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ABSTRACT
Recent availability of geo-localized data capturing individual
human activity together with the statistical data on international
migration opened up unprecedented opportunities for a study on
global mobility. In this paper, we consider it from the perspective
of a multi-layer complex network, built using a combination of
three datasets: Twitter, Flickr and official migration data. Those
datasets provide different, but equally important insights on the
global mobility – while the first two highlight short-term visits of
people from one country to another, the last one – migration –
shows the long-term mobility perspective, when people relocate
for good. The main purpose of the paper is to emphasize impor-
tance of this multi-layer approach capturing both aspects of
human mobility at the same time. On the one hand, we show
that although the general properties of different layers of the
global mobility network are similar, there are important quantita-
tive differences among them. On the other hand, we demonstrate
that consideration of mobility from a multi-layer perspective can
reveal important global spatial patterns in a way more consistent
with those observed in other available relevant sources of inter-
national connections, in comparison to the spatial structure
inferred from each network layer taken separately.
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1. Introduction

People travel from one country to another for different reasons and while doing so, a lot
of them leave their digital traces in various kinds of digital services. This opens tremen-
dous research opportunities through the corresponding datasets, many of which have
already been utilized for different research purposes, including mobile phone records
(Calabrese and Ratti 2006, Ratti et al. 2006, Girardin et al. 2008, Quercia et al. 2010),
vehicle Global Positioning System (GPS) traces (Kang et al. 2013, Santi et al. 2014), smart
cards usage (Bagchi and White 2005, Lathia et al. 2012), social media posts (Java et al.
2007, Frank et al. 2013, Szell et al. 2014) and bank card transactions (Sobolevsky et al.
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2014b, 2014c, 2015b, 2016). By looking at these traces, we can reconstruct people’s
movements and afterwards analyze them to see if interesting or useful patterns emerge
or to build models for predicting where people will travel next.

It has already been shown that results of such analysis can be applied to a wide range
of policy and decision-making challenges, such as regional delineation (Ratti et al. 2010,
Sobolevsky et al. 2013) or land-use classification (Pei et al. 2014, Grauwin 2015a). A number
of studies focus specifically on looking at human mobility at urban (González et al. 2008,
Hoteit et al. 2014, Kung et al. 2014), country (Amini et al. 2014) or global scale. When
considering aspects of human mobility at global scale in particular, two major types of
movements can be observed: an international migration (Greenwood 1985, Fagiolo and
Mastrorillo 2013, Abel and Sander 2014, Tranos et al. 2015) and short-term trips explored
for example through geo-localized data from Twitter (Hawelka et al. 2014, Sobolevsky
et al. 2015a) or Flickr (Paldino et al. 2015, 2016, Bojic et al. 2015b, 2016).

Some studies tried primarily to explain and model global mobility (Greenwood 1985,
Fagiolo and Mastrorillo 2013, Abel and Sander 2014, Tranos et al. 2015), while others
rather focused on its applications, such as revealing the structure of the global society
through the global mobility networks (Sobolevsky et al. 2013, Hawelka et al. 2014). Some
scholars even considered relationships between human migration and economic links
between countries (Fagiolo and Mastrorillo 2014, Sgrignoli et al. 2015). However, global
human dynamics shows a complex nature containing various types of mobility, includ-
ing such different processes as permanent relocations and short-term visits, and thus,
cannot be fully understood through any single data source focusing on just one
particular aspect of human behavior. Moreover, different sources might reveal different
aspects of mobility also possessing different biases and limitations, so one source might
complement another. In addition, recent studies provided methodological background
to deal with multi-layer complex networks (Kivelä et al. 2014) which allows us to utilize
their findings to build one network by combining different data sources.

In this study, we use three different sets of data each representing different kind of
people’s movements. Namely, Flickr and Twitter represent short-term human mobility
(Sobolevsky et al. 2015a), while migration network contains information about a long-
term one. Although Flickr and Twitter are similar in a certain sense, they show different
types of people’s activity, their usage while traveling and while at home also differs and
they might correspond to movements motivated by different reasons (Li et al. 2013).
Namely, Flickr mostly reflects activity during a leisure traveling and sightseeing, while in
case of Twitter, its data mostly reflect activity during spare time with internet access
available which can be performed during business trips as well as leisure traveling (Kiss
2011). Moreover, they are complement, as in some countries only one of these services
may be popular and widely used by people.

