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ON THE DECIDABILITY OF THE THEORY OF MODULES OVER THE

RING OF ALGEBRAIC INTEGERS

SONIA L’INNOCENTE, CARLO TOFFALORI AND GENA PUNINSKI

Abstract. We will prove that the theory of all modules over the ring of algebraic integers is

decidable.

1. Introduction

Our original intention was to prove that the theory of all modules over the ring of algebraic

integers is decidable. When working out the proofs we found that they are applicable to a wider

class of natural examples, hence the resulting theorem sounds as follows. Suppose that B is an

effectively given (hence countable) Bézout domain such that each nonzero prime ideal P of B is

maximal, the residue field B/P is infinite, and the maximal ideal of the localization BP is not

finitely generated. Then the theory of all B-modules is decidable.

For instance this applies to the ring of algebraic integers A = Z̃, and also to the algebraic

closure of the polynomial ring Fp[t] over a prime field, i.e. its integral closure in the algebraic

closure of its field of fractions Fp(t).

The reason why we require each nonzero prime ideal of B to be maximal is the following. It

has been noticed by Gregory [8] (generalizing an early remark in [19]) that the prime radical

relation a ∈ rad(b) in a commutative ring R is interpretable in the first order theory of its

modules. If each nonzero prime ideal of a Bézout domain B is maximal then this relation is first

order in the language of rings, and is decidable in the examples of our interest.

However one should be aware that in general only few fragments of the theory of a ring are

interpretable in the language of its modules: for instance the theory of integers as a ring is

undecidable, but the theory of abelian groups is decidable by a classical result by Szmielew.

The proof of the main result uses basic algebraic facts and two pieces from the model theory

of modules. The first one is the model theory of modules over commutative Bézout domains

recently developed in [20]. The second is the decidability (or rather the proof of it in [19] given

in ‘elementary geometry’ terms) of the theory of modules over an effectively given valuation

domain whose value group is archimedean and dense. In this paper we deal with such domains

locally: each localization BP is of this form. Thus the decidability proof is a kind of local-global

analysis which reduces our original question to a problem of covering intervals in value groups

over some constructive set of maximal ideals.
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Working on this text we were much impressed by van den Dries–Macintyre [4] and Prestel–

Schmid [17] papers, from which few proofs and most examples are borrowed. The authors are

also indebted to Angus Macintyre for reading a preliminary version of this paper and drawing

our attention to [21].

There is a clear need to relax the countability of the ring (hence the countability of the

language) assumption when talking about the decidability of the theory of its modules. It

would allow to include into consideration other prominent examples of Bézout domains, such as

rings of entire (real or complex) functions and the ring of analytic real functions. However this

requires to recast some foundations of model theory for modules starting with its milestone, the

Baur–Monk theorem, - so we postpone this discussion to a forthcoming paper.

2. Valuation domains

All rings in this paper will be commutative with unity, and all modules will be unital with

multiplication written on the right.

For basics in model theory of modules the reader is referred to Mike Prest’s book [16]. For

instance the Ziegler spectrum of R, ZgR, is a topological space whose points are (isomorphism

types of) indecomposable pure injective modules and the topology is given by basic open (quasi-

compact) sets (ϕ/ψ), where ϕ and ψ are pp-formulae in one variable. This open set consists of

modules M ∈ ZgR such that ϕ(M) properly contains its intersection with ψ(M).

A ring is said to be a domain, if it has no zero divisors; and a valuation domain if its ideals

are linearly ordered by inclusion. Some basics of the theory of valuation domains can be found

in [7, Ch. 6]. For instance the Jacobson radical of V , Jac(V ), is the largest proper ideal of V .

Furthermore the value group Γ of V is a linearly ordered (additive) abelian group such that each

element a ∈ V is assigned its value v(a) ∈ Γ, for instance v(0) = ∞ and v(1) = 0. The positive

cone Γ+ of V can be identified (as a poset) with the chain of proper principal ideals of V .

Recall that Γ is said to be archimedean if for each α, β ∈ Γ+ there is a positive integer n such

that nα > β. In terms of V this means that, for all nonzero noninvertible a, b ∈ V , there is an n

such that an ∈ bV , i.e. the prime radical relation a ∈ rad(b) is trivial. Another way to say this

is that the only nonzero prime ideal of V is the maximal one.

