = 1
N Ψ Di

cL, Gi, Xi, Zi; Ω ;

I = n−1E
∂ℒN(Ω)

∂Ω ;

Λ = ∑
dcl

n
dcl

n E Ψ Di
cL, Gi, Xi, Zi; Ω DcL = dcl ×  E Ψ (Di

cL, Gi, Xi, Zi; Ω) DCL = dcl T ,

where all expectations are taken with respect to the actual retrospective sampling scheme. 

Then

n

1
2(Ω − Ω)  Normal  0, I−1(I − Λ)I−1 .

SIMULATION EXPERIMENT

We compare three procedures for estimating the parameters in equation (1). The first is the 

usual logistic regression model (uLR) that uses clinical diagnosis as a surrogate for the true 
diagnosis. The second is the pseudolikelihood approach (pMLE) proposed by Chatterjee and 

Carroll (2006) where, again, the clinical diagnosis is used. The third is our approach (pMLE-

DX) which accounts for the frequencies of silent disease by maximizing equation (2).

We simulate data assuming that the relationship between the true disease status and the 

combination of gene (G) age (X) and family history (Z) can be described by equation (1). In 

all simulations, we let G be a Bernoulli variable with probability 0.1. We let X be an 

unordered categorical variable that takes values 0, 0.8, 1 with probabilities 0.488, 0.165, and 

0.347. The values of X are chosen to reflect main effect of age, and frequencies of categories 

of X are defined to reflect prostate cancer rates in the general population. We let Z be a 

Bernoulli variable with probability 0.07. We vary the coefficients, sample size, and 

frequency of undiagnosed disease in the four settings. For each simulation setting, we 

simulate 500 datasets and then look the bias and RMSE of the parameters using each of the 

three methods.
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Setting 1.

We first simulate datasets assuming there is no GxE interaction and 

pr(D = 1 DCL = 0, X)=0.29  for X = 0, 0.36 for X = 1, and 0.44 for X=0.8. Furthermore, we 

let β0 = − 1.035 , βX=1, βZ=2.5, βG × X=0 and varyβG from log(1.05) to log(3.5). Table 1 

describes performance of the three methods in studies wheren0 = n1 = 3000; while 

Supplementary Table 1 describes the performance when in studies where

n0 = n1 ∈ 1000,  5000  The estimates of both βG and βG × Xare biased when using uLR and 

pMLE, while the estimates for these parameters are effectively unbiased when using pMLE-

DX. For example, when n0 = n1 = 3000 and βG = log(2.5)=0.92 andβG × X = 0, the uLR and 

pMLE bias in βG is −0.34 and inβGxX the bias is −0.10; while the bias is only 0.009 and 

0.007 when using pMLE-DX.

Setting 2:

We simulate datasets with βG × X = 0.5 and pr(D=1\DCL = 0.29  for X=0, 0.44 forX=0.8, and 

0.36 forX=1. Specifically, we letβ0 = − 1.035, βG = − 0.311, βX = 1,βZ = 2.5. These 

parameters result in a prevalence of disease of 30%, 47.5%, 52.2% in X = 0,  0.8,  and 1. 

Furthermore, for setting 2a, we let the relationship between the true and clinically diagnosed 

disease statuses be defined by pr(D = 1\DCL = 0, X)=0.10  forX=0, 0.30 forX=0.8 and 0.5 for 

X=1 For setting 2b, we let the same relationship be defined bypr(D = 1\DCL = 0, X)=0.10 for 

X=0 ,  0.30, for X=0.8 , and 0.5 for X=1 so that there is greater variability in the rate of 

misdiagnosis with lower frequency in the first category. Tables 2 (setting 2a) and 3 (setting 

2b) describe of performance of the three methods in studies where n0 = n1 = 3000 while 

Supplementary Tables 2 (setting 2a) and 3 (setting 2b) describe the performance when in 

studies withn0 = n1 ∈ 1000,  5000  As expected, in both settings 2a and 2b, pMLE-DX 

produces nearly unbiased estimates of all parameters. In contrast, both uLR and pMLE 

produce estimates ofβ0, βx, βz, βG × X that are biased. Note, these biases persist in the larger 

case/control studies with n0 = n1 ∈ 1000,  5000  (Supplementary Table 3, setting 2b). The 

bias in standard approaches (uLR and pMLE) was larger when the frequency of silent 

disease was higher (setting 2a vs. 2b). For example, in setting 2a, the bias of βX is 1.9, the 

bias of βZ is −1.5, and the bias of βGxX is −0.11, while in setting 2b the corresponding biases 

are −0.74, −0.31 and 0.05.

