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A novel customer batch service discipline for a single server queue is introduced and analyzed. Service to customers is
offered in batches of a certain size. If the number of customers in the system at the service completion moment is less
than this size, the server does not start the next service until the number of customers in the system reaches this size or a
random limitation of the idle time of the server expires, whichever occurs first. Customers arrive according to a Markovian
arrival process. An individual customer’s service time has a phase-type distribution. The service time of a batch is defined
as the maximum of the individual service times of the customers which form the batch. The dynamics of such a system
are described by a multi-dimensional Markov chain. An ergodicity condition for this Markov chain is derived, a stationary
probability distribution of the states is computed, and formulas for the main performance measures of the system are
provided. The Laplace–Stieltjes transform of the waiting time is obtained. Results are numerically illustrated.
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1. Introduction

An overwhelming majority of the queueing literature is
devoted to queues where service to customers is provided
one by one. However, queues with batch (bulk, group)
service also receive their portion of attention. In such
queues, service is provided not to an individual customer,
but to groups of customers. Usually, the minimal and the
maximal size of a group are predefined. Among papers
dealing with a batch service discipline, the ones by Bailey
(1954), Deb and Serfozo (1973), Downton (1955), Neuts
(1967), as well as the survey by Sasikala and Indhira
(2016), are representative.

Recent results for queues with group service have
been obtained by Banerjee et al. (2015). There, many
examples of real world applications of queues with
group service are given and a survey of related research
is presented. According to Banerjee et al. (2015),
group service queueing systems can be divided into the
following categories:
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1. systems in which the buffer size is (a) finite or (b)
infinite,

2. systems in which arrivals occur according to (a) a
renewal or (b) a correlated process,

3. systems in which arrivals occur (a) singly or (b) in
batches,

4. systems in which services are (a) independent of the
batch size or (b) dependent on the size of the batch
being served,

5. systems in which service times are (a) exponential or
(b) non-exponential.

It is stressed by Banerjee et al. (2015) that very few papers
deal with Case 2(b) in combination with 4(b) and 5(b).
Our paper deals precisely with this combination. The
model considered has two distinguishing features:

• It is usually assumed in the analysis of group service
queueing systems that some integer threshold, say N,
is fixed and service does not start if the number of
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customers in the queue is less than N. In our paper,
we assume that the idle time of the server is limited,
and if this time expires then service starts, even if the
number of customers in the queue is less than N. Our
assumption better suits certain real world situations.
For example, in modelling operation of a passenger
delivering system at an airport, the shuttle has to start
travel even if it is not completely loaded because (i)
the passenger can be late to his/her flight due to a
long waiting time and (ii) there is some schedule and
the next shuttle should arrive for loading.

• Although a majority of the obtained analytical results
are valid for an arbitrary dependence of the batch
service time on the number of customers in the
batch being served, in our numerical examples we
assume that the service time of a batch is defined
as the maximum of individual service times of the
customers which form a batch. This assumption
comes from the model of the so-called multi-rate
information transmission that is assumed, e.g., in
IEEE802.11 WLAN.

The rest of the paper is organized as follows. In
Section 2, the mathematical model is described. The
process of system states is introduced in Section 3 as
a continuous-time five-dimensional quasi-birth-and-death
process and its generator is described. In Section 4, the
ergodicity condition is derived. In Section 5, an algorithm
for computing stationary distributions of the system states
and expressions for key performance indices of the
system are presented. The Laplace–Stieltjes transform
(LST) of the waiting time distribution is obtained in
Section 6. Results of numerical experiments are given
in Section 7. They show the advantage of the customer
service discipline considered over the classical discipline
without the possibility of starting service before the
number of customers in the system reaches a predefined
threshold value. Section 8 concludes the paper.

2. Mathematical model

We consider a single server queueing system, in which
the input flow is described by a Markovian arrival process
(MAP). Customer arrival in the MAP is directed by an
underlying irreducible continuous time Markov chain νt,
t ≥ 0, with a finite state space {0, . . . ,W}. The sojourn
time of the Markov chain νt, t ≥ 0, in the state ν
has the exponential distribution with parameter λν , ν ∈
{0, . . . ,W}. From now on we will use the notation of
the type ν = 0,W to indicate that ν takes values from
the set {0, . . . ,W}. After this sojourn time expires, with
probability pk(ν, ν

′), the process νt jumps to the state
ν′, and k customers, k = 0, 1, arrive into the system.
The intensities of jumps of the underlying Markov chain
from one state into another with generation of k customers

are combined into the matrices Dk, k = 0, 1, of size
(W + 1) × (W + 1). The matrix D(1) = D0 + D1 is
the infinitesimal generator of the process νt, t ≥ 0. The
invariant probability vector (stationary distribution vector)
θ of this process is computed as the unique solution to the
equations

θD(1) = 0, θe = 1.

Here and in the sequel 0 is the zero row vector and
e is the column vector of the appropriate size consisting
of ones. If the dimensionality of the vector is not clear
from the context, it is indicated as a lower index, e.g., eW
denotes the unit column vector of dimensionality W =
W + 1. The average intensity λ (fundamental rate) of
the MAP is defined as λ = θD1e and gives the expected
number of arrivals per unit of time in stationary mode.
The variance v of intervals between customer arrivals is
calculated as v = 2λ−1θ(−D0)

−1e − λ−2, the squared
coefficient cvar of variation is equal to 2λθ(−D0)

−1e −
1, while the coefficient ccor of correlation of successive
intervals between arrivals is given by

ccor =
1

v
(λ

−1
θ(−D0)

−1D1(−D0)
−1e− λ−2).

