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Abstract A refined equation for channeling particle dif-
fusion in transverse energy taking into consideration large-
angle scattering by nuclei is suggested. This equation is
reduced to the Sturm–Liouville problem, allowing one to
reveal both the origin and the limitations of the dechannel-
ing length notion. The values of the latter are evaluated for
both positively and negatively charged particles of various
energies. New features of the dechanneling dynamics of pos-
itively charged particles are also revealed. First, it is demon-
strated that the dechanneling length notion is completely
inapplicable for their nuclear dechanneling process. Sec-
ond, the effective electron dechanneling length of positively
charged particle varies more than twice converging to a con-
stant asymptotic value only at the depth exceeding the latter.

1 Introduction

Channeling effect in crystals delivers unique possibilities of
both high energy charged particle radiation and control. Both
electron and positron channeling makes it possible to devise
new semi-monochromatic sources of x- and γ -radiation [1–
3]. Proton and ion planar channeling in bent crystals is a
promising tool for both extraction and collimation of the
beams of the large hadron collider (LHC) and future cir-
cular collider (FCC) [4–6]. Planar channeling of charmed
and beauty baryons in bent crystals also makes it possible to
study the effects of both CP- and CPT violation [7].

All the applications of channeling are limited by its insta-
bility, induced by the dechanneling process. To describe the
latter, the concept of particle diffusion in the energy of its
transverse motion (transverse energy) was suggested soon
after the channeling discovery [8–10].
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The dechanneling process is often characterized by the
visual notion of dechanneling length. Some information con-
cerning the latter can be extracted from Monte Carlo simula-
tions. However, since the average dechanneling distance of an
individual particle strongly depends on its initial transverse
energy, any direct method of dechanneling length evalua-
tion through either the channeling fraction or dechanneling
distance averaging over the incident particle angular distri-
bution will give a result depending on the latter. In addition,
there is no ground to expect that a channeling fraction, eval-
uated by any averaging method, will exponentially depend
on the particle penetration depth, justifying an introduction
of a dechanneling length independent of the latter.

In fact, only the theory of [10], describing collective prop-
erties of statistical particle behavior and consisting in find-
ing the lowest eigen number of the diffusion equation, can
be used for both strict introduction and evaluation of the
dechanneling length. Since the dechanneling lengths of pos-
itively charged particles reach meters and tens of them at
the LHC and FCC energies, the direct method [10] of their
evaluation is more superior than the Monte Carlo simula-
tions which become quite time consuming in the TeV particle
energy region.

However, the theory [10] is applicable only in the case
of electron dechanneling of non-relativistic ions. Since the
critical channeling angle of low energy ions of mass M con-
siderably exceeds the maximal angle θmax = m/M of their
scattering by electrons with mass m, the electron dechan-
neling of non-relativistic ions can be correctly described in
neglect of both large-angle catastrophic scattering and the
scattering angle fourth power contribution to the mean square
variation of transverse energy. However, these assumptions
lose their applicability in many other cases.

First of all, since the channeling angle decreases with
energy, becoming much less than θmax = m/M , the modifi-
cation [5,13] of the theory [10] for the ultrarelativistic case
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does not take into consideration adequately the particle scat-
tering by crystal atom electrons. Also nuclear scattering both
limits the fraction of channeling positively charged particles
and is essential for channeling of negatively charged ones,
considerably complicating the latter by the rechanneling pro-
cess [11,12].

Recently the experiments with bent crystals were first con-
ducted to separate the nuclear dechanneling process of both
positively [14,15] and negatively [16] charged particles. The
observed dechanneling fraction was fitted by the exponential
decay law in order to introduce a constant nuclear dechan-
neling length. However, neither a justification of introduction
nor a way of evaluation of the latter were suggested in [14–
16].

To provide a correct evaluation of the dechanneling length
in the presence of nuclear scattering, a refined diffusion equa-
tion, which takes into consideration both the scattering angle
fourth power contribution to the mean square variation of
transverse energy and large-angle catastrophic scattering, is
introduced in this paper. This equation is used to evaluate
dechanneling length for the largest accelerator energies as
well as to reveal the peculiarities of the dechanneling pro-
cess introduced by both nuclear and electron scattering of
both positively and negatively charged particles.