Further, we provide a comparative study of different layers of human mobility. The
specific focus of our study is on demonstrating that such a complex approach to
human mobility, considering it from different short- and long-term perspectives, is of
a vital importance: a multi-layer global mobility network shows patterns not seen
from each layer separately. In order to evaluate our hypothesis, we applied a method
of detecting communities in multi-layer networks and compared outcomes with those
for the other existing international connections (language similarities, present or
former colonial relations as well as trade networks). The results showed that
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communities detected in the three-layer network are on average much more similar
to communities in the language, colony and trade networks than the ones observed
in each layer separately.

2. Datasets

As our study aims at investigating human mobility from two different perspectives (i.e. long-
termand short-term), we include three datasetswhere twoof themcapture short-termhuman
movements such as touristic, personal or business travel, and one of them reflects long-term
mobility such as people moving to another country to live there. In that sense, short-term
humanmobility is inferred frommore than 130million geo-tagged digital objects (e.g. videos
and photographs) publicly shared on Flickr and more than 900 million geo-tagged tweets
posted by 13million users on Twitter, while long-term one is revealed from the UnitedNations
official migration statistics (further discussion on the nature of humanmobility represented by
these datasets could be found in the Supplementary Information). Moreover, in order to
compare mobility patterns determined in the aforementioned way and in some sense also
to verify our results, we used three other datasets showing international connections: colonial
dependency network, a network of languages shared by countries and a network of interna-
tional trade.

The Flickr dataset used in our study contains more than 130 million photographs/videos
and was created by merging two publicly available Flickr datasets – one coming from a
research project (Mount 2010) and another fromYahoo1 (Thomee et al. 2016). The records in
two datasets partially overlap, but since each digital object in both datasets has its id, we
were able to merge them by omitting duplicates and choosing only those records that were
made within a 10-year time window, i.e. from 2005 to 2014. Since the Flickr data are quite
sparse, we use 10 years’ time span to gather more data and to avoid possible biases that
could be caused by the dataset’s sparseness. In Section 6 of Supplementary Information, we
provide more in-depth discussion about the choice of the time frame and show that this
choice does not affect results of our analysis. The second dataset on short-term mobility
consists of the geo-tagged messages posted during 2012 and collected from the digital
microblogging and social media platform Twitter. The data were collected with the Twitter
Streaming API (Twitter 2013) and cleansed frompotential errors and artificial tweeting noise
as previously described by Hawelka et al. (2014).

In order to build a two-layer directed and weighted network that describes short-
term human mobility, we had to convert the Flickr and Twitter datasets into origin–
destination matrix where origins represent users’ home countries and destinations are
the places (i.e. countries) where users created digital objects or tweeted from. Since
both datasets do not contain information about user home location, we had to
determine it. Results from previous research showed that it is important to use the
proper method for home location definition based on the context of the data (Bojic
et al. 2015a). Taking this into account, we chose the most conservative method from
techniques used in similar studies. Namely, we decided who of the users are acting in
each location as residents based on the following criteria: a person is considered to
be a resident of a certain country if this is the country where he/she took the highest
number of the photographs/videos over the longest timespan (calculated as the time
between the first and the last photograph taken within the country) compared to all
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the other countries for this person. Moreover, we omitted all users for whom time-
span was shorter than 180 days (i.e. roughly 6 months) and who took less than 10
photographs/made less than 10 tweets. Usage of the timespan of at least 6 months
ensures a high probability of preventing most of the cases of wrongly detected home
location for Flickr users who just happened to demonstrate high activity during their
occasional travel to a certain destination (which happens often for tourists getting
excited about the place they visit), as we require them to perform repeated activity in
their prospective home country over an extensive period of time. However, even
though our method is more conservative compared to other methods used in the
literature, it can still produce errors. We believe, however, that amount of such errors
is low enough so that it does not affect the validity of the aggregated country-to-
country mobility analysis.

Using this simple criterion, we were able to determine the home country for over 500
thousand users in the Flickr dataset who took almost 80% of all the photographs/videos
in the dataset (i.e. more than 90 millions in total), while the rest of the users, for whom
home country could not be defined, mostly belong to a low-activity group taking
photographs only occasionally. As described by Hawelka et al. (2014), all Twitter users
were considered as residents of the country where they were most active. When
constructing our multi-layer weighted and directed mobility network, we only consid-
ered users for whom we were able to determine their home country. Finally, two
countries are connected with a link if there is at least one person from the first country
that had some activity in the second country where the value of every weighted link in
this network corresponds to the total number of users from one country that made
digital objects or tweeted in the other one.