For more information about the MAP, its special cases,
properties and related research, see the works of Lucatoni
(1991) and Chakravarthy (2001). The usefulness of the
MAP in modeling customer flows in telecommunication
systems is mentioned by Heyman and Lucantoni (2003),
as well as Klemm et al. (2003).

It is assumed that basically customers have to receive
service in batches of size N , where N is a certain integer
fixed in advance. Below we assume by default that N ≥
2. However, results for N = 1 are easily obtained from
the given formulas as well. Note that N = 1 corresponds
to the usual service of customers one by one. Due to batch
service, an arriving customer has a chance to start service
immediately upon arrival only if it arrives when the server
is idle and there are N − 1 customers in the queue. The
arrival of such a customer triggers the start of service
of a batch containing N customers. If the customer
arrives when the server is busy or idle and the number
of customers in the queue is less than N − 1, then the
customer is placed in the buffer. The capacity of the buffer
is infinite. Customers in the buffer are placed in the order
of their arrival. The discipline of selecting customers from
the buffer at the service completion moment is defined
as follows. If at this moment at least N customers are
staying in the buffer, the batch consisting of exactly N
customers starts service. We call such a batch a block.
If the number of customers in the buffer at the service
completion moment is less than N, we call the set of
such customers a pool. At this moment, the so-called
admission period starts. The server resumes service when
the number of customers in the pool reaches the value N
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(in this case, customers in the pool form a block and the
pool becomes empty) or the admission period expires. In
the latter case, if the queue is not empty all customers
from the pool start service simultaneously. If the queue
is empty, a new admission period starts. Therefore, the
server can simultaneously provide service to a batch of
N customers (block) if the block was present in the
buffer at the service completion epoch or is accumulated
there during the admission period, or to the batch of n
customers, n = 1, N − 1, if the admission period expired
when the number of customers in the pool was equal to n.

The structure of the queueing system under study is
presented in Fig. 1.

MAP Pool of customers Queue of blocks of customers

generation of a block

Server

N 1 1

Fig. 1. Structure of the queueing system.

Duration of the admission period has a PH type
distribution with an irreducible representation (τ , T ).
This means that it is governed by the underlying process
η
(0)
t , t ≥ 0, which is a continuous time Markov chain

with the state space {1, . . . ,M (0),M (0) + 1}. The initial

state of the process η(0)t , t ≥ 0, at the epoch of starting the
admission period is determined in the set {1, . . . ,M (0)}
of transient states by the probabilistic row-vector τ =

(τ1, . . . , τM(0)). The transitions of the process η
(0)
t , t ≥

0, within the set {1, . . . ,M (0)} do not lead to admission
period completion and their intensities are defined by the
sub-generator T of size M (0) × M (0). The intensities
of transition to the absorbing state M (0) + 1, which
lead to admission period completion, are defined by
the vector T0 = −Te. The admission period time
distribution function has the form T (x) = 1 − τeTxe.
The Laplace–Stieltjes transform

∫∞
0 e−sx dT (x) of this

distribution function is τ (sI − T )−1T0. The average
length of the admission period is given by

r1 = τ (−T )−1e.

We will further call the value μ = r−1
1 the intensity

of admission. The matrix T + T0τ is assumed to be
irreducible. A more detailed description of the PH type
distribution and its partial cases can be found, e.g., in the
book of Neuts (1981).

Duration of the simultaneous service of n, n =
1, N, customers has a PH type distribution with an
irreducible representation (β(n), S(n)). The underlying

process of this distribution is η(n)t , t ≥ 0, with the finite
state space of transient states {1, . . . ,M (n)}. The average
service time of a group of n customers is defined by

b
(n)
1 = β(n)(−S(n))−1e, n = 1, N.

The problem of fitting the measurements of arrival and
service processes in real world systems with a Markovian
arrival process and a PH distribution can be solved by
analogy with the works of Casale et al. (2010) and
Mèszáros et al. (2014). The aim of our further analysis
is to evaluate the impact of the value of threshold N and
intensity of admission μ on system performance.

3. Process of system states

It can be seen that the dynamics of the system under
study are completely described by the multi-dimensional
process

ξt = {it,mt, rt, η
(rt)
t , νt}, t ≥ 0,

where

• it is the number of customer batches in the system,
it ≥ 0; the number it includes one batch in service,
if any, and it − 1 blocks in the queue, if any;

• mt is the number of customers in the pool, mt =
0, N − 1;

• rt is the number of customers in service: rt = 0 if
it = 0 and, consequently, the admission period is in
progress, and rt = 1, N if it ≥ 1;

• ηt is the state of the underlying process of the PH
process of customer admission, η(0)t = 1,M (0), or
the state of the underlying process of the PH process
of customer service, η(rt)t = 1,M (rt), rt = 1, N ;

• νt is the state of the underlying process of the MAP,
νt = 0,W .

Note that the total number of customers in the system at
an arbitrary moment t is equal to rt + (it − 1)N +mt if
it ≥ 1 or to mt if it = 0.

Given all the above assumptions, the
five-dimensional process ξt is an irreducible continuous
time Markov chain with one component (it) having the
infinite state space and four finite components. Its state
space is defined by

{(
0,m, 0, η(0),ν

)
, η(0) =1,M (0)

}

∪
{(

i,m, r, η(r),ν
)
, i ≥ 1, r = 1, N, η(r) =1,M (r)

}
,

m = 0, N − 1, ν = 0,W.