We say that Γ is dense if for any α, β ∈ Γ+ there exists γ ∈ Γ such that α < γ < β. In terms

of V this means that one could insert a principal ideal cV strictly between any two principal

ideals bV ⊂ aV . Furthermore this holds true if and only if Jac(V ) is not a principal ideal.

It is known (see [7, Sect. II.2]) that a linearly ordered abelian group Γ is archimedean if and

only if it is isomorphic to a subgroup of (R,+,≤). Furthermore if Γ is additionally countable

and dense, then it is isomorphic to (Q,+,≤).

Let V be a valuation domain whose value group Γ is isomorphic to (Q,+,≤). In this section

we will give a detailed description of ZgV as a topological space. Some basic facts on model

theory of modules over valuation domains (including the description of indecomposable pure

injective modules) can be found in [18, Sect. 11] or [19, Sect. 4] - we will use them freely.
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For instance the points of ZgV are classified using pairs (J, I) of ideals of V . Taking values

we see that each nonzero ideal of V defines a cut (i.e. an ideal) on the positive cone Q+ of the

value group of V . In particular positive rationals correspond to nonzero principal ideals of V .

In fact two types of ideals arise in this way.

First every positive real s defines a cut on Q+ (and hence an associated ideal) whose upper

part consists of the rationals q (including ∞) such that s ≤ q, - we will denote this cut also by

s. Next assume that q is a nonnegative rational and choose b ∈ V whose value equals q. Then

the ideal b Jac(V ) defines a cut ‘to the right of q’ whose upper part is the open interval (q,∞],

- we will denote this ideal by q+. For instance the Jacobson radical of V defines the cut 0+.

We will show a pair of cuts (I, J) as a point on the quarter plane Γ̂+ × Γ̂+, where Γ̂+ is

obtained from Γ+ by completing by cuts.

.

◦ .

.

//

OO

0
0

∞

∞

•✤
✤

✤

❴ ❴ ❴ ❴

I

J

For instance the pairs of positive reals give usual points, but the pair (0+, 0+) represents the

infinitesimal point which is infinitely close to the origin.

The points of the Ziegler spectrum correspond to equivalence classes of pairs of cuts (J, I).

Here the pair (I, J) is equivalent to the pair (K,L) if and only if there are a /∈ I, b /∈ J such

that (with respect to the multiplication in V ) either 1) I = Ka, Ja = L or 2) Ib = K, J = Lb.

Thus these classes can be thought of as lines x+ y = const of slope −1 on this quarter plane.

Here is the equivalence class of the point (3, 2).

.

◦ .

.

//

OO

• l

▼
▼

▼
▼

▼
▼

▼

2

3

Note that some lines degenerate. For instance the point (0+, 0+) comprises the whole line;

and the same is true for (∞,∞), which we abbreviate as ∞. Furthermore all top points (q,∞),

q ∈ Q+ comprise one line; and the same holds true for points (q+,∞). Similar considerations

apply to points on the right boundary (∞, q) and (∞, q+).

The topology on ZgV is given (with respect to the addition inQ) by basic open sets (rectangles)

(a, a + g] × (b, b + h], where a, b are nonnegative rationals and g, h are positive rationals or ∞.

Here a point (J, I) belongs to this open set if it can be slided within the rectangle along the

line, i.e. if there is an equivalent pair (L,K) such that a /∈ v(L), a + g ∈ v(L) and b /∈ v(K),

b+ h ∈ v(K).
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. .

◦ .

//

OO

a+g

a

b b+h

•❴❴❴❴❴❴ ✤

✤

✤

✤

K

L

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

For instance the point (
√
2,
√
5) belongs to the open set (2, 3]× (1, 2] because 2 <

√
2+ 1 ≤ 3

and 1 <
√
5− 1 ≤ 2.

A word of caution: two sides of the rectangle are dashed, hence deleted, except of the two

corner points. Thus on the following diagram the line l1 : x + y = 6 intersects the rectangle

(2, 4] × (1, 2], but the line l2 : x+ y = 3 does not.

. •

◦ .

l1

❊
❊

❊
❊

❊
❊

l2 ❋
❋

❋
❋

❋

//

OO

2

1

2 4

Note the the infinite vertical strip (1, 2] × (0,∞] includes a finite point (t, s) iff t + s > 1.

