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Abstract

Electromagnetic wave extinction by the very long but finite dielectric needle is
compared with that by the infinite dielectric cylinder for an oblique incidence of
the electromagnetic wave. It is shown that the renormalized Hankel functions
without the logarithmic terms should be used for the calculation of the extinc-
tion per unit length of the infinite dielectric cylinder to apply it for extinction
calculations by the finite dielectric cylinder.
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1. Introduction

The problem of the scattering of the electromagnetic wave by the finite
dielectric cylinder often arises in the optics and radiophysics. Last time the
problem acquires a new aspect in a light of the optical properties of the syn-
thetic nanomediums which contain the long dielectric cylinders or pores as the
structure elements [1]. In particular, the matrix of anodized aluminum oxide
[2] allows to obtain the arrays of nanorods by filling pores of the matrix by
the metals or other substances [3]. The typical problem is a falling of the elec-
tromagnetic wave on a layer (or a number of layers) consisting of the parallel
dielectric cylinders (nanowires or nanorods) or cylindrical pores. Usually the
cylinders are perpendicular to the surface of the layer, and in the general case
the electromagnetic wave has an oblique incidence relative to the axis of the
cylinders. The typical width of a layer (i.e. length of the cylinder) is of the hun-
dreds of micrometers and the cylinder radius is of order tens nanometers. Thus,
the aspect ration is L/(2R) ∼ 104, where L and R are the length and radius of
the cylinder respectively. From the other hand, a detector is usually situated
at a macroscopical distance from the layer,that is, an every cylinder should be
considered as three dimensional object in the scattering problem despite of the
large aspect ratio. There is no an analytic solution of the scattering problem
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by the finite dielectric cylinder. Moreover, the numerical methods [4, 5, 6] are
complicated when the aspect ratio is large. From the other hand, the scatter-
ing amplitude by the infinite cylinder is expressed analytically in a closed form
[7, 8].

Figure 1: Geometry of the electromagnetic wave scattering by a single dielectric cylinder (a),
wave transmission through a layer consisting of the cylinders or cylindrical pores (b).

In the monograph [8] one could read that the formulas for extinction by the
infinite cylinder could be applied for the finite one when the boundary effects
are negligible. But almost in all the physical situations the boundary effects are
considerable! The boundary effects are negligible when an observer is situated
at the distance much less then the length of the cylinder, where the field has an
asymptotic 1/

√
r, however, generally a finite cylinder has far field falling as 1/r

in all direction of the space. Thus, we principally could not avoid the boundary
effects if we are talking about the scattering on the three dimensional body.

In Ref. [7, 9] on basis of the Huygens’s principle applied at the intermediate
zone, where the cylindrical wave transforms into the spherical one, it was argued
that under the normal incidence of a wave the extinction cross section by the
finite cylinder per unit length equals to that by infinite cylinder. However, the
Huygens’s principle itself is an approximation.

From the other hand, there exist the approximate methods namely general-
ized Rayleigh-Gans (GRG) approximation [10, 11] which extends Rayleigh-Gans
approximation to the case of the scatterers having one large dimension compared
to the others. In the GRG approximation the finite cylinder is considered as a
three dimensional object. It seems instructive to compare the extinction in the
GRG approximation with that given by the infinite cylinder. That is done in
the present paper. Then we suggest a new method how to apply the extinction
by the infinite cylinder to finite one.

Certainly there exists the range of the angles where the finite cylinder could
not modelled by the infinite one. If one looks along a direction close to the axis
of the cylinder it looks like a circle, while the infinite cylinder formally always
looks as an extended object.
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2. GRG approximation

Let us remind GRG approximation [10, 11] because it will be test bed for
comparing with the results for the infinite cylinders.