We should mention here that Flickr and Twitter are much more widely used in
developed countries while penetration into some other countries can be quite low.
Figure 1 shows how many users per one million of population from each country we
determined to be active outside their homeland. We can see that penetration in China
(mostly due to restrictive legal regulations) and India as well as in the most African
countries is pretty low. About 75% of all the countries for Flickr and 45% for Twitter have
less than 0.01% of their population ever using these resources abroad. However, this
penetration rate of travelers recorded in the datasets can go up to couple of percent for
some countries, while on average about 5% of the Twitter users and 3% of the Flickr
users, captured by geo-located content they posted on corresponding service, were
recorded traveling abroad.

The third layer was constructed using a dataset with statistics on number of foreign
citizens or foreign-born population living in each country in July 2010. These data are
publicly available and can be downloaded from the United Nations Department of
Economic and Social Affairs website (United Nations 2015). This statistic is basically
already provided in a form of an origin–destination matrix, making the process of
extending the two-layer directed and weighted network on human mobility with one
additional layer describing long-term human movements a very straightforward one.

Finally, to see how the constructed three-layer mobility network correlates with
cultural and economic parameters, we created three separate networks of country
relationships based on colonial dependence, common language spoken by people in
different countries and bilateral trade between countries. In the first network of colonial
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dependence (Hensel 2009), two countries are connected if one of them was a colony or
dependent territory of another one. Furthermore, the second network is a network of
common spoken languages (Infoplease 2015) where two countries are connected if
there is at least one common language that is official in both countries or spoken by
the majority of the population in both of them. Unlike the first two, the third one is a
weighted network of trade flows between countries obtained from the United Nations
Commodity Trade Database (United Nations 2014) where the value of the link represents
the amount of import/export (in US dollars) in 2012.

3. Quantitative and qualitative properties of mobility networks

Before getting to the analysis of the entire three-layer mobility network, constructed in
the way explained in the previous section, we start from a comparative study of some
basic quantitative characteristics of the network layers. We look at their differences and
similarities, investigating if those different datasets effectively tell us the same stories

Figure 1. Penetration of (a) Flickr and (b) Twitter into countries all over the world as number of
users who travel abroad per one million of population.
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about global human mobility or the different ones. Specifically, the main focus of this
section is on the comparison of the long-term versus short-term attractiveness of the
countries. Focusing on the countries’ ability to attract foreign visitors, for this analysis we
excluded loop edges from all the networks and considered a common measure of
‘incoming degree centrality’, which in our case of weighted networks becomes ‘strength
centrality’. We additionally consider the distribution of links’ weights in order to gain
insights from the overall composition of the international mobility fluxes.

Relative country attractiveness for the foreigners can be defined as the fraction of all
people who travel outside their country of origin and come to that considered country of
destination. It can be approximated as a normalized node incoming strength (i.e. as the sum
of weights of all incoming non-loop edges to the given destination divided by the sum of all
non-loop edgeweights in the network). Strictly speaking thismetric only represents a proxy to
the actual country’s attractiveness and is dependent on the representativeness of the data
used to construct the corresponding mobility network. In the case of Twitter and Flickr, the
last might be largely affected by the heterogeneity of the data coverage across the world.
However, we believe that being evaluated at the global scale this metric is still useful for the
relative comparison of the attractiveness of different countries, at least in the context of the
social media activity. We also consider relative weights for each specific mobility flux between
the two countries as the number of people moving between them normalized by the total
number of people moving out of the considered origin. Based on Figure 2, which plots
cumulative distribution function of normalized incoming strengths of the nodes, and Figure 3,
that plots relative link weights for all three networks, we can conclude that all shown
distributions are pretty similar to log-normal. Plot in Figure 3 shows that the distribution of
links’ normalized weights in the migration network has a value of variance much higher
compared to two touristic networks. This means that the migration fluxes from each country
are generally more diverse than the short-term mobility ones as seen from Flickr and Twitter
networks.