Setting 3:

We wanted to assess the effect of misspecifying τ X , the relationship between the true and 

clinically diagnosed disease statuses. We therefore simulated data as described in setting 1, 

but misspecified the τ X  = 0.29 for all three age groups. As shown in Supplementary Table 

4, pMLE-DX no longer resulted in unbiased estimates, but the bias was significantly lower 

than when using either of the other two methods.
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Setting 4.βZ andβX :

To better understand the nature of the bias noted in estimates of βZ and βX, we conducted a 

study with these parameters varying from 0 to 2.5 in steps of 0.5. The other coefficients are 

set to be β0 = − 1.05,   βG = log 3 ,   βG × X = log 2 . The relationship between the clinical 

and true disease status was pr D = 1|DCL = 0, X = 0.10 for X = 0, 0.20 for X = 0.8 and 0.30 

for X = 1. Supplementary Figures 1 and 2 present the probabilities of the true disease status 

and clinically diagnosed disease status across the different values of βZ and βX. When 

βX = 0, the probabilities of the true disease status vary only slightly across X categories, 

while the probabilities of the clinically diagnosed disease status vary substantially across X
categories because the frequency of silent disease varies by X. Figures 1 A and B present the 

bias and RMSE of βZ obtained by uLR with color-coded values of βZ and values of βX on x-

axis. As the true value of βZ increases, the bias in its estimates increases as well. Figure 1 C 

and D present βX obtained by uLR with color-coded values of βX and values of βZ on x-axis. 

The Bias in βX decreases when the true value increases.

Setting 5. βX = 0   and βG × X = 0:

To better elucidate the underlying nature of biases noted in estimates of βX and βZ obtained 

in uLR, we performed a simulation study varying the relationship between true and clinical 

disease statuses. For clarity, X is now simulated as Bernoulli with frequency 0.52. Both Z
and G are now Bernoulli with frequencies 0.07 and 0.10, respectively. The risk coefficients 

are β0 = − 1.05,   βX = 0,   βZ = 1,   βG × X = 0. The study consists of 3,000 cases and 3,000 

controls. First, we examined situations when the frequency of the silent disease does not 

vary by X, i.e.Δ = pr D = 1|DCL = 0, X = 0 − pr D = 1|DCL = 0, X = 1 = 0 and when the 

difference is 0.05 and 0.10. We varied pr D = 1|DCL = 0, X = 1  from 0.5 to 0.25 in steps of 

0.05. Shown on Figure 2 A-B are biases and RMSE of estimates of βZ across color-coded 

values of pr D = 1|DCL = 0, X = 1  and across differences Δ on the x-axis. Similarly, shown 

on Figure 2 C-D are biases and RMSEs of estimates of βX . When the clinical diagnosis is a 

surrogate of the true diagnosis (x-axis= Δ=0), then both βX and βZ are nearly unbiased. 

When the frequency of the silent disease varies more by age as Δ increases to 0.05 and 0.10, 

there is a notable increase in the bias and RMSE of βX   , while bias in βZ remains 

approximately the same. The bias and RMSE in estimates of βX increase with the proportion 

of undiagnosed controls. When frequencies of the silent disease increase, the biases in both 

βZ and βX increase with the bias in βX taking on a more rapid increase.
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PROSTATE CANCER DATA ANALYSES

We performed GxE analyses for Prostate Cancer using data collected as part of the Prostate, 

Lung, Colon and Ovarian (PLCO) Screening trial (dbGAP: https://www.ncbi.nlm.nih.gov/

projects/gap/cgi-bin/study.cgi?study_id=phs000207.v1.p1, study accession 

phs000207.v1.p1, Yeager et al, 2007). The study included 965 cases and 1,035 controls of 

European ancestry with 550,000 genotyped SNPs. The number of cases in 50–59, 60–69, 