An electromagnetic field scattered by the dielectric body is expressed with
the help of diadic Greene function as [12]

E(r) =
1

4π
(ε− 1)(∇⊗∇+ k2)

∫

exp(ik|r − r
′|)

|r − r′| E(r′)d3r′ +E0e
ikr. (1)

At large r one has

(∇⊗∇+ k2)
eik|r−r

′|

|r − r′| E(r′) ≈ −k2
eik|r−r

′|

|r − r′| u× (u×E(r′))

≈ −eikr−ik′
r
′

r
k
′ × (k′ ×E(r′)), (2)

where u = r−r
′

|r−r′| , k
′ = k r

r
. In the first approximate equality of the Eq. (2) the

terms falling faster then the 1
|r−r′| are omitted and in the second approximate

equality we set r − r
′ → r everywhere except for exp(ik|r − r

′|) which is
approximated as exp(ik|r − r

′|) ≈ exp(ikr − ik′
r
′).

The next step is to approximate the field E(r′) inside the scatterer. Let us
denote the unit vector a along the axis of the cylinder as it it shown in Fig.1 (a).
The approximation [10, 11] approachs the field inside the cylinder as uniform
in the cross section of the cylinder and depending only on the longitudinal
coordinate z. This uniform field is applied equal to the static field as though
this cylinder would be placed in the external electric field E0. That is E(r′) =
(

2
ε+1 (E0 − a(E0a)) + a(E0a)

)

ei(ka)(r
′
a). The integral in the Eq. (1) could be

calculated and the asymptotic of the scattered field takes the form

E(r) ≈ −eikr

r

(

k
′ ×
(

k
′ ×
(

2

ε+ 1
(E0 − a(E0a)) + a(E0a)

)))

(ε− 1)LR2

2

sin ((k − k
′)a/2)

(k − k′)a
. (3)

The formula (3) is identical to that of Ref. [10]1 but it is written purely in
the vector form.The differential cross section is defined as

dσ

dΩ
= r2

E(r)E∗(r)

E2
0

, (4)

where dΩ is a cone around k
′.

It is possible to obtain the total cross section in the analytical form [10, 11].
Let us write the cross section for two different cases: an ordinary wave, when

1Ref. [11] contains misprint in the analogous formula.
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the E0 is perpendicular to the axis of the cylinder, and an extraordinary wave
when it lies in the plane formed by the vectors k and a as it is shown in Fig. 1
(a). In the first case the differential cross section is written as

σ⊥ =
πk2R4(ε− 1)2

2(ε+ 1)2

(

2 + 2ζ

(

Ci(kL(ζ + 1)− Ci(kL(1− ζ)))

+ log

(

2

ζ + 1
− 1

))

− 2 sin(kL) cos(kLζ)

kL

+

(

1 + ζ2

1− ζ2

)

(z sin(kL) sin(kLζ) + cos(kL) cos(kLζ)− 1)

+(1 + ζ2)kL(Si(kL(ζ + 1)) + Si(kL− kLζ))

)

, (5)

where ζ = (ka)/k = cosφ, Ci is the cosine integral function and Si is sine
integral function.

For an extraordinary wave one has

σ‖ =
πk2R4(ε− 1)2

2(ε+ 1)2

(

(

(ǫ + 1)2 − ζ2(ǫ(ǫ + 2) + 3)
)

(

ζ

(

Ci(kL(1− ζ))

−Ci(kL(ζ + 1)) + log

(

ζ + 1

1− ζ

))

− 1

)

+
sin(kL) cos(kLζ)

kL

)

+
(

ζ4(ǫ(ǫ + 2) + 3)− 2ζ2ǫ(ǫ + 2) + (ǫ+ 1)2
)

(

ζ sin(kL) sin(kLζ) + cos(kL) cos(kLζ)− 1

1− ζ2

+
kL

2
(Si(kL(ζ + 1)) + Si(kL(1− ζ)))

)

)

. (6)

One could introduce the extinction cross sections per unit length of the finite
cylinder as C⊥GRG = σ⊥/L and C‖GRG = σ‖/L in order to compare them with
that for the infinite one.