2 Refined equation for channeled particle diffusion in
transverse energy

2.1 New features of the diffusion equation in transverse
phase space

According to the Lindhard averaged potential concept [1,5,
8,9], particle motion at small angles with respect to crystal
planes is described by the averaged atomic potential V (x)
(potential energy; see Fig. 1) whose translation symmetry
justifies the introduction of the energy of transverse motion 1

ε⊥ = εv2
x/2 + V (x) = p2

x/2ε + V (x), (1)

or transverse energy for short, which is conserved and
in which ε is the total particle energy, px = εvx and
vx (ε⊥, x) = √

2 [ε⊥ − V (x)] /ε are, respectively, its momen-
tum and velocity projections on the x axis, which is normal to
the crystal planes. Conservative particle motion in the poten-
tial V (x) is always disturbed by the incoherent scattering by
both nuclei and electrons – see Fig. 1. At that, an instant
incoherent deflection by the angle θx in the point x induces
a transverse energy change from (1) to

ε′⊥ = ε[vx (x)+θx ]2/2+V (x) = ε⊥+εvx (x)θx+εθ2
x /2. (2)

1 The system of units h̄ = c = 1 is used.

To describe the cumulative result of such changes, Fokker–
Planck approximation [1,5,17,18], which is able to treat
small transverse energy changes only [5,10,18], is widely
applied. Following the well established procedure [17] and
using the notations of [18], one can introduce a distribution
function in the one-dimensional transverse phase space

F(ε⊥, x, z) = ϕ(ε⊥, z) fε⊥(x) (3)

and the same over the transverse energy

ϕ(ε⊥, z) ≡ 1

N

dN

dε⊥
, (4)

where

fε⊥(x) = 2

T vx (ε⊥, x)
(5)

is the coordinate space distribution function in which

T (ε⊥) = 2

xr (ε⊥)∫

xl (ε⊥)

dx

vx (ε⊥, x)
, (6)

xl(ε⊥) and xr (ε⊥) are the period, the right and the left turning
points of the channeling motion at given ε⊥. The dependence
of the phase space distribution function (3) on the depth z
of particle penetration into the crystal along the channeling
planes is governed by the equation

∂F

∂z
= − ∂

∂ε⊥

(
�ε⊥
�z

F

)
+ 1

2

∂2

∂ε2⊥

(
(�ε⊥)2

�z
F

)
− wF, (7)

�ε⊥
�z

= �ε⊥(ε⊥, x)

�z
=
∫

(ε′⊥ − ε⊥)d�, (8)

(�ε⊥)2

�z
= (�ε⊥)2 (ε⊥, x)

�z
=
∫

(ε′⊥ − ε⊥)2d�, (9)

which was deduced following [18] and supplemented here for
the first time by the last term, which contains the probability

w = w (ε⊥, x) =
∫ ′

d� (10)

of “catastrophic” scattering and describes the single scat-
tering process of particle immediate knocking out from the
channeling state. Another new feature will be the preserva-
tion of the fourth scattering angle power contribution to the
integrand of Eq. (9); to introduce it a specific definition of
the integral regions of Eqs. (8)–(10) is introduced below.

To make the consideration more transparent, we will use a
simplified expression for the particle macroscopic scattering
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Fig. 1 Planar potential and the undertaken expansion of the considered
region of positively charged particle motion, shown by arrows (top).
Averaged number density of electrons and the same, multiplied by the
atomic number squared, of nuclei (bottom)

cross section on both nuclei with local number density nn(x)
and electrons with local number density ne(x):

d� = 4α2[Z2nn(x) + ne(x)]
β2 p2(θ2 + θ2

1 )2
dθxdθy, (11)

where θ1 is the angle, which takes the atomic nucleus poten-
tial screening into consideration. Both Z2nn(x) and ne(x)
coordinate dependence is illustrated by Fig. 1. The integrand
of the mean-squared transverse energy variation rate (9),