70–79, and 80–89 year age groups were 111, 525, 326 and 3, respectively; the number of 

controls in same groups were 129, 598, 306 and 2. Furthermore, 11.3% of cases and 6.2% of 

controls had a family history of prostate cancer. In the following, we focused on the 81 SNPs 

that have well established associations documented in the National Human Genome 

Research Institute and the European Bioinformatics Institute (NHGRI-EBI) GWAS catalog 

(https://www.ebi.ac.uk/gwas/search?query=prostate) as of April 26, 2017. For each of the 81 

SNPs, we assumed the relationship between the true disease status and the combination of 

SNP, family history, and age can be described by logistic regression and equation (3).

logit pr(D = 1|Age,   FamHist, G) =   β0 + βAge × Age + βFamHist × FamHist
+ βFamHistxAge × FamHist × Age + βG × G + βGxAge × G × Age .

3

As in the simulations, we estimate the coefficients using uLR, pMLE and pMLE-DX where 

we assumed the relationship between clinical disease status and the true disease status is

pr D = 1|DC = 0, Age = 0.22,   0.30,   0.35and 0.46 for age groups of 50–59, 60–69, 70–79 

and ≥ 80 years, respectively (Jahn et al, 2015). Statistical significance was assessed using 

permutation-based p-value <0.05.

The estimates of coefficients based on the three methods are quantitatively different. Table 4 

and Supplementary Table 5A present the estimates of the risk coefficients for the 18 SNPs 

with p-value <0.05 for     βGxAge in pMLE-DX. Values of all risk coefficient estimates are 

generally larger in the relationship to the true (pMLE-DX) than to the clinical disease status 

(uLR, pMLE). And the estimates are similar in uLR and pMLE. For example, consider 

rs103294 that is located on LILRA3, a key component in the regulation of inflammatory 

inhibition. This SNP was previously identified as being significantly associated with prostate 

cancer in a Chinese population (OR=1.28) (Xu et al, 2012). In our analyses of the PLCO 

dataset, rs103294 is estimated to be related to the observed clinical diagnosis with main 

effect OR=1.26 in uLR and pMLE and is associated with the latent true diagnosis with main 

OR= 1.39 in pMLE-DX. In addition, in pseudolikelihood analyses (pMLE-DX), the effect of 

the interaction between this SNP and age was found to be significant with p-value <0.05/81 

and OR = 1.5. Estimates of the effect of age are OR=1.9, p=0.015 and OR=2.5, p=0.014 in 

uLR, pMLE and pMLE-DX, respectively. Estimates of the effect of family history are 

OR=1.4, p=0.001 and OR=1.1, p<0.001 in uLR and pMLE-DX, respectively. Supplementary 

Table 5B shows the estimates of the additional 16 SNPs whose βG has p-value <0.05 
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(pMLE-DX) with similar tendency in the estimates, i.e. the risk coefficient estimates are 

generally larger in the relationship to the true disease status than the clinical disease status.

Four SNPs (rs339331 (6p22), rs1983891 (6p21), rs7501939 (17q12), rs6983267 (8q24),) 

have p-values <0.05/81 for βG for both the clinical and true disease statuses. Two of these 

SNPs, rs339331 (6p22) and rs1983891 (6p21), were previously found to be associated with 

prostate cancer risk in an Asian population as well as European descent (Lindstrom et al, 

2012) with OR=0.93, p=0.002 and OR=1.09, p=2.48 × 10−4 . In our analyses OR = 1.8 and 

2.4 as a result of uLR and pMLE-DX. The third SNP, rs7501939 (17q12), was previously 

found to contribute to risk of early-onset prostate cancer (Levin et al, 2008 and references 

herein) with OR=1.19–1.44, p<0.008. In our analyses, OR was estimated to be 1.7 and 2.4 in 

uLR and pMLE-DX. The fourth SNP, rs6983267, is one of five SNPs used (with family 

history as a sixth factor) to cumulatively predict the overall risk of the diagnosis (Zheng, et. 

Al, 2008). On its own, the rs6983267(G;G) and (G;T) risk genotypes yield an odds ratio for 

developing prostate cancer of 1.37, p=3.4–10e-5) and were estimated to account for 22.2% 

of population attributable risk (Zheng et al, 2008). In our analyses the estimated OR are 1.7 

and 2.2 in uLR and pMLE. While the estimates of uLR and pMLE are approximately the 

same, p-values as a result of pMLE are generally smaller. For example, as shown in Table 4, 

3 SNPs have p-value for   βGxAge that are <0.05/81 in pMLE, while for the other two 

approaches the p-value is >0.01.