To analyse the behavior and properties of the Markov
chain ξt, we have to compute the infinitesimal generator
of the chain. Let us denote this generator by Q. The
diagonal entries Q(i,m,r,η,ν),(i,m,r,η,ν) are negative. The
modulus of each diagonal entry defines the intensity of
departure of the Markov chain from the corresponding
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state of the Markov chain. The non-diagonal entry
Q(i,m,r,η,ν),(i′,m′,r′,η′,ν′) is non-negative and defines the
intensity of transition of the Markov chain from the state
(i,m, r, η, ν) to the state (i′,m′, r′, η′, ν′).

To simplify the structure of generator Q and
follow the traditional methodology of the analysis of
multi-dimensional Markov chains, it is convenient to
make lexicographic enumeration of the states of the
Markov chain ξt and compose all the states of the chain
having value (i,m, r) of the first three components to the
macro-states (0,m, 0),m = 0, N − 1, and (i,m, r),m =
0, N − 1, r = 1, N. The macro-state (0,m, 0), m =
0, N − 1, contains

K(0) = NM (0) (W + 1)

states and the macro-state (i,m, r),m = 0, N − 1, r =
1, N, consists of

K(r) = NM (r) (W + 1)

states. Analogously, we will compose the macro-states
(i,m, r) to extra-states (0,m) ≡ (0,m, 0) , (i,m) ≡
((i,m, 1) , . . . , (i,m,N)) , i ≥ 1, and then we will
form super-states 0 as a composition of extra-states
(0,m), m = 0, N − 1, and i as a composition of
extra-states (i,m), m = 0, N − 1, i ≥ 1.

Lemma 1. The generator Q =(Qi,j) , where i ≥
0, max{0, i−1} ≤ j ≤ i+1, has a three-block diagonal
structure:

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Q0,0 Q0,1 O O . . .
Q1,0 Q1,1 Q1,2 O . . .
O Q2,1 Q2,2 Q2,3 . . .
...

...
...

...
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

where non-zero blocksQi,j defining the intensities of tran-
sitions from super-state i to super-state j, j = max{0, i−
1}, i, i+ 1, are defined as follows:

• Q0,0 is a two-block diagonal matrix defined by

Q0,0 = IN ⊗ (T⊕D0) + ÎN ⊗ (T0τ ⊗ IW )

+E+
N ⊗ (IM(0) ⊗D1) ,

where Ik is the identity matrix of order k, ⊗ is
the symbol of the Kronecker product of matrices,
⊕ is the symbol of the Kronecker sum of matri-
ces, Îk = diag {1, 0, . . . , 0}, where diag{Ak, k =
1,K}, is the diagonal matrix with diagonal entries
listed in brackets, E+

N = diag+ {1, . . . , 1} where
diag+{Ak, k = 1,K} is the square matrix with
the entries above the main diagonal listed in brackets
and all other entries equal to 0;

• Q0,1 is a block matrix having a structure presented
below:

Q0,1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

O O · · · O
(Q0,1)1,0

(Q0,1)2,0
...

. . .
...

...
(Q0,1)N−1,0 O · · · O

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where

(Q0,1)m,0

=

⎛
⎜⎝O, . . . , O︸ ︷︷ ︸

m−1

,T0 ⊗ β(m) ⊗ IW , O, . . . , O︸ ︷︷ ︸
N−m

⎞
⎟⎠,

m = 1, N − 2

and

(Q0,1)N−1,0

=
(
O, . . . , O
︸ ︷︷ ︸

N−2

,T0 ⊗ β(N−1) ⊗ IW ,

eM(0) ⊗ β(N) ⊗D1

)
;

• Qi,i, i ≥ 1 is a two-block diagonal matrix with the
diagonal blocks defined by

(Qi,i)m,m = diag
{
S(r) ⊕D0, r = 1, N

}
,

m = 0, N − 1,

and the blocks above the main diagonal defined by

(Qi,i)m,m+1 = diag
{
IM(r) ⊗D1, r = 1, N

}
,

m = 0, N − 2;

• Qi,i+1 is the matrix defined by

Qi,i+1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

O O . . . . . . O
...

...
. . .

...

O
...

. . .
...

(Qi,i+1)N−1,0 O . . . . . . O

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where (Qi,i+1)N−1,0 is the matrix of the form

(Qi,i+1)N−1,0 = diag
{
IM(r) ⊗D1, r = 1, N

}
;

• Qi,i−1 is the matrix defined by

Qi,i−1 = diag{(Qi,i−1)m,m ,m = 0, N − 1},
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with

(Qi,i−1)m,m

=

⎛

⎜
⎜
⎜
⎝

O . . . O S
(1)
0 ⊗ β(N) ⊗ IW

...
. . .

...
...

O . . . O S
(N)
0 ⊗ β(N) ⊗ IW

⎞

⎟
⎟
⎟
⎠
;

• Q1,0 is a square matrix having N block rows and
block columns of the form

Q1,0 = diag{(Q1,0)m,m ,m = 0, N − 1},
with

(Q1,0)m,m =

⎛

⎜
⎜
⎝

S
(1)
0 ⊗ τ ⊗ IW

...

S
(N)
0 ⊗ τ ⊗ IW

⎞

⎟
⎟
⎠ .

It is easy to see that for i ≥ 1 the expressions
of the blocks Qi,i, Qi,i−1 and Qi,i+1 do not depend
on i, which means that the Markov chain ξt belongs
to the well-known class of quasi-birth-and-death
processes, (see Neuts, 1981).