Figure 2. Cumulative distribution of normalized nodes’ strengths.
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In order to explore the observed link diversity in more details, in Figure 4 we show a
cumulative sum of the links’ weights sorted in decreasing order. From this plot one can see
what percentage of the entire network’s flow is covered by a certain number of the
heaviest links. For example, we can see that in the migration network top 1% of the links
cover almost 40% of the entire network flow, i.e. total weight of 1% of the heaviest links
equals almost 40% of the sum of all weights, and 10% of the links cover 90% of the flow. At
the same time, those values are much smaller for the other two networks: 1% of the links
cover about 20% and 25% of the flow and 10% cover only about 60% and 70% of the entire
flow in the Flickr and Twitter networks, respectively. This observation can be explained by
the fact that although locally for each country migration links are more diverse, globally for
tourism there is a much broader choice of major destinations than for migration.

Finally, we calculate countries’ ranks according to their foreign attractiveness (more
details could be found in Supplementary Information). Figure 5 shows how a short-term
attractiveness rank (averaged over Twitter and Flickr networks, to diminish heterogene-
ity of their coverage) correlates with a migration attractiveness rank. However, interest-
ing stories are told by the outliers. Here we can see some very clear patterns. On the one
side, there are prosperous Middle East countries like Saudi Arabia, Qatar, Oman, Bahrain,
etc., that attracted huge amount of foreign manpower during the last century after vast
reserves of oil were discovered in the region. In many of these countries, number of
immigrants exceeds the local population. While being that attractive for professional
migration, they are relatively less popular for short-term visitors, including tourists. And
on the other side, there are less prosperous countries like highly populated Southeast
Asian countries: Indonesia, Philippines and Vietnam, not so much attractive for migrants,
but relatively cheap for tourists and offering very interesting natural attractions such as
Bali and Phu Quoc, just to name a few, which makes them primary touristic destinations.
Needlessness to say, there are also highly developed countries such as the United States,

Figure 3. Cumulative distribution of normalized links’ weights.
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the United Kingdom, Germany, etc., with very well-established tourism, plenty of busi-
ness visitors and lots of incoming migrants, being highly ranked in both short- and long-
term attractiveness. In Supplementary Information, we also compare countries by their
per capita performance in attracting foreign visitors measured as a number of visitors
divided by country’s population. This metric might be useful for the analysis of the
relative strengths of personal and business ties, which are strongly related to the
number of people living in the country.

Although results of our analysis presented in this section showed that all three
networks share some common properties, at the same time they differ in many aspects.
Common features of networks reflect certain facts about different types of countries: the
most developed countries are popular for both types of visitors, but then again there are
also countries attractive only from one side. Moreover, it has been shown that the
migration flow is much more concentrated around just couple of pairs of origin/destina-
tion countries, while tourists have a larger variety of choices when deciding which place
to visit next.

4. Modeling mobility

One common goal that many studies on human mobility share is to predict mobility
flows. Although over time several different models were proposed, still most of the
related works rely on the classical gravity model (Zipf 1946, Barthélemy 2011). The
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model takes spatial population distribution including distances between different loca-
tions as an input and predicts mobility fluxes with respect to several model’s parameters.
The values of those parameters are either assumed or have to be estimated from partial
knowledge of the network. Recently, an alternative parameter-free radiation model has
been suggested (Simini et al. 2012), which allows to predict human mobility just based
on the spatial distribution of the country population without any parameters to fit.
However, the radiation model in turn relies on some partial knowledge of the mobility
network as specified below. We compare performance of these models on our global
mobility network and use them to reveal and compare patterns behind the three layers
of this multi-layer network.

Classical gravity model tries to predict number of people moving from the origin i to
the destination j as wij ¼ C

popi popj

dαij
, where dij is the distance between i and j, popi is the

population of i, C is a global normalization constant ensuring that the predicted total
activity is the same (or on the same scale) as observed and α is an adjustable parameter
of the model. However, while the populations of the destinations are useful for
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understanding how the outgoing mobility from each origin should be distributed, the
population of the origin might not be the most relevant parameter for our networks due
to high differences in penetration level of Flickr and Twitter across populations of
different countries. To address this network heterogeneity, we used the total amount
of outgoing mobility souti observed in the network instead of the population popi of the
origin i. This will also help for a fair comparison between gravity and radiation models
because the last, as we will describe below, specifically relies on the knowledge of souti .
Therefore, in our case the final expression for predicting a flux from i to j is given by

wij ¼ C
souti popj

dαij
:

We also consider a ‘locally normalized’ version of the gravity model, i.e. gravity model
in a form:

wij ¼
souti popjd

�α
ijP

k�i popkd
�α
ik

:

This type of constrained model is rooted in the earlier work of Wilson (1967) and
more recently presented by Sagarra et al. (2013) and Grauwin et al. (2015b).