3. Scattering by an infinite cylinder and the amplitude renormaliza-

tion

For an infinite cylinder the extinction cross section is expressed through the
forward scattering matrix [7, 8]. Let us write a more general the ”off shell”
expression for the forward scattering matrix [13]. It arises when a wave propa-
gates in the medium consisting of parallel dielectric cylinders. The positions of
the cylinders are suggested to be uncorrelated. The dispersion equation [13] for
the effective wave vector k′ could be put into the form

k′2 − k2 = 4in0T (k
′), (7)
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where n0 is the concentration of the centers of the cylinders in a plane perpen-
dicular to the cylinder axis, k is a wave number of the an ectromagnetic wave
in vacuum, T (k′) is the ”of shell” forward scattering matrix. It is considered
that in the random medium there exists the mean field, arising as a result of the
multiple scattering of waves [14] by the cylinders. In the Eq. (7) it is taken into
account that the wave falling on a cylinder in a random medium differs from
that in vacuum, thus, the ”off shell” forward scattering amplitude appears [14].
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Figure 2: Extinction cross section per unit length of the cylinder (a,b)-ε = 2.1, kR = 0.3,
(c,d)-ε = 2.1, kR = 0.5 ,(e,f)-ε = 1.5, kR = 1. Figs. (a,c,e) and (b,d,f) correspond to the
ordinary and extraordinary waves respectively. Dashed-dotted line - GRG approximation,
dashed line - infinite cylinder without renormalization, solid line - renormalized extinction
by the infinite cylinder. Aspect ratio L/(2R) = 104 for GRG, φ is the angle between wave
number k and axis of the of the cylinder.

In particular, if the concentration n0 is low

k
′ ≈ k(1 + 2in0T (k)/k

2), (8)

where T (k) is the ”on shell” value of the forward scattering matrix T (k′) when
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k
′ is applied equal to k. From Eq. (8) it follows Im k′ = Cinf n0/2, where

Cinf =
4

k
Re[T (k)] (9)

is the extinction cross section per unit length of the infinite cylinder. According
to (8), (9) the intensity of the wave decreases as the I = I0 exp (−Cinf n0 l)
when the wave propagates in a random medium consisting of parallel dielectric
cylinders. Here l is the path length in the k direction.

Figure 3: The ranges where the extinction errors of the various approximations do not exceed
10 and 20 percents relative to the renormalized extinction by infinite cylinder (a),(d) -for
GRG approximation, (b),(e) - for an infinite cylinder without renormalization, (c),(f) - the
expansion to the series given by Eqns. (15), (16). Figs. (a),(b),(c) correspond to an ordinary
wave, (d),(e),(f) correspond to an extraordinary wave. The aspect ratio is L/(2R) = 104 for
GRG. The results is for the normal wave falling to the cylinder.

In the general case ”off shell” expressions for the forward scattering matrix
is given by [13]

T⊥(k
′) =

π

4i

∞
∑

n=0

χ−
n

k′

z

k

(

δ+n αn +
k′

z

k
δ−n βn

)

+ χ+
n

(

δ+n γn +
k′

z

k
δ−n αn

)

Dn

(10)

for an ordinary wave and

T‖(k
′) =

π

4i

∞
∑

n=0

χ+
n

k′

z

k

(

δ−n αn +
k′

z

k
δ+n βn

)

+ χ−
n

(

δ−n γn +
k′

z

k
δ+n αn

)

+ χ0
nδ

0
nβn

Dn

(11)

6



for an extraordinary wave. It is implied that z-axis is directed along the axis a
of a cylinder, i.e. k′z is the component of k′ parallel to a and k

′
⊥ is perpendicular

to a as it shown in Fig. 1 (b).
Other notations in the Eqs. (10), (11) are

αn = n
k′z
k

(

λ2

v2
− 1

)

Hn(vR)Jn(λR), v =
√

k2 − k′2z , λ =
√

εk2 − k′2z ,

βn = λR

(

λ

2v
(Hn−1(vR)−Hn+1(vR)) Jn(λR)−Hn(vR)J ′

n(λR)

)

,

γn = λR

(

λ

2v
(Hn−1(vR)−Hn+1(vR))Jn(λR)− εHn(vR)J ′

n(λR)