Write Qi,i = Q0, Qi,i−1 = Q− and Qi,i+1 = Q+.
The structure of generator is the following:

Q =

⎛

⎜
⎜
⎜
⎝

Q0,0 Q0,1 O O . . .
Q1,0 Q0 Q+ O . . .
O Q− Q0 Q+ . . .
...

...
...

...
. . .

⎞

⎟
⎟
⎟
⎠

.

4. Ergodicity condition

The ergodicity condition is stated in the following
theorem.

Theorem 1. The Markov chain ξt is ergodic if the in-
equality

λb
(N)
1 < N (1)

is fulfilled, and it is non-ergodic if

λb
(N)
1 > N.

Here λ is the fundamental rate of the MAP and b
(N)
1 =

β(N)(−S(N))−1e is the average service duration of a
batch consisting of N customers.

Proof. From the work of Neuts (1981) it follows that the
criterion of the ergodicity of the Markov chain ξt is the
fulfillment of the inequality

yQ−e > yQ+e, (2)

where the vector y is the unique solution of the system of
linear algebraic equations

y
(
Q− +Q0 +Q+

)
= 0, ye = 1. (3)

It is easy to check that the matrix

V = Q− +Q0 +Q+

has the following structure:

V =

⎛

⎜
⎜
⎜
⎜
⎝

A A′

. . .
. . .
. . . A′

A′ A

⎞

⎟
⎟
⎟
⎟
⎠

,

where

A

=

⎛

⎜
⎜
⎜
⎜
⎝

S(1) ⊕D0 S
(1)
0 ⊗ β(N) ⊗ IW

. . .
...

. . . S(N−1)
0 ⊗ β(N) ⊗ IW

S(N) ⊕D0 + S
(N)
0 ⊗ β(N) ⊗ IW

⎞

⎟
⎟
⎟
⎟
⎠
,

A′=

⎛

⎜
⎝

IM(1) ⊗D1

. . .
IM(N) ⊗D1

⎞

⎟
⎠ .

Let us find a solution to the system (3) rewritten in the
form

yV = 0, ye = 1. (4)

It is clear that the vector y has the structure y =

(y0,y1, . . . ,yN−1), where ym = (y
(1)
m , . . . ,y

(N)
m ), m =

0, N − 1. By direct substitution of this form of the vector
y to the system (4), it can be verified that the vectors
ym, m = 0, N − 1, have the following form:

ym = (0, . . . ,0,y(N)
m ),

where the vectors y
(N)
m , m = 0, N − 1, satisfy the

system of equations

y
(N)
m+1

[

S(N) ⊕D0 + S
(N)
0 ⊗ β(N) ⊗ IW

]

+ y(N)
m (IM(N) ⊗D1) = 0, m = 0, N − 2,

y
(N)
0

[

S(N) ⊕D0 + S
(N)
0 ⊗ β(N) ⊗ IW

]

+y
(N)
N−1(IM(N) ⊗D1) = 0,
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N−1∑

m=0

y(N)
m e = 1.

Again by direct substitution, it is possible to verify
that the solution of this system of equations is the
following:

y(N)
m =

(β(N)(−S(N))−1)⊗ θ

Nb
(N)
1

, m = 0, N − 1. (5)

After substitution of (5) into inequality (2) and some
algebraic manipulations, we get inequality (1). The
theorem is proven. �

Remark 1. The ergodicity (stability) condition for any
queueing system is defined by its ability to reduce the
number of customers in the system in a situation when
this number is huge (the system is overloaded). For the
system under study, when it is overloaded, the average
number of customers arriving during the service time is
equal to λb

(N)
1 (here b

(N)
1 is the average service time

of a batch of exactly N customers), while the number
of customers departing from the system at the service
completion moment is given by N. Thus, an intuitively
clear condition of system ergodicity should be of the
form λb

(N)
1 < N which coincides with strictly proven

condition (1).
The throughput of the system (the maximal intensity

of the customer flow that can be successfully processed
by the system), which is one of the main performance
measures of the system, is equal to N/b

(N)
1 .

5. Computation of the stationary
distribution of system states and
expressions for key performance indices
of the system

Further we assume that the inequality (1) is fulfilled. Then
a stationary distribution of the Markov chain ξt exists.
Denote the stationary state probabilities of the chain as

π(i,m, r, η, ν)

= lim
t→∞P{it = i, mt = m, rt = r, ηt = η, νt = ν, },

i ≥ 0, m = 0, N − 1, ν = 0,W,

with η = 1,M (0) if r = 0, and η = 1,M (r) if r = 1, N.
Let π(i,m, r) be the row vector of the probabilities

of states belonging to the macro-state (i,m, r), π(i,m)
be the row vector of the probabilities of states belonging
to the extra-state (i,m), and πi be the row vector of
the probabilities of states belonging to the super-state
i, i ≥ 0.

Theorem 2. The stationary probability vectors πi can be
computed as follows:

πi = π1R
i−1, i ≥ 2,

where R is a solution to the matrix equation

Q+ +RQ0 +R2Q− = O

having the spectral radius strictly less than 1, and the vec-
tors π0 and π1 are defined as a solution of the system

π0Q0,0 + π1Q1,0 = 0,

π0Q0,1 + π1(Q
0 +RQ−) = 0,

subject to the normalizing condition

π0e+ π1(I−R)−1e = 1.

The proof follows easily from the work of Neuts
(1981).