(ε′⊥ − ε⊥)2 = 2ε [ε⊥ − V (x)] θ2
x + ε2θ4

x /4 + · · · , (12)

in which the odd powers of the scattering angle θx are omitted,
contains the fourth power contribution of the same, which
has never been taken into consideration before [5,10,13].
The point is that, as can be directly seen from Eqs. (11)
and (12), this contribution diverges at large θx and to treat
it, finite integration limits should be introduced. To define
them, the transverse energy (2) of the scattered particle has
been equated to the height Vmax of the planar potential. The
boundary scattering angles which then follow,

θ±(ε⊥, x) = −vx (ε⊥, x) ±√2 (Vmax − V (x)) /ε, (13)

limit the integration region in Eq. (8) and (9) by the angles
θ−(ε⊥, x) ≤ θx ≤ θ+(ε⊥, x), leave the channeling particles
channeled, and fix the complementary integration regions
θx > θ+(ε⊥, x), θx < θ−(ε⊥, x) in Eq. (10). The integration
over all the possible angles θy = √

θ2 − θ2
x of scattering in

the yz plane is assumed everywhere in Eqs. (8)–(10).

Given the integration limits explicitly determined, the
integrals (8)–(10) can be routinely taken with the result
�ε⊥(ε⊥, x)

�z
= πα2

β3 p

[
Z2nn(x) + ne(x)

]

×
⎧⎨
⎩ln

⎡
⎣θ+(x) +

√
θ2+(x) + θ2

1

θ−(x) +
√

θ2−(x) + θ2
1

⎤
⎦

+ θ−(x)√
θ2−(x) + θ2

1

− θ+(x)√
θ2+(x) + θ2

1

⎫⎬
⎭ (14)

for the rate of transverse energy variation growth;

(�ε⊥)2(ε⊥, x)

�z
= a(ε⊥, x) + b(ε⊥, x), (15)

where

a(ε⊥, x) = 4 [ε⊥ − V (x)]
�ε⊥
�z

(16)

and

b(ε⊥, x) = πα2

4

[
Z2nn(x) + ne(x)

]

×
⎧⎨
⎩θ+(x)

√
θ2+(x) + θ2

1 − θ−(x)
√

θ2−(x) + θ2
1

+ 2θ2
1 θ+(x)√

θ2+(x) + θ2
1

− 2θ2
1 θ−(x)√

θ2−(x) + θ2
1

−3θ2
1 ln

⎡
⎣θ+(x) +

√
θ2+(x) + θ2

1

θ−(x) +
√

θ2−(x) + θ2
1

⎤
⎦
⎫⎬
⎭ (17)

for the rate of squared transverse energy variation growth and

w(ε⊥, x) = πα2

β2 p2θ2
1

[
Z2nn(x) + ne(x)

]

×
⎧⎨
⎩2 + θ−(x)√

θ2−(x) + θ2
1

− θ+(x)√
θ2+(x) + θ2

1

⎫⎬
⎭

(18)

for the catastrophic scattering probability.

2.2 Reduction of the diffusion equation to the transverse
energy space

To reduce the diffusion equation (7) in the transverse phase
space to that in the transverse energy space, the averaging
over the period of transverse motion

〈�(ε⊥, x)〉 =
xr (ε⊥)∫

xl (ε⊥)

�(ε⊥, x) fε⊥(x)dx (19)

is used [18] resulting in the equation
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∂ϕ(ε⊥, z)

∂z
= − ∂

∂ε⊥

(
A(ε⊥)

∂

∂ε⊥
ϕ(ε⊥, z)

T (ε⊥)

)

+ ∂2

∂ε2⊥

(
B(ε⊥)

ϕ(ε⊥, z)

T (ε⊥)

)
− W (ε⊥)ϕ(ε⊥, z),

(20)

containing the averaged coefficients

A(ε⊥) =
〈
�ε⊥(ε⊥, x)

� z

〉
,

B(ε⊥) = 〈b(ε⊥, x)〉 ,

W (ε⊥) = 〈w(ε⊥, x)〉 . (21)