)

,

δ±n =
λk2(ε− 1)

v(λ2 − k′2⊥)

(

k′⊥RHn+1(vR)J ′
n+1(k

′
⊥R)

−vR

2
(Hn(vR)−Hn+2(vR)) Jn+1(k

′
⊥R)±

(

k′⊥RHn−1(vR)J ′
n−1(k

′
⊥R)

−vR

2
(Hn−2(vR)−Hn(vR)) Jn−1(k

′
⊥R)

)

)

,

δ0n =
2(ε− 1)λ2

λ2 − k′2⊥

(

k′⊥RHn(vR)J ′
n(k

′
⊥R)

−vR

2
(Hn−1(vR)−Hn+1(vR)) Jn(k

′
⊥R)

)

,

χ±
n =























(

k′⊥RJn+1(λR)J ′
n+1(k

′
⊥R)− λRJn+1(k

′
⊥R)J ′

n+1(λR)
)

±
(

k′⊥RJn−1(λR)J ′
n−1(k

′
⊥R)− λRJn−1(k

′
⊥R)J ′

n−1(λR)
)

, n 6= 0,

(1± 1)/2 (k′⊥RJ1(λR)J ′
1(k

′
⊥R)− λRJ1(k

′
⊥R)J ′

1(λR)) , n = 0,

χ0
n =







2 (k′⊥RJn(λR)J ′
n(k

′
⊥R)− λRJn(k

′
⊥R)J ′

n(λR)) , n 6= 0,

(k′⊥RJ0(λR)J ′
0(k

′
⊥R)− λRJ0(k

′
⊥R)J ′

0(λR)) , n = 0,

Dn = α2
n − βnγn.

For the ”on shell” scattering, when k′ =
√

k′2z + k′2
⊥ = k, the amplitudes

T⊥(k
′) and T‖(k

′) are reduced to the amplitudes T⊥(k) and T‖(k) describing
forward light scattering by a single infinite cylinder. They presented, for in-
stance, in Refs. [7, 8]. Let us calculate numerically the extinction cross section
divided by the length of the cylinder in the GRG approximation (dashed-doted
lines in Fig. 2) and compare it with that for infinite cylinder (dashed lines in
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Fig. 2). As one can see from Fig. 2 the cross sections are close near the perpen-
dicular incidence and differ substantially when the direction of the incident wave
is close to the axis of the cylinder. There exists the narrow gap, in the GRG
approximation related to the finiteness of the cylinder, however, even outside
of this gap the curves remains far one from another. Moreover, the extinction
cross section for the infinite cylinder diverges logarithmically in the vicinity of
small k⊥. As for the GRG approximation, it does not contain logarithmic terms
asymptotically at L → ∞ and k⊥ >> 1/L. This observation leads to an idea
of removing all the logarithmic terms from the forward scattering amplitude by
the infinite cylinder. Fortunately it is easy to do because the logarithmic terms
originate from the Hankel functions. According to [15] the Hankel function of
the first kind could be represented in the form

Hn(z) = Jn(z) + iYn(z), (12)

where Jn(z), Yn(z) are the Bessel functions of the first and the second kind
respectively. Regular part of the function Yn(z) could be extracted with the
help of the formula [15]

πYn(z) = 2Jn(z)
(

ln
z

2
+ γ
)

−
n−1
∑

k=0

(n− k − 1)!

k!

(z

2

)2k−n

−
(z

2

)n 1

n!

n
∑

k=1

1

k
−

∞
∑

k=1

(−1)k

k!(k + n)!

(z

2

)n+2k
(

n+k
∑

m=1

1

m
+

k
∑

m=1

1

m

)

, (13)

where γ is Euler constant. As a result, renormalized Hankel function without
logarithmic terms is

Hren
n (z) = Jn(z) + i

(

Yn(z)−
2

π
Jn(z) ln

z

2

)

. (14)

Let us calculate the ”on shell” forward scattering matrix and correspond-
ing extinction cross section using formulas (10), (11) and renormalized Hankel
function (14). It should be emphasized that before the renormalization the am-
plitudes (10), (11) have been written in the form containing Hankel functions
but not their derivatives.