Once all the vectors πi, i ≥ 0, have been computed,
we are able to calculate various performance measures of
the system:
• the average number of blocks of customers in the

system, including the one in service,

L =

∞∑

i=1

iπie,

• the average number of blocks of customers in the
system, excluding the one in service,

L̃ =

∞∑

i=1

(i − 1)πie = L− 1 + π0e,

• the average number of customers in the pool at an
arbitrary moment,

N (pool) =

∞∑

i=0

N−1∑

m=1

mπ(i,m)e,

• the average number of customers in service at an
arbitrary moment,

N (serv) =

N∑

r=1

r
[
π1 (I −R)

−1
](r)

e,

where we use the notation

[πi]
(r)

=

N−1∑

m=0

π(i,m, r),
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• the average number of customers in the system at an
arbitrary moment,

N (syst) =
∞∑
i=1

N−1∑
m=0

N∑
r=1

((i− 1)N +m+ r)π(i,m, r)e

+

N−1∑

m=0

mπ(0,m)e

= NL̃+N (serv) +N (pool),

• the probability that an arbitrary customer
immediately starts service upon arrival,

Pimm = λ−1π(0, N − 1)(eM0 ⊗D1eW ),

• the probability that the server is idle at an arbitrary
moment,

P0 = π0(eM0 ⊗ eW ),

• the probability that the server is idle at the arbitrary
arrival moment,

P (arrival)
0 = λ−1π0(eM0 ⊗D1eW ).

6. Waiting time distribution

In this section, we derive the Laplace–Stieltjes transform
(LST) of the waiting time distribution. The waiting time
is the time interval from the moment of the arrival of
an arbitrary customer to the system until the moment
when this customer enters service. To get the LST
of the stationary waiting time distribution, we use the
method of catastrophes (also known as the method of
additional events) (Kesten and Runnenburg, 1956; van
Dantzig, 1955). This is a powerful method for the
derivation of the LST of distributions of quantities such
as waiting times, sojourn times, and a busy period. A
catastrophe does not have any physical meaning or any
impact on the behavior of the queueing system that is
being analyzed.

The notion of the catastrophe in the context of
an LST of a distribution is frequently employed due
to its nice probabilistic interpretation, which is briefly
explained. It is assumed that, independently of the
queueing system under study, there is a stream of
catastrophes that arrive according to a Poisson process
with the rate, say, s. We assume s to be a positive real.
It is very easy to extend this to complex s, having the
real part that is positive. Suppose that ξ is a continuous
random variable with distribution function Fξ(t). Then, it
is obvious that the LST

ϕ(s) =

∞∫

0

e−st dFξ(t)

of ξ gives the probability that a catastrophe from the
stationary Poisson process with the rate s will not arrive
during the time given by ξ. The use of this probabilistic
interpretation of an LST of a distribution greatly simplifies
obtaining an expression for the LST of the waiting time
distribution under study, and below we use this approach.

Let us tag an arbitrary arriving customer and monitor
its waiting in a queue. Let w(s) be the LST of the
distribution of its waiting time or, in other words, the
probability that a catastrophe from the stationary Poisson
process with the rate s will not arrive during the waiting
time. In order to derive an expression for w(s), we
need to introduce the following auxiliary denotations.
Let β (0,m, s) be the column vector consisting of the
LSTs of the time until the tagged customer starts service,
conditional that currently the server does not provide
service (i.e., the admission period is in progress), m
customers stay in the pool and the underlying processes of
the admission period and arrivals have the corresponding
states. Let β (i,m, r, s) be the column vector consisting
of the LSTs of the time until the tagged customer starts
service, conditional that currently the server provides
service, there are i blocks in the system, m customers stay
in the pool, the current service is provided to the batch
consisting of r customers and the underlying processes of
service and arrivals have the corresponding states.

Recursive formulas for the LSTs β (0,m, s) and
β (i,m, r, s) are given in the next two lemmas.

Lemma 2. The LST s β (0,m, s) , m = 1, N − 1, are
computed from the following backward recursion:

β (0, N − 1, s)

= (sI − T ⊕D0)
−1

(T0 ⊗ eW + eM0 ⊗D1eW ) ,

β (0,m, s)

= (sI − T ⊕D0)
−1

(T0 ⊗ eW
+ (IM0 ⊗D1)β (0,m+ 1, s)) ,

m = N − 2, N − 3, . . . , 1.

Proof. The formula

β (0,m, s)

=

+∞∫

0

e(−sI+(T⊕D0))t dt

× {T0 ⊗ eW + IM0 ⊗D1β (0,m+ 1, s)} (6)

is obvious from the following reasoning. After the arrival
of the tagged customer, which joins the pool and becomes
the m-th customer in the pool, during some time t, 0 <
t < ∞, a catastrophe does not arrive (the probability of
this event is e−st); possible transitions of the underlying
process of the admission period do not lead to completion
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of this period and their probabilities are given by the
matrix eTt; possible transitions of the underlying process
of arrivals do not lead to a new customer arrival and their
probabilities are obtained by the matrix eD0t. The joint
probability of the described events is equal to

e−steTt ⊗ eD0t = e(−sI+(T⊕D0))t.