Equation (20) suggests, instead of transverse energy, to intro-
duce both the variable

ξ ′(ε⊥) =
ε⊥∫

0

T (ε⊥)dε⊥ (22)

and the corresponding distribution function

u(ξ) = ϕ(ε⊥)

T (ε⊥)
= 1

N

dN

T (ε⊥)dε⊥
= 1

N

dN

dξ ′ . (23)

The variable (22) has a clear semiclassical interpretation,
being equal to the quantum number of transverse oscillatory
motion in the quantum state corresponding to the considered
transverse energy ε⊥ multiplied by 2π . Both Eqs. (22), (23)
and the standard transformations [19] allow one to extract
further the Sturm–Liouville operator in Eq. (20)

r(ξ ′)∂u(ξ ′, z)
∂z

= ∂

∂ξ ′

(
p′(ξ ′)∂u(ξ ′, z)

∂ξ ′

)
− q(ξ ′)u(ξ ′, z)

(24)

with the coefficients

p′(ξ ′) = [B (ε⊥(ξ ′)
)+ A

(
ε⊥(ξ ′)

)]
T
(
ε⊥(ξ ′)

)
r(ξ ′), (25)

q(ξ ′) = [W (
ε⊥(ξ ′)

)− B ′′ (ε⊥(ξ ′)
)]
T−1 (ε⊥(ξ ′)

)
r(ξ ′),

(26)

and

r(ξ ′) = exp

ε⊥(ξ ′)∫

0

B ′(ε⊥)dε⊥
A(ε⊥) + B(ε⊥)

,

ε⊥(ξ ′) =
ξ ′∫

0

dξ

T (ε⊥(ξ))
, (27)

which can be readily calculated using Eqs. (14)–(19) and
(21). It should be mentioned that Eq. (24) is more general
than that used in [10,13], which follows from Eq. (24) at
q = 0 and r = const .

Table 1 Dechanneling length and precision of its evaluation

Potential δε⊥(ε⊥ max)
Vmax−ε⊥ max

ldech, cm �ldech,%

Tob [21] 1 23.1 0

Tob [21] 0.5 22.9 −0.81

Tob [21] 2 23.2 +0.37

DT [22] 1 23.3 +0.61

Mol [9] 1 21.4 −7.255

2.3 Diffusion equation boundary conditions

Introducing the boundary conditions for Eq. (24), we imme-
diately adopt the one of ∂u(0)/∂ξ ′ = 0, reflecting the impos-
sibility of both transverse energy and variable (22) to drop
below zero. However, another condition of the distribution
function (23) nullification at some ε⊥max or ξ ′

max, essential for
the present approach [10,13], needs some comments. Indeed,
at first glance, the region of large ε⊥ is surely well populated
by the intensively scattering dechanneling particles. How-
ever, the diffusion equation approach is in general applicable
in the limit of small changes of the considered quantity, trans-
verse energy in our case. That is why one should adopt the
idea that at some ε′⊥ or ξ ′

max, when the variation

δε⊥(ε′) =
(〈

(�ε⊥)2(ε′⊥, x)

�z

〉
T (ε′)

−
〈
�ε⊥(ε′⊥, x)

�z

〉2
T 2(ε′⊥)

)1/2

(28)

of the former over the channeling period reaches the inter-
val Vmax − ε′⊥, separating ε′⊥ from the potential maximum,
the diffusion equation (24) ceases to describe any particle,
justifying thus the second boundary condition u(ξ ′

max) = 0,
where ξ ′

max = ξ ′(ε⊥max) and δε⊥(ε⊥max) = Vmax − ε⊥max.
To estimate the uncertainly of the latter definition of ε⊥max,
we took the ratios

δε⊥(ε⊥max)/ [Vmax − ε⊥max] = 0.5, 1, 2

to demonstrate in Table 1 that the uncertainty of the dechan-
neling length definition is marginal.

Given the boundary value ξ ′
max, one can now redefine Eq.