Unlike gravity, radiation model is claimed to be parameter-free. It uses only popula-
tion distribution to predict the flux of people as

wij ¼ souti

popipopj

ðpopi þ sijÞðpopi þ popj þ sijÞ ;

where sij is the population within circle with center at i and radius equal to the distance
between i and j excluding population of i and j, and souti as before represents the total
number of the commuters from i. However, it is worth mentioning here that the model
still depends on the knowledge of souti . Masucci et al. (2013) adjusted the radiation model,
introducing the appropriate normalization factor for finite systems. After incorporating this
factor, we came up with equation that we used in our experiments in a form of

wij ¼ souti

1� popiP
k
popk

popipopj

ðpopi þ sijÞðpopi þ popj þ sijÞ :

After fitting the gravity model and its ‘locally normalized’ version on the logarithmic
scale, together with constructing the radiation model for the three layers of our multi-layer
mobility network, we got results presented in Figure 6. From the figure and values of R2

presented in Table 1, we can conclude that for all three layers the gravity model – both
classical and locally normalized versions – fit much better for the appropriate choice of the
parameters. For that reason, in our further analysis we will only use the gravity model.

Worth mentioning is that sometimes other parameters are introduced to the gravity
model as well, such as population exponents. However, adding them to the model did
not improve performance much, while their values appeared to be pretty close to 1, so
we limit our analysis with having just the distance exponent making the highest impact
and revealing the strongest pattern.
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In Table 1 we report values obtained while fitting parameter α, i.e. the exponent for
the impact of the distance between origin and destination countries. Those values
indicate how fast the flux of people moving between two countries decays with an
increment of the distance between them. As one can see from the table, there is a
pattern that happens to be pretty distinctive for different layers of the network. And it
looks quite consistent for both classical and locally normalized versions of the model:
the exponent is slightly higher for Flickr network compared to Twitter and much higher
for the migration layer. The higher the exponent is, the faster the decay of mobility with
the distance is. We thus can conclude that migrations are usually much more dependent
on distance, while short-term mobility is much less spatially constrained.

Link quantile

0

1

2

3

4

5

6

7

8

lo
g(

av
er

ag
e 

lin
k 

st
re

ng
th

)
data
standard gravity
locally-normalized gravity
radiation

Link quantile

0

1

2

3

4

5

6

7

8

9

lo
g(

av
er

ag
e 

lin
k 

st
re

ng
th

)

data
standard gravity
locally-normalized gravity
radiation

0 20 40 60 80 100 0 20 40 60 80 100

0 20 40 60 80 100

Link quantile

0

2

4

6

8

10

12

14

lo
g(

av
er

ag
e 

lin
k 

st
re

ng
th

)

data
standard gravity
locally-normalized gravity
radiation

(a) (b)

(c)

Figure 6. Fit of the models to (a) Flickr, (b) Twitter and (c) migration networks.

Table 1. Results of fitting models to layers.
Parameter Flickr Twitter Migration

α gravity, CI95% 1.253 [1.237, 1.270] 1.112 [1.097, 1.128] 2.009 [1.993, 2.025]
α ‘locallynormalized’ gravity, CI95% 1.431 [1.415, 1.448] 1.160 [1.144, 1.177] 2.178 [2.161, 2.196]
R2 gravity 0.626 0.743 0.774
R2 ‘locallynormalized’ gravity 0.649 0.743 0.767
R2 radiation 0.444 0.413 0.649
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5. Detecting communities in the three-layer mobility network

After exploring properties of each network (layer) separately and discovering certain
general similarities as well as some noticeable differences between the layers, we
wanted to check our hypothesis that the three-layer mobility network can reveal
qualitative patterns that cannot be observed by looking at only layer by layer. In order
to evaluate the hypothesis, we focus on such a key pattern, one can discover by means
of the mobility networks, as the community structure of the human society. We aim to
show that combining a long-term mobility, such as migration, with short-term travels,
captured by social media data, into a network with multi-layered structure can reveal
important spatial patterns that might not be described by studying any single aspect of
the human mobility alone.