After the moment t, during the interval (t, t + dt)
of infinitesimal length, one of two events may happen:
(i) the admission period expires (the probabilities of this
event under the fixed states of the underlying process of
the admission period are given by the vector T0 ⊗ eW̄ dt)
and service of the tagged customer starts, therefore the
probability that a catastrophe does not arrive during the
rest of the waiting time is equal to 1; (ii) a new customer
arrives (the probabilities of this event under the fixed
states of the underlying process of arrivals are given by the
matrix IM0⊗D1 dt). Ifm < N−1, this customer joins the
pool and the probabilities that a catastrophe will not arrive
during the rest of the waiting time of the tagged customer
are given by the vector β (0,m+ 1, s) . If m = N − 1,
the batch consisting of N customers (including the tagged
one) starts service. Integrating over t, we get (6). The
statement of Lemma 2 stems from (6) noting that

+∞∫

0

e(−sI+(T⊕D0))t dt = (sI − (T ⊕D0))
−1.

�

Lemma 3. The LST s β (i,m, r, s) , r = 1, N, are
sequentially computed from the equations

β (1,m, r, s)

= Cr(s)β (0,m, s)

+Br(s)β (1,m+ 1, r, s) , m = 1, N − 2,

β (1, N − 1, r, s)

= Cr(s)β (0, N − 1, s)

+Br(s)Hr(s)

(

β(N)
(
sI − S(N)

)−1

S
(N)
0

)i−1

,

and

β (i,m, r, s)

= Ar(s)β (i− 1,m,N, s) +Br(s)β (i,m+ 1, r, s) ,

i > 1, m = 1, N − 2,

β (i, N − 1, r, s)

= Ar(s)β (i− 1, N − 1, N, s)

+Br(s)Hr(s)

(

β(N)
(
sI − S(N)

)−1

S
(N)
0

)i−1

,

i > 1,

where

Ar(s) =
(
sI − S(r) ⊕D0

)−1 ((
S
(r)
0 β(N)

)
⊗ IW

)
,

Br(s) =
(
sI − S(r) ⊕D0

)−1

(IMr ⊗D1) ,

Cr(s) =
(
sI − S(r) ⊕D0

)−1 ((
S
(r)
0 τ

)
⊗ IW

)
,

Hr(s) =

((
sI − S(r)

)−1

S
(r)
0

)

⊗ eW .

The proof is analogous to that of Lemma 2.
The next theorem is devoted to formulas for the

computation of the LST w(s).

Theorem 3. The LST w(s) is computed as follows:

w(s)

= Pimm + λ−1

[ ∞∑

i=1

N∑

r=1

π(i, N − 1, r)(IMr ⊗D1e)

× (sI − S(r))−1S
(r)
0 (β(N)(sI − S(N))−1S

(N)
0 )i−1

+
N−2∑

m=0

π(0,m)(IM0 ⊗D1)β(0,m+ 1, s)

+

∞∑

i=1

N−2∑

m=0

N∑

r=1

π (i,m, r) (IMr ⊗D1)

×β (1,m+ 1, r, s)] .

The proof obviously follows from the law of total
probability. The expression (β(N)(sI − S(N))−1S

(N)
0 )

defines the LST of the service time of a block consisting
of N customers, the vector (sI − S(r))−1S

(r)
0 defines the

LST of the residual service time of a batch consisting of
r customers. The term Pimm accounts for the possibility
that the tagged customer starts service immediately upon
arrival.

The average waiting time can be easily computed by
the formula

W1 = −w′(0).

7. Numerical results

In this section, we intend to demonstrate feasibility of
the proposed algorithms for computation of steady-state
distributions of system states and the waiting time under
any fixed set of system parameters; to show the effect
of variation in the maximal number N of customers that
can be processed simultaneously in a batch; to illustrate
the high positive effect of the proposed discipline, which
suggests that the idle period of the server may end
via accumulation of N customers in the pool or via
expiration of a certain random amount of time, whichever
occurs first, compared with the discipline standard in
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the literature that requires mandatory accumulation of N
customers; to demonstrate the necessity to account for the
correlation in the arrival process to avoid poor evaluation
of system performance.

In our derivations we assumed that the service time
of a batch consisting of r customers has a PH distribution
with an irreducible representation (β(r), S(r)), r =
1, N. To implement the numerical work, now we need
to fix concrete dependence of the vectors β(r) and
sub-generators S(r) on r. Let us assume that the service
time of an individual customer has a PH type distribution
with an irreducible representation (β, S) and the size
of the vector β is M. Evidently, it is reasonable to set
(β(1), S(1)) = (β, S). For r > 1, depending on the
potential real world applications, one may think about
many options. For example, the service time of a batch
consisting of r customers:

• does not depend on r and is identical, in a stochastic
sense, with the service time of an individual
customer; this option is quite realistic, e.g., in
modeling transportation systems. The travel time of
an inter-city bus practically does not depend on the
number of passengers in the bus;

• is the sum of r service times of individual customers;

• is the weighted sum of r service times of individual
customers, e.g., their average value;

• is defined as the minimum of r service times
of individual customers; this may be true in a
system where, to guarantee quick delivery of some
information, the latter is transmitted simultaneously
in r channels;

• is defined as the maximum of r service times of
individual customers; this kind of dependence takes
place in modern telecommunication networks in
some networks, e.g., in multi-rate wireless networks
with the protocol IEEE802.11 WLAN.

In our numerical results, we fix the last option.
In multi-rate protocols, several mobile stations share
the same physical channel. Under the use of such
protocols, a group of requests from users can be processed
simultaneously in parallel and the processing of the whole
group is considered finished if the processing of all
individual requests belonging to this group is completed.
Therefore, the length of the service period of a group has
the distribution of the maximum of several independent
random variables, each of which represents the service
time of an individual customer belonging to this group.
Since the expectation of the maximum of a fixed number
of independent random variables is less (and can be
much less) than the sum of expectations of these random
variables, the average time devoted to service of an

arbitrary customer under the proposed service discipline
may be much less than such time under the classical
service discipline. Thus, the throughput of the system
under the proposed service discipline is higher and other
performance measures of the system may be much better
compared with the classical admission discipline. In
our numerical experiment we quantitatively illustrate
advantages of multi-rate transmission.