(24) in order to formulate Sturm–Liouville problem on the
interval [0, 1] of the normalized variable ξ = ξ ′/ξ ′

max by
omitting the prime in Eqs. (23)–(27) and putting p′(ξ) =
p(ξ)ξ ′2

max:

r(ξ)
∂u(ξ, z)

∂z
= ∂

∂ξ

(
p(ξ)

∂u(ξ, z)

∂ξ

)
− q(ξ)u(ξ, z),

(29)

123



Eur. Phys. J. C (2017) 77 :483 Page 5 of 9 483

1.0

1.2

1.4

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0

1E-3

0.01

0.1

r

q

ξ

p
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− ∂

∂ξ

[
p(ξ)

∂

∂ξ
un(ξ)

]
+ q(ξ)un(ξ) = λnr(ξ)un(ξ), (30)

∂un(0)/∂ξ = 0, un(1) = 0, n = 1, 2, . . . , (31)

where we follow the sign convention of [20]. The dependence
on the normalized parameter ξ of Eqs. (29), (30) as regards
the coefficients is illustrated by Fig. 2 in the case of 400 GeV
protons and (110) Si plane, also used as an example in Figs.
3, 4, 5, 6 and 7.

3 Diffusion equation solution and its analysis

3.1 Dechanneling length at different energies

A numerical solution of Sturm–Liouville problem (30), (31),
like that of [20], allows one to find any number of its eigen
states un(ξ) and eigen values λn , n = 1, 2, . . ., some of the
lower of which are plotted, respectively, in Figs. 3 and 4.
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The eigen values λn are positive and monotonically increase
with their number n, equal to that of the corresponding eigen
state un(ξ) nodes minus one. The completeness property of
the system of eigen states of the problem (30), (31) allows
one to represent any solution of Eq. (29) in the form of an
expansion,
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u(ξ, z) =
∞∑
n=1

cn exp (−λnz) un(ξ), (32)

the coefficients cn of which are determined by the distribution
u(ξ, 0) at the crystal entrance z = 0 and are evaluated below.
The solution (32) allows one to determine the channeling
probability dependence on crystal depth

Pch(z) ≡ Nch(z)

N0
=

1∫

0

u(ξ, z)dξ = 1

N0

∞∑
n=1

Nn0 exp (−λnz)

=
∞∑
n=1

cnūn exp (−λnz)
zλ1>1−→ c1ū1 exp (−λ1z) ,

(33)

where

ūn =
1∫

0

un(ξ)dξ . (34)

An exponential decay of the eigen states is governed by their
eigen values, the smallest first of which determines alone the
asymptotic exponential behavior of the general solution (32),
which gave rise to the introduction of the dechanneling length
ldech = 1/λ1 in [10]. Uncertainties of the latter, connected
with both the qualitative nature of the introduction of the
boundary ε⊥max of the diffusion approximation applicability
region and the planar potential model, are displayed in Table
1 for 400 GeV protons and (110) Si planes. As one can see,
both the uncertainty of the boundary energy ε⊥max defini-
tion and the transition between the potential models [21,22]
change the ldech value by less than one percent. A consider-
ably smaller dechanneling length, obtained with the Molière
potential [9], reflects mainly the limited applicability of the

Table 2 Dechanneling lengths for protons and electrons of different
energies

e−/p ε, GeV ldech, cm λ2/λ1 �ldech, % Nch0/N0

p 400 23.1 6.0 0.61 0.895

p 6500 303.6 5.7 0.34 0.895

p 105 3936.0 5.6 0.18 0.895

e− 1 6.0 ×10−4 7.8 130.0 0.33

e− 10 50.0 ×10−4 6.9 78.0 0.39

e− 100 0.044 6.4 46.0 0.44

e− 1000 0.38 6.1 28.5 0.49

latter to the channeling phenomenon. In any case, the preci-
sion of ldech determination by the diffusion equation method
is not worse than the uncertainty related with the potential
model choice.

Table 2 displays the ldech values for both positively and
negatively charged ultra-relativistic particles demonstrating
the large value of the ratio λ2/λ1 ∼ 6÷8, assuring the strong
dominance of the first eigen state starting from z ∼ ldech (see
below).