DISCUSSION

We examined the potential bias in the estimates of the gene-environment interaction in the 

situation when a substantial portion of the population carries so-called silent disease that is 

not visible clinically. The bias arises from the relationship between true disease and clinical 

diagnosis varying across the environmental variable. We showed, both in simulation 

experiments and in the data analyses, that the potential bias can either over- or under-

estimate the true interaction and that magnitude of this bias can be substantial. Moreover, 

this bias cannot be eliminated by increasing the sample size.

Others have also investigated the effect of disease misclassification in GWAS, albeit 

focusing on the bias occurring in the main effect. Their conclusions were similar, in that the 

bias can be in either direction and the magnitude of the bias can be substantial. For example, 

a recent study by Rekaya et al (2016) examined biases in the main estimates of the genetic 

factors when disease misclassification varies by the diagnosis. In our scenario, we also had 

disease misclassification varying by diagnosis (i.e. 

pr D = 1|DCL = 0, X \nepr D = 0|DCL = 1, X ,, but the misclassification rate varied by an 

environmental variable.

The proposed analyses rely on knowing the estimates of silent disease in the population 

subgroups. These estimates are often available in epidemiologic studies or can be estimated 

in an internal reliability study. We found that when the frequency of the silent disease is 

either under– or over-estimated by less than 5%, then ignoring the presence of the silent 

disease still results in a bias that is larger than observed using our proposed approach. In 
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general, we advocate for a sensitivity analyses that varies the frequency of the silent disease 

and examines the resulting differences in the estimates.

We note that the potential errors in estimating effects can have downstream consequences. 

By underestimating the GxE interaction, we would also underestimate the heritability 

explained by SNPs. Therefore, the prior use of simple logistic regression to estimate 

interactions might contribute to the problem of missing heritability, or the difference 

between GWAS-based and family-based estimates of heritability (Manolino et al, 2009). On 

the other hand, the upward biases in these estimates might in part address the conclusion 

reached by Hirschhorn et al (2002) that only 1% of the association found are likely to be 

true.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
The bias and Root Mean Squared Error (RMSE) in estimates of βZ (βFamHist) (A-B) and 

βX   βAge  (C-D) obtained using the usual logistic regression with clinical diagnosis as the 

outcome. In A-B, the true values of βX   βAge  are listed along the x-axis and the true values 

of βZ   βFamHist  are indicated by color. On C-D, the true values of βZ   βFamHist  are listed 

along the x-axis and the true values of βX βAge  are indicated by color. The parameters are 

set as follows: β0 = − 1.05,   βG = log 3 ,   βG × X = log 2 ; the relationship between the 

clinical and true disease statuses is pr D = 1|DCL = 0, X = 0.10 for X = 0, 0.20 for X = 0.8, 

and 0.30 for X = 1; both G and Z are Bernoulli with frequencies 0.10 and 0.07; variable X is 

multinomial with frequencies 0.488 for  X = 0,   0.165 for X = 0.8 0.30 for X = 1; 

n0=n1=3000. The frequencies of the latent true diagnosis and the observed clinical diagnosis 

are shown on Supplementary Figures 1 and 2.
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Figure 2: 
The bias and Root Mean Squared Error (RMSE) in βZ   βFamHist  (A-B) and βX (βAge) (C-

D) obtained in uLR across 500 simulated datasets with 3,000 cases and 3,000 controls when 

the clinical diagnosis is used in place of the true diagnosis. Variables G, X   Age , and 

Z   FamHist  are Bernoulli with frequencies 0.10, 0.52, 0.07, respectively. The risk 

coefficients are β0 = − 1.05,   βX = 0,   βZ = 1,   βG × X = 0. Values of the difference 

pr D = 1|DCL = 0, X = 1 − pr D = 1|DCL = 0, X = 0  are listed along the x-axis and values of 

pr D = 1|DCL = 0, X = 1  are indicated by color. Shown are only parameter values that keep 

probability of the clinical diagnosis and probability of true diagnosis within 0 to 1 range.
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