The service time of a batch consisting of r customers
is defined as the maximum of r service times of individual
customers. Because we assumed that the service time
of an individual customer has a PH type distribution
with an irreducible representation (β, S), we have to
compute the distribution of the maximum of r service
times having such a distribution. As follows from the
work of Dudin et al. (2015), this maximum indeed has
a PH type distribution and its irreducible representation is
recursively computed as follows:

β(n) =

(
β ⊗ β(n−1) | 0Mn−1 | 0M

)

,

S(n)

=

⎛

⎝
S ⊕ S(n−1) S0 ⊗ IMn−1 IM ⊗ S

(n−1)
0

O S(n−1) O
O O S

⎞

⎠ ,

n ≥ 2,

with the initial condition (β(1), S(1)) = (β, S), where
the dimension Mn of vector β(n) is defined by Mn =
(M + 1)n − 1, n ≥ 1.

To illustrate the effect of correlation in the arrival
process, in our experiments, we will consider first three
different MAPs having the same fundamental rate λ = 0.6
but different coefficients of the correlation of successive
inter-arrival times.

The first MAP is a stationary Poisson process. It is
defined by

D0 = diag{−0.6,−0.6}, D1 =

(
0 0.6
0.6 0

)

.

The coefficient of variation of inter-arrival times is
equal to 1. The coefficient of correlation of successive
inter-arrival times is equal to zero, so we will code this
process as MAP0.

The second MAP, coded as MAP0.2, has a coefficient
of correlation ccor = 0.2 and the squared coefficient of
variation 12.34. It is defined by the matrices

D0 = diag{−0.81156,−0.026346},

D1 =

(
0.80616 0.0054
0.014676 0.01167

)

.



128 A. Brugno et al.

The third MAP, coded as MAP0.38, has a coefficient
of correlation ccor = 0.38 and coefficient of variation
c2var = 12.39. It is defined by the matrices

D0 =

( −2.016 0
0.0006 −0.0654

)

,

D1 =

(
1.995 0.021
0.0072 0.0576

)

.

As the main performance measure of the system
under study in our experiments we consider the average
waiting time W1 of an arbitrary customer, while the other
performance measures listed in Section 5 are computed
as well. It is worth noting that numerous results of
various numerical experiments show that the well known
Little formula is valid for the system under study in the
following form:

W1 = λ−1(NL̃+N (pool)).

In all the experiments, we fix λ = 0.6 as the
fundamental rate of the MAP, μ as the intensity of the
exponential distribution of the admission period, 0 <
μ ≤ 25, while the distribution of the service time of an
individual customer is Erlangian of order 2 with the mean
value equal to 1. We investigate the dependence of W1 on
the intensity μ at varying pool capacity N .

Figure 2 shows dependencies of W1 on μ for MAP0

and values of N equal to 2,3,4,5. The value of W1 for
N = 1 does not depend on μ and is equal to 1.125.

5 10 15 20 25
Μ

0.5

1.0

1.5

W1

N�5

N�4

N�3

N�2

Fig. 2. Average waiting time W1 for different values of admis-
sion rate µ and different dimensions N of the pool when
corr = 0.

Careful examination of this figure reveals some
interesting observations as summarized below:

• If in the classical strategy, which assumes the
possibility to start service only when the queue
length reaches the level N , we introduce a chance
to be served also when a random admission
period expires, this essentially decreases the average
waiting time. The classical strategy corresponds to

the infinite length of the admission period (intensity
of the admission period expiration equal to 0). It is
evident from Fig. 2, that the increase in μ essentially
decreases the average waiting time.

• For small values of μ, small values of pool capacity
N are more preferable. However, when μ becomes
larger than some value (about 3.5), large values of N
become better. Accordingly, a proper choice of μ is
desirable for any value of N.

• The difference between the values of W1 for various
N is significant, especially for small values of μ.

Figure 3 reports the behavior of W1 with respect to
μ for MAP0.2. In this case, for N = 1 the value of W1

again does not depend on μ and is equal to 2.852.

We do not present the straight line for N = 1 in the
figures to avoid suppression of curves.
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Fig. 3. Average waiting time W1 for different values of admis-
sion rate µ and different dimensions N of the pool when
corr = 0.2.

From Fig. 3 we can deduce the same conclusions as
for Fig. 2. Moreover, we can observe that

(i) The order of the curves for various values of μ
can be different and more complicated than the one
observed in Fig. 2. Therefore, no “rule of thumb”
can be formulated and computation of the average
waiting time based on results presented above is
mandatory for any available set of N and μ generated
by a decision-maker who tries to optimize the system
operation.

(ii) The correlation in the arrival process increases the
average waiting time.

The latter conclusion becomes much more evident
after examining Fig. 4, which depicts W1 as the function
of μ for MAP0.38. In this case, for N = 1, the value of
W1 is 77.648.

Figure 4 clearly illustrates the following two facts:
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Fig. 4. Average waiting time W1 for different values of admis-
sion rate µ and different dimensions N of the pool when
corr = 0.38.