3.2 Nuclear dechanneling probability dependence on
particle penetration depth

However, the evolution of the probability (33) at the smaller
depths z ≤ ldech is governed by many states, making its
behavior more complex. To study an interference of different
eigen states, one should know their amplitudes Nn0/N0 =
cnūn (see Eq. (33)). The simplest formula can be obtained
for them in the limit of zero-angle particle incidence, when
|dε⊥| = |dV (x)/dx |dx and the distribution function at the
crystal entrance reduces to

u(ξ, 0) = 1

N

dN

dξ
= ξ ′

max

dplT (ε⊥(ξ)) |dV (x (ε⊥(ξ))) /dx | ,
(35)

wheredpl is the inter-planar distance, allowing one to evaluate
both the coefficients

cn =
1∫

0

u(ξ, 0)un(ξ)r(ξ)dξ

⎛
⎝

1∫

0

u2
n(ξ)r(ξ)dξ

⎞
⎠

−1

=
d∫

0

un (ξ(V (x))) r(ξ (V (x)))
dx

d

⎛
⎝

1∫

0

u2
n(ξ)r(ξ)dξ

⎞
⎠

−1

(36)

of the expansion (32) and the amplitudes Nn0/N0 = cnūn
of the eigen states, which enter Eq. (33) and are plotted in
Fig. 5.
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Equations (33) and (36) allow one to illustrate the main
features of the dechanneling process of positively charged
particles in the most practically important and complex
region l < ldech. Since only the particles with sufficiently
high transverse energies reach the regions of atomic nuclei
localization (see Fig. 1), the fast nuclear and slow elec-
tron dechanneling processes, which dominate, respectively,
at sufficiently high and low transverse energies, can be qual-
itatively distinguished. A question arises, however: is it pos-
sible to strictly introduce and measure both the nuclear and
the electron dechanneling lengths, as was done in [14,15]? It
is the knowledge of both the eigen values and the amplitudes
(36) of the eigen states, entering the solution (32), which
makes it possible to treat this question thoroughly.

Figure 4 shows that the number of the eigen values, the
inverse values of which correspond to the typical nuclear
dechanneling region (about 1 mm at 400 GeV), exceeds
one considerably. Corresponding eigen states also have the
amplitudes, comparable in value. The cumulative contri-
bution of these multiple and close fast decaying states is
approximated by the integral of the exponential function
exp(−λ(ε⊥)z) product by a slowly varying function of trans-
verse energy, well fitted by the power-type

Pch(z) =
∞∑
n=1

cnūn exp (−λnz)
z�λ1−→0.954−0.137 3

√
z, (37)

instead of exponential-type function of the crystal depth z,
as Fig. 6 demonstrates. Thus, in place of the dechanneling
length extraction, the experiments on nuclear dechanneling
should better accept the power-type fitting of the channeling
fraction dependence on depth.

3.3 Peculiarities of the electron dechanneling of positively
charged particles

On the opposite, a few lowest eigen values, describing the
electron dechanneling process, differ severalfold—see Fig.
4. In addition, the smallest of them possesses an extraordinary
large amplitude N10/N0 = c1ū1—see Fig. 5. By this reason
the applicability of the electron dechanneling length notion
is ensured starting just from z  ldech = 1/λ1. However,
the real experiments on beam steering, collimation and elec-
tromagnetic radiation generation are conducted at z < ldech

and even at z � ldech, where several lowest eigen state con-
tribute considerably to both Eqs. (32) and (33), violating their
asymptotic exponential behavior. Indeed, let us consider both
the dechanneling rate

− P ′
ch(z) =

∞∑
n=1

cnūnλn exp (−λnz), (38)

which can be measured experimentally, and its derivative

P ′′
ch(z) =

∞∑
n=1

cnūnλ
2
n exp (−λnz) (39)