Previous studies (Ratti et al. 2010, Sobolevsky et al. 2013) have shown that community
detection in human interaction and mobility networks usually leads to connected
spatially cohesive communities (even with no spatial considerations in the community
detection method) often revealing meaningful geographical patterns. This was no
exception for the global mobility networks estimated from Twitter (Hawelka et al.
2014), as well as from migration data (Fagiolo and Mastrorillo 2013). However, while
separate layers of mobility network provide interesting partial insights on the spatial
structure of the global human society, we wonder if certain patterns can be seen only
from the multi-layered perspective. Several ways to detect communities in multi-layer
networks were proposed recently (Mucha et al. 2010, Tang et al. 2012) and for our study
we chose the approach based on a direct multi-layer generalization of the most widely
used objective function for network partitioning which is modularity (Newman and
Girvan 2004, Newman 2006).

Even before building a multi-layer generalization of the modularity, one more adjust-
ment has to be made to it in order to account for the absence of the loop edges in the
mobility networks we consider. For that purpose, we altered the way null model used by
modularity estimates the weight of each edge. In its classical form, modularity uses sitj

m as
an expected weight of the edge from an origin node i to a destination node j, where si
and tj are in- and out-strengths of the nodes i and j, respectively, and m is the total weight
of all edges, i.e. si ¼

P
j wij, tj ¼

P
i wij and m ¼Pk sk ¼

P
k tk ¼

P
ij wij, while wij is the

observed weight of the link from i to j. One of the possible explanations of such expected

value sitj
m ¼ sitjP

k
tk

� �
is that in random network that would preserve nodes’ degrees or

strengths, distribution of the outgoing strengths si among all the possible destinations is
proportional to these destinations’ incoming strengths tj. Another one (as it is also
sitj
m ¼ sitjP

k
sk
) is that distribution of the incoming strength tj among all the possible origins

is proportional to these origins’ outgoing strengths si. However, if loop edges do not

participate in this distribution, then it should be rather sitjP
k�i

tk
or sitjP

k�j
sk
, depending on

whether it is seen as distribution of the outgoing strength si among all the destinations
except i itself, or as distribution of the incoming strength tj among all the origins except j.
Finally, as an ultimate estimation we use average of those, that leads to the expres-

sion 1
2

sitj
m�ti

þ sitj
m�sj

� �
.
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Since it has already been shown that modularity suffers from certain drawbacks, such
as a resolution limit (Fortunato and Barthélémy 2007, Good et al. 2010) preventing it
from recognizing smaller communities, we also used the approach proposed by Arenas
et al. (2008) that involves introduction of the so-called resolution parameter, leading to
further adjustment of the modularity score. This way the final formula for the adjusted
modularity measure used for our case of the mobility networks free of the loop edges is:

1
2m

X
i�j

2wij � a
sitj

m� ti
� a

sitj
m� sj

� �
δðCi; CjÞ;

where a denotes the resolution parameter, i, j are nodes, Ci; Cj – the communities they
belong to, δðx; yÞ ¼ 1 if x ¼ y, 0 otherwise.

To deal with the multi-layer network, where all layers share the same nodes, we
followed the approach proposed by Tang et al. (2012). We combined adjusted mod-
ularity scores of each layer, taking their average value, and used this as a resulting utility
function for the multi-layer network as follows:

Q ¼ 1
3

X3
l¼1

1
2ml

X
i;j

2wl
ij � a

slit
l
j

ml � tli
� a

slit
l
j

ml � slj

 !
δ Ci; Cj
� �

;

where l denotes layer, wl
ij is the weight of the link from i to j in layer l, sli ¼

P
j w

l
ij,

tlj ¼
P

i w
l
ij, m

l ¼Pij w
l
ij.

Worth mentioning is that being defined as a normalized metric, modularity allows to
focus on the qualitative structural properties of the network, largely addressing potential
heterogeneity of the coverage of the data used to represent human mobility. This is
done by evaluating each network edge versus the null model expectation, taking into
account actual activity levels of the origins and destinations.