(i) Careful account of correlation in an arrival process
is vitally important to obtain correct evaluation
of system performance measures. Correlation
is an important feature of flows in modern
telecommunication networks, and it cannot be
ignored by assuming that the arrival flow is described
by a stationary Poisson arrival process. This
ignorance may lead to huge errors.

(ii) The use of batch service can significantly help to
improve the quality of system operation. For N = 1,
we have W1 = 77.648. For N = 2, W1 is about 21,
for N = 3, W1 is about 6.4, for N = 4, W1 is about
2.3; for N = 5, W1 is less than 2.

All the three MAPs considered above are artificially
constructed to illustrate the effect of correlation and have
two states of the underlying process νt, t ≥ 0. Let us
repeat the experiment for the MAP obtained as a result
of fitting real world traces (see Chydzinski, 2006). The
underlying process νt of this MAP has five states and is
defined by the matrices D0 and D1 given by

D0 = diag{59620.6, 113826.1, 7892.6,
123563.2, 55428.2},

D1 =

⎛

⎜
⎜
⎜
⎜
⎝

−59793.13 38.8 30.85
16.76 −114709.36 97.52
281.48 445.97 −9487.09
23.61 205.74 58.49
368.48 277.28 7.91

0.88 102.00
398.90 370.08
410.98 456.06

−124162.13 311.09
32.45 −56114.32

⎞

⎟
⎟
⎟
⎟
⎠

.

These matrices are obtained based on information
about the generator of the underlying process νt and the

expression for D1 as the diagonal matrix presented by
Chydzinski (2006). The original matrices are scaled to
obtain an MAP having the same fundamental rate λ =
0.6 as the three MAPs of order 2 which were used to build
Figs. 2–4. The coefficients of correlation and variation
of the MAP are not changed under the scaling and are
as follows: ccor = 0.141684 and c2var = 1.46354. Thus,
the MAP considered of order 5 has the coefficients of
correlation and variation intermediate between the values
of these coefficients for MAP0 and MAP0.2. Therefore,
one may anticipate that the value of the average waiting
time W1 for various values of N should be intermediate
between the values of W1 for MAP0 and MAP0.2.
However, for N = 1 we have that W1 = 1.125 for
MAP0, W1 = 2.852 for MAP0.2, and W1 = 6.63691
for the given MAP of order 5. The high value of W1 for
the MAP of order 5 is easily explained by the existence
of two states of the underlying process νt, in which the
intensity of generation of customers is much higher than
in other states. Such irregularity in arrivals implies that
sometimes the server is idle but sometimes it loaded. It
is important to note that the results of computations for
N = 2, 3, 4, 5 presented in Fig. 5 show that the negative
effect of irregularity in arrivals is essentially mitigated by
providing service in groups.
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Fig. 5. Average waiting time W1 for different values of admis-
sion rate µ and different dimensions N of the pool for
the MAP of order 5.

This confirms the importance of the analysis
presented in this paper. Advantages of group service
are illustrated and an algorithmic tool is provided for
optimal choice of the pair N and μ in situations when
the use of large values of N is restricted technically or
economically. In telecommunications systems, N can be
interpreted as the level of multiplexing or the number
of mobile stations, which can share the channel to an
access point, and the value of N can be limited by
available bandwidth. In applications to transportation
systems, N can be interpreted as the capacity of vehicles
or minivans which can be leased for passengers delivering.
In applications to manufacturing systems, N can be
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interpreted as the capacity of pallets used for providing
technological operations like heating or cooling some
details, etc. After the choice of the appropriate value of
the parameter N based on the restrictions on the waiting
time of customers and the cost of using the corresponding
capacity of bandwidth, our results allow fixing also a
suitable value of the parameter μ. The choice of μ is
not trivial. If we choose a small value of μ, we benefit
from a high coefficient of utilization of the capacities used
(bandwidth, vehicles, pallets, etc) but this puts us at risk of
providing poor quality of service. A long waiting time can
make information to be transmitted outdated, passengers
to be delivered to airport miss the flight, details to be
processed can lose required properties, etc. But if we
choose a large value by μ, we benefit from the usage of
advantages of group service and this offers good quality of
service, but the coefficient of utilization of the capacities
used may be low. One may observe in Figs. 2, 3, 5 that
for large values of μ the difference between the values of
W1 for N = 4 and N = 5 is quite small. Therefore,
the presented results can be useful to find some trade-off
between the quality of provided service and the provider’s
expenditures.

8. Conclusion

A novel customer batch service discipline for a single
server queue was introduced and analyzed. Service to
customers was offered in batches of a certain size N .
If the number of customers in the system at the service
completion moment is less than N , the server does not
start next service until the number of customers in the
system reaches this size or the admission period, which
limits the idle time of the server, expires, whichever
occurs first. The dynamics of such a system are described
by a multi-dimensional Markov chain.

Because this chain belongs to the class of QBD,
analysis of its steady state distribution is more or less
straightforward, while derivation of the Laplace-Stieltjes
transform of the waiting time is much more involved.
It is implemented with the help of the method of a
supplementary event. The dependence of the average
waiting time on N, mean value of the admission period
and correlation in the arrival process was numerically
illustrated. Important conclusions, based on the results
of computations, were formulated. The results are going
to be extended to the case of batch arrivals similar to
the one of Gaidamaka et al. (2014), customers impatient
during the stay in the pool similar to the case investigated
by Dudin et al. (2016), a system operating in a random
environment similar to the case studied by Kim et al.
(2014) and a discrete time system similar to the one
presented by Atencia (2014).
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