As it is shown in Fig.2 the coincidence with the extinction in the GRG
approximation and that given by the infinite cylinder after renormalization (14)
is rather well in a range where GRG have to be valid. For an extraordinary wave
the coincidence is not so well, but probably, it is related with the applicability
of the GRG approximation.

Let us put the forward scattering amplitudes (10), (11) ”on shell” and expand
them into the series up to the terms of the six order in R. Representing the
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resulting amplitudes as Tser = T ′
ser + iT ′′

ser we come to

T ′
⊥ser =

π2(kR)4(ǫ− 1)2

32(ǫ+ 1)3

(

(kR)2
(

2ζ2
(

ǫ2 − 1
)

+ ζ4(ǫ + 3)

−4γ
(

ζ2 + 1
)2

(ǫ− 1)− ǫ − 3

)

+ 4
(

ζ2 + 1
)

(ǫ+ 1)

)

, (15)

T ′′
⊥ser = −π(kR)2(ǫ − 1)

384(ǫ+ 1)3

(

(kR)4(ǫ− 1)

(

−ζ2 + 24γ
(

−2ζ2
(

ǫ2 − 1
)

−ζ4(ǫ + 3) + ǫ+ 3
)

+ ζ4(23ǫ− 3ǫ2 + 20) + ζ2ǫ(2ǫ2 − ǫ− 16)

−12π2
(

ζ2 + 1
)2

(ǫ− 1) + 48γ2
(

ζ2 + 1
)2

(ǫ − 1) + ǫ(2ǫ2 + 8ǫ− 11)− 23

)

+12(kR)2
(

ǫ2 − 1
)

(

ζ2(ǫ− 8γ − 1) + ǫ− 8γ + 3

)

+ 192(ǫ+ 1)2

)

. (16)
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Figure 4: The same as in Fig. 2, (a) but for the aspect ratio used in GRG L/(2R) = 103 -
(a), L/(2R) = 102 - (b).

For an extraordinary wave one have

T ′
‖ser =

π2(kR)4(ǫ − 1)2

64(ǫ+ 1)3

(

(kR)2
(

4γ
(

ζ6 + 7ζ4 − ζ2 +
(

ζ2 − 1
)3

ǫ4

+2
(

ζ2 − 1
)3

ǫ3 + 2
(

−2ζ6 + ζ4 − 4ζ2 + 1
)

ǫ+ 1
)

+ζ6(3ǫ3 + 9ǫ2 + 15ǫ+ 13) + ζ4(ǫ+ 1)(ǫ3 − 7ǫ2 − 17ǫ− 17)

+ζ2(3− 2ǫ4 + 3ǫ3 + 25ǫ2 + 27ǫ) + (ǫ− 3)(ǫ + 1)3
)

+4(ǫ+ 1)
(

ζ4(ǫ2 + 2ǫ+ 3)− 2ζ2ǫ(ǫ+ 2) + (ǫ + 1)2
)

)

, (17)
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T ′′
‖ser =

π(kR)2(ǫ− 1)

384(ǫ+ 1)3

(

(kR)4(ǫ − 1)

(

ζ4
(

6π2
(

ǫ
(

3ǫ3 + 6ǫ2 − 2
)

− 7
)

+ǫ(38ǫ2 + 101ǫ+ 72)− 3
)

+ ζ6
(

−
(

6π2
(

ǫ4 + 2ǫ3 − 4ǫ+ 1
)

+ǫ(12ǫ2 + 31ǫ+ 43) + 18
)

)

+ ζ2
(

6π2
(

−3ǫ4 − 6ǫ3 + 8ǫ+ 1
)

+ǫ(2ǫ(ǫ2 − 17ǫ− 49)− 53) + 15
)

+ 24γ2
(

ζ6 + 7ζ4 − ζ2 +
(

ζ2 − 1
)3

ǫ4

+2
(

ζ2 − 1
)3

ǫ3 + 2
(

−2ζ6 + ζ4 − 4ζ2 + 1
)