In order to find the best partition, we optimized this multi-layered version of modularity
using efficient and precise Combo algorithm (Sobolevsky et al. 2014a), suitable for dealing
with different types of objective functions. For the sake of noise reduction, we excluded
nodes for which incoming or outgoing strength was less than 10 at least in one layer, that
left us with a network of 201 countries and territories. We consider partition of each of the
three network layers separately and of the entire three-layer mobility network with
different values of resolution parameter. Figure 7 shows dependence of the resulting
number of communities (provided by the algorithm looking for the optimal partition in
terms of the adjusted modularity for any number of communities) on a value of the
resolution parameter. As it can be seen from the figure, for the range of values of
resolution parameter between 0.5 and 5.0, the number of obtained communities varies
from 1, meaning that the whole network is represented as one community, to more than
60–70 for some of the networks, when most of communities consist of 1–3 countries and
further analysis becomes pointless (in the Supplementary Information we present
extended plots for resolution parameter values in the range from 0.5 to 10.0 showing
that further outcomes are not affected in principle by broadening the range).

In order to provide the evidence for our hypothesis, we wanted to quantitatively
evaluate obtained partitions. For that purpose, we compare them with the partitions
obtained from other types of international connections. We quantify the similarity
between partitions using the normalized mutual information (NMI) (Ana and Jain
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2003, Danon et al. 2005), a similarity measure which came from information theory and
now is widely used in community detection for comparison of partitions. After expan-
sion of all expressions for entropy in its definition, NMI of two partitions A and B can be
calculated as:

NMI ¼
�2
PCA

i¼1

PCB
j¼1 Nij log

NijN
NA
i N

B
j

� �
PCA

i¼1 N
A
i log

NA
i
N

� �
þPCB

j¼1 N
B
j log

NB
j

N

� � ;

where CA and CB are the numbers of communities in each partition, NA
i and NB

j are the
cardinalities of each community, Nij are the numbers of nodes classified to community i
in partition A and to community j in partition B and N denotes the total number of
nodes. NMI takes values from 0 to 1 and the higher its value is, the more similar the
partitions are, meaning that for identical partitions NMI equals 1.

As it was previously described in Section 2, we chose language, colonial and trade
networks as representatives of non-mobility types of international connections. We
should mention though that data for constructing the language and colony networks
were obtained from the results of other studies and might not represent an ultimate
ground truth. Since the nature of these networks is quite different compared to the
mobility networks, a direct quantitative link-by-link comparison would not make sense.
Instead, we focused on the comparable patterns one can actually discover from different
types of networks, such as community structure. We compared partitions of each layer
and the entire multi-layer network with partitions of three other networks for the
corresponding values of the resolutions parameter, controlling the overall scale of the
partition in each case. We quantified similarity of partitions and took average NMI to
evaluate how consistent the partitions of each layer and the entire multi-layer network
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Figure 7. Number of communities depending on resolution parameter.
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are with the patterns from cultural, historical and economic networks. Results of this
comparison are presented in Figure 8. They show that the community structure of the
three-layer mobility network is consistently more similar to the community structure of
cultural, historical and economic networks than community structure of each layer
considered separately. This can serve as a good initial quantitative validation of our
hypothesis: when considering different aspects of mobility together in a form of the
multi-layer mobility network, one can indeed reveal some patterns more consistent with
other observations than patterns discovered by considering any of mobility layers alone.

In Figures 9–11, we present the results of partitioning with resolution parameter
values 1.0, 1.5 and 2.0, respectively, as this is the range where it is possible to visually
recognize and makes sense to analyze different communities on a map. Namely, when
applying modularity maximization with the default resolution parameter of 1.0 to each
layer separately, it leaves us with only 4 and 5 communities for Twitter and Flickr,
respectively, while for resolution parameter equal to 2.0, number of detected commu-
nities goes up to 17 making it already harder to visually identify and interpret different
colors.