(see Fig. 7). The point is that the relatively small population
coefficients |cn| � c1 with n > 1 are multiplied by the large
eigen values λn � λ1 and their squares in Eqs. (38) and (39),
respectively, making the “weights” of the states with n > 1
comparable with that of the first one. Having, in addition
to its high “weight”, the negative sign of the amplitude, the
second eigen state directly distorts the steady decrease of
the leading contribution of the first one. To demonstrate at
what a degree the states with n > 1 modify the exponential
channeling decay law at z < ldech, one should consider the
effective dechanneling length

leff
dech(z) = − P ′

ch(z)

P ′′
ch(z)

. (40)

The latter equals the constant value ldech = 1/λ1 either when
only the first terms in the sums (38) and (39) are preserved or
if the region z � ldech is considered. However, at z < ldech

the n > 1 terms induce a considerable dependence of the
effective dechanneling length (40) on depth, resulting in its
doubling at z = 6 ÷ 8 cm—see Fig. 7.

These limitations of the region of dechanneling length
notion applicability should be taken for granted. First of
all, the possibility to introduce dechanneling length itself is
nontrivial and was impossible without serious mathematical
treatment. The latter has demonstrated that the exponential
decay of channeling fraction indeed is established at suffi-
ciently large crystal depth, becoming possible due to the exis-
tence of a unique transverse energy distribution u1(ξ(ε⊥)),
which preserves its shape, decreasing proportionally to the
exponential exp(−z/ ldech) at any ε⊥. In principle, if the ini-
tial distribution u(ξ, 0) coincided with u1(ξ), an exponen-
tial decay could be observed starting from z = 0. However,
since, in fact, u(ξ, 0) considerably differs from u1(ξ) at var-
ious incident particle angular spreads, some transformation
of the former to the latter has to occur before the exponen-
tial decay is established. This transformation is described
as a decay of the eigenstates un(ξ) with n > 1. In par-
ticular, the ones with λn � 1/ ldech describe fast nuclear
dechanneling process which originates from the upper under-
barrier transverse energy region and is illustrated by Fig.
6. It was demonstrated that both the large number and the
nearness of the eigen values ensure the power-law nuclear
dechanneling process, instead of the exponential one, at
z � ldech.

However, an arbitrary initial distribution u(ξ, 0) differs
from u1(ξ) in the deep under-barrier region as well. The ter-
mination of the u(ξ, 0) relaxation into the quasistationary
state u1(ξ) in the latter is described by only a few lowest
eigenstates. Since any eigenstate simultaneously describes

123



483 Page 8 of 9 Eur. Phys. J. C (2017) 77 :483

both the deep under-barrier and the upper near-barrier chan-
neling particles (see Fig. 3), any redistribution in the deep
under-barrier region, described by the n = 2, 3 eigen-
states, is accompanied by the dechanneling from the near-
barrier region, which violates the exponential decay of the
n = 1 state, making effective dechanneling length (40)
dependent on crystal depth. Since any redistribution of the
deep under-barrier states is induced solely by the elec-
tron scattering, the depth of exponential decay law viola-
tion proves to be comparable with the electron dechannel-
ing length, as Fig. 7 demonstrates. It also follows from
the above arguments that some specific angular distribu-
tion can exist, resulting in an initial particle distribution in
transverse energy u(ξ, 0) so close to u1(ξ) as to maximally
shorten the region of u(ξ, 0) transformation into u1(ξ), mak-
ing the dechanneling length notion applicable also at some
z � ldech.

Thus, instead of fitting the data by the single exponential
containing a constant electron dechanneling length, a more
complex behavior of the dechanneling process of positively
charged particles should be assumed to establish the crystal
thickness most optimal for the applications. One of the most
fundamental ones of the channeling in relatively thick crys-
tals is the measurement of both magnetic and electric dipole
momenta of short-living particles [7].