ǫ+ 1
)

+ 12γ
(

ζ6(3ǫ3 + 9ǫ2

+15ǫ+ 13) + ζ4(ǫ + 1)(ǫ(ǫ2 − 7ǫ− 17)− 17) + ζ2(ǫ((3ǫ2 − 2ǫ3 + 25ǫ)

+27) + 3) + (ǫ − 3)(ǫ+ 1)3
)

+ 2
(

3π2(ǫ− 1)− ǫ + 5
)

(ǫ+ 1)3
)

+12(kR)2
(

ǫ2 − 1
)

(

ζ4(3ǫ+ 4γ(ǫ(ǫ+ 2) + 3) + 5) + ζ2(ǫ(ǫ− 8γ(ǫ+ 2)− 3)

−6) + (4γ − 1)(ǫ+ 1)2
)

+ 96(ǫ+ 1)2
(

ζ2(ǫ − 1)− ǫ− 1

)

)

. (18)

The equations (15),(16),(17),(18) do not contain any logarithmic terms because
they were removed by the renormalization of the Hankel function. In com-
parison with the extinction, given by the GRG approximatioin, the equations
(15),(17) contain the terms of the six order in R and, thus, they have the wider
applicability for the shorter wavelength.

In the general case, if to consider falling of the electromagnetic wave on the
layer of cylinders not only the extinction cross section is needed but the effective
refractive index of a layer. It can be found from the dispersion equation for the
wave vector (7) using renormalized Hankel functions.

4. Discussion and conclusion

The expressions (15), (16), (17), (18) are of the six order in R. The expres-
sions (5), (6) are of the fourth order in R. Calculating the asymptotic of the
σ/L given by (5), (6) in the limit L → ∞, k⊥ >> 1/L we have found that
the extinctions per unit length of the finite cylinder coincides exactly with the
corresponding R4 terms contained in the Eq. (15), (17).

The fascinating hypothesis arises that in the limit L → ∞, k⊥ >> 1/L the
extinction cross section as a result of the exact solution of the three dimensional
scattering problem coincides exactly, i.e. in the all orders in R, with the extinc-
tion by the infinite cylinder obtained with the renormalized Hankel functions.
From physical point of view it means that with the help of renormalization
of the Hankel functions one is able to describe correctly the extinction by the
long but finite dielectric cylinder in all orders in kR and in all the range of the
incidence angles excluding the narrow gap near φ = 0.

We have no possibility to check this general hypothesis analytically, thus, we
have presented numerical results showing the ranges, where the relative errors
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compared to GRG and the infinite cylinder without renormalization approxi-
mations do not exceed 10 per and 20 percents. The normal incidence of a wave
to the cylinder is considered in order to check also the earlier hypothesis of
van der Hulst [7, 9] that at a normal wave incidence an extinction by the fi-
nite cylinder is equal to that by the infinite cylinder (without renormalization).
As one could see the hypothesis of van der Hulst is approximate, because the
logarithmic terms spoil the coincidence even at the normal incidence, when the
dielectric constant and kR become large. At the same time from the Fig. 3 we
see that the GRG approximation and the approximate formulas (15),(17) work
at a relatively wide range.

As it was mentioned the gap for the small angles of incidence relative the axis
of the finite cylinder could not principally be described in a frame of scattering
by infinite cylinder. From the Fig. 4 one could see this gap broadening with the
rising of the aspect ratio. However, at low aspect ratio the numerical methods
can be easily applied.

We may conclude that the renormalized Hankel functions should be used to
describe the extinction as by a single cylinder so in the dispersion equations for
the effective wave number (7). The dispersion equation (7) could be applied
straightforwardly to the mediums where the correlation in the placement of the
scatterers are absent, for instance, porous silicon [17]. However, for instance, for
porous aluminium oxide [16] the correlation of the scatterers should be taken
into account [18] with the help of radial distribution function [19].
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