From all the figures, we can see that partitions of multi-layer network seem to have
less anomalies and are easier to explain than partitions of any layer alone. For example,
in the Flickr and migration layers China often appears to be united with North America
or even with Canada alone, which is an interesting pattern to analyze and explain.
However, the multi-layer network partition based on all the mobility patterns related to
the country leaves it as a part of community of Asian countries, which agrees with its
overall geopolitical context. In partitions of multi-layer network, one can always clearly
see communities of both Americas (for a ¼ 1 they united into one community), com-
munities of former USSR countries and Arab countries. In case of a ¼ 1 entire Europe is
nicely united into one community. And while particular patterns revealed by specific
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Figure 8. Similarity of community structure between networks of human mobility and other existing
international connections.
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datasets are important to consider as they might point out interesting and sometimes
unexpected links, when it comes to an overall regional delineation, the whole variety of
such links should be considered. Partitions start to be more complicated for higher
values of a, but this is because more local patterns are discovered. Nevertheless, in
multi-layer network Australia is never united with the United Kingdom, Southeast Asia is
always united with the rest of East Asia, south and central Africa form their own
communities and China forms community around itself and not united with North
American countries, i.e. communities are much more geographically cohesive.
Moreover, another interesting property of the mobility networks consistent with the

Figure 9. Communities for resolution parameter value equal to 1.0.

Figure 10. Communities for resolution parameter value equal to 1.5.
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previous findings of Hawelka et al. (2014) and Fagiolo and Mastrorillo (2013) is that their
partitions are spatially connected even though it is never implied by the method of
partitioning. And this property is particularly clearly observed for the multi-layer network
partitions.

We do acknowledge that some patterns in community structure of different layers
may make sense and could be explained by the processes going on in the world, as
different aspects of mobility provide different views. Moreover, patterns observed in
long-term movements could differ from those in short-term. Nevertheless, in this
research we emphasize that if one wants to study global mobility links between the
countries in all their variety (as there are at least two if not more substantially different
mobility types), she/he should look at various sources of data (and there are increasingly
many such sources being provided by digital media). For example, studying migration
patterns might not require looking into business trips as well as delineating touristic
regions could be done without taking into account migrations, but for the purpose of
inferring geopolitical regions it could be important to consider all the aspects of
mobility. Considering just one source that can have its own biases might not be able
to uncover general patterns of such a complex system. Alternatively, incorporating
various sources can help to account for different factors in reconstructing a general
picture of human mobility.

6. Conclusions

In this study, we explored records of different types of human mobility: long-term and
short-term. We analyzed their similarities and differences and showed that country
attractiveness, which is represented with the number of foreign people visiting it, in

Figure 11. Communities for resolution parameter value equal to 2.0.
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all three networks follows a log-normal distribution. Moreover, our results showed that
normalized weights of links also follow the same distribution with almost the same
scaling parameters for Flickr and Twitter networks and much more diverse for the
migration one. The existence of a small number of stronger migration flows covering
majority of the entire migration activity denotes that people tend to move to rather few
major countries of interest, while from touristic or other short-term perspective the
choices of destinations is much broader.

We ranked all countries according to their attractiveness for long-term and short-term
visits and specifically investigated outlying countries that are highly ranked from one
perspective and not from the other. These countries fall into two easily distinguished
groups: the first one mostly consists of Arab countries that could be seen as very
attractive for immigrants (wealthy, oil-rich countries with a demand for foreign labor),
but not that much for tourists; and the second one is composed of developing countries
with diverse and exotic nature and quite high population density which attract a lot of
tourists, but fewer migrants. Nevertheless, there is also a group of highly developed
countries that attract both tourists and immigrants.

We also looked at how different types of mobility could be predicted by existing
models. After fitting the gravity model to all layers of our multi-layer mobility network,
we showed that long-term mobility is much more constrained by distance than short-
term one. This means that when people choose where to live they take into an account
distance much more often than when choosing where to go for a trip.

Finally, as we found that different datasets provide different perspectives on
human mobility, we combined them into one three-layer mobility network. We
showed that considering all three mobility networks together as one single multi-
layer network helps us to better describe the structure of the global human society in
a way which is more consistent with other types of known links between the
countries. Namely, we applied a community detection method to the multi-layer
network and to each layer separately and compared all four resulting partitions
with those obtained from networks of other existing international connections (i.e.
language similarity, colonial relations and international trade). The results showed
that the three-layer mobility network provides an underlying structure consistently
more similar to the structures behind those international connection networks, com-
pared to each layer taken separately. We also discuss the specific spatial patterns
revealed. Therefore, our general conclusion is that considering human mobility net-
work from a multi-layer perspective is crucial as multi-layer mobility networks can
reveal some important patterns which single networks cannot.
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