3.4 Diffusion equation application to the dechanneling of
negatively charged particles

Since the particle scattering by nuclei is thoroughly taken into
consideration by Eqs. (29) and (30), the solution (32) can also
be applied to the case of negatively charged particles. Oppo-
sitely to the case of positively charged ones, all negatively
charged particles experience strong nuclear scattering, induc-
ing large fluctuations of transverse energy at any value of the
latter. As a result, more than 50% of the particles (see Table
2), having transverse energies ε⊥max < ε⊥ ≤ Vmax, experi-
ence average transverse energy variations (28) exceeding the
depth Vmax − ε⊥max of their transverse energy level occur-
rence. These variations induce either immediate dechannel-
ing or large changes of both the transverse motion period
and phase, making, in fact, inapplicable the whole notion of
channeling, understood as a quasiperiodic transverse motion.
The rest of the particles with ε⊥ < ε⊥max, which more
likely can be considered as channeled, also experience large
transverse energy fluctuations resulting in the uncertainty
of dechanneling length reaching several tens percent—see
Table 2.

Contrary to the case of positively charged particles,
nuclear scattering of negatively charged ones, which occurs
near the potential energy minimum, can immediately make
the transverse energy of nonchanneled particles consider-
ably less than the height of the potential barrier, giving

thus rise to the intensive rechanneling process which Eqs.
(29) and (30) are unable to describe. Thus, in total, the
diffusion equation approach still provides merely quali-
tative information on the dechanneling process of nega-
tively charged particles. Taking into consideration that the
dechanneling length of negatively charged particles is much
less than that of positively charged ones (see Table 2),
one should acknowledge the Monte Carlo simulations to
be a quite adequate approach for a study of negatively
charged particle dynamics. In particular, this method cor-
rectly reproduces a nearly exponential decay of the chan-
neling population in a bent crystal observed in [12], to
describe which the diffusion equation should be additionally
refined.

Monte Carlo simulations also certainly take into con-
sideration all possible features of positively charged parti-
cle motion. In particular, they correctly describe both the
rechanneling process and the large transverse energy fluc-
tuations at the upper under-barrier region ε⊥ ∼ ε⊥max,
in which the diffusion equation loses its applicability. The
Monte Carlo approach has also demonstrated its efficiency
in a simulation of the new effects of the channeling prob-
ability increase by the crystal cut [23], both the positive
miscut influence on the collimation process [24] and the
other features of the latter [25], multiple new radiation fea-
tures in both crystal undulators [2,26,27] and bent crystals
[28,29], the effects of planar channeling and quasichannel-
ing oscillations in the deflection angle distribution of par-
ticles passed through a bent crystal [30] and many effects
in the field of atomic strings [31–37]. However, the main
purpose of this paper was to demonstrate that despite all the
achievements of the Monte Carlo method, the diffusion equa-
tion approach, refined in the present paper, can supplement
the simulation results with the enlightening treatment of the
collective statistical behavior of channeling particles, which
cannot be described by the sum of two exponentials decay-
ing with nuclear and electron dechanneling lengths, respec-
tively.

Both electron and nuclear dechanneling lengths can be
measured using bent crystals [14–16]. Crystal bending will
certainly change the dechanneling length values from Table
2, evaluated for a straight one. Though both experiment
and simulations demonstrate a reasonable applicability of
the dechanneling length of electrons in bent crystals [12],
to predict its value diffusion equation (7) should be further
expanded to take into consideration the strong rechanneling
effect. On the opposite, a marginal role of the rechanneling
process of positively charged particles allows one to assume
that the new conclusions concerning the dechanneling rate
dependence on crystal depth remain true also in the presence
of crystal bending and should be used to enrich the inter-
pretation of the experiments of the type described in Ref.
[14–16].
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4 Conclusions

In this paper the equation of channeling particle diffusion in
transverse energy was both supplemented with the effect of
nuclear scattering and applied for a direct evaluation of the
huge dechanneling length values at the multi-TeV particle
energies. The diffusion equation approach has also proved
to be really indispensable in revealing the general features
of the collective statistical behavior of channeling particles
such as the power-type channeling probability dependence on
the particle penetration depths in the nuclear dechanneling
region and the pronounced dependence of the effective elec-
tron dechanneling length on the particle penetration depth
in the interval between the nuclear dechanneling region and
approximately one electron dechanneling length. These fun-
damental predictions, which strongly contradict the straight-
forward application of both nuclear and electron dechannel-
ing lengths, should be used for an unbiased interpretation of
the simulation predictions and represent themselves a chal-
lenge for future experiments.
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