Furthermore among infinite points it includes only top infinite points (t,∞), (t+,∞) and ∞.

.

◦ .

.

//

OO∞

∞

.

.✤

✤

✤

✤

✤

✤
.

l

❊
❊

❊
❊

1 2

On the following diagram we demonstrate the best attempt to separate points a = (1, 1+),

b = (1+, 1+), c = (1, 1) and d = (1+, 1).

◦ //

OO

. .

. .

. .

. .
◦a •b

•
c

◦
d

1

1

We see that the points a, d are topologically indistinguishable and belong to the closures of

both b and c.

From this description it follows that ZgV has a countable basis. We pinpoint another impor-

tant property of this basis. Following Hochster [9], we call a topological space spectral if it has

a basis consisting of compact open sets which is closed with respect to finite intersections (we

drop the T0-requirement from the original definition).
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Lemma 2.1. ZgV is spectral.

Proof. A quick glance at the following diagram will convince the reader.

//

OO
. .

◦ .

. .

◦ .
. .

◦ .

■
■

■
■

■
■

■
■

■
■

■
■

■
■

■
■

■

❏
❏

❏
❏

❏
❏

❏
❏

❏
❏

❏
❏

❏
❏

❏
❏

❏
❏

U

V

W

a1

a2

c1

c2

b1 d1 b2 d2

Here the basic open set corresponding to the rectangle W is the intersection of basic open sets

for rectangles U and V . �

We can ‘flatten’ the above diagrams by projecting all objects onto the diagonal x = y. Namely

each line x+ y = const will go to this constant. Then the rectangle (a, a+ g]× (b, b+h] will get

projected to the half-open interval (a+ b, a+ b+ g + h].

//

OO
✉

✉
✉

✉
✉

✉
✉

✉
✉

✉
✉

✉
✉

✉
✉

✉

. .

◦ .

◦

•

��✻
✻
✻
✻
✻
✻

��✹
✹
✹
✹
✹
✹
✹
✹

tttttttttt

For instance on the previous diagram we obtain U = (a1+b1, c1+d1] and V = (a2+b2, c2+d2].

Thus W corresponds to the interval (a2 + b2, c1 + d1], though the sides of W may vary.

Summing up the points of ZgV are the following.

1) For each positive real s the point (s, s) which will be denoted by s.

2) For each nonnegative q ∈ Q the points (q+, q+) which will be denoted by q+.

We will call points from 1) and 2) ordinary.

Furthermore for each q ∈ Q+ there is a pair of (topologically indistinguishable) points

3) (q+, q), denoted by qr (r for right) and (q, q+) denoted by qu (u for upper) - we call them

double points.

Finally there are the following infinite points.

5) (∞,∞) which we denote by ∞.

6) The pair of topologically indistinguishable points (∞, 1), (∞, 1+), denoted by ∞r; and a

similar pair (1,∞), (1+,∞), denoted by ∞u.

The points of ZgV are ordered in a natural way, extending the ordering of reals and setting

q < qr, qu < q+ for every rational q. Furthermore we will put the infinite points ∞u,∞r after
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all finite points, but before ∞. We will use black squares to denote the pairs of topologically

indistinguishable points.

• • � •

0+ s

sr,u

s+

• � •

t

tr,u

t+

•

�

�

∞u

∞r

∞

The topology on this space resembles Sorgenfrey’s topology on the real line (see [23, Exam. 4.6])

and is given by the following open basis.

For each pair of nonnegative rationals s < t there is a half open interval (s, t] whose content

is the closed interval [s+, t] on the diagram. For instance, it includes s+ but excludes s and sr,u.

Furthermore there are infinite intervals (s,∞r) including all finite points to the right of s+

(inclusive) and ∞r, but neither ∞u nor ∞; and similarly for intervals (s,∞u).

Finally there is an interval (s,∞) which includes all finite points to the right of s+ and all

infinite points.

Thus one could consider intervals (s, t] as above as basic open sets in the Ziegler spectrum of

V . The following trivial remark will be used later. Namely, the inclusion (s, t] ⊆ ∪n
i=1(si, ti] of

basic open sets holds true if and only if each of the following holds.

1) There exists i such that si ≤ s < ti, i.e. the left end s+ is covered.

2) There exists j such that sj < t ≤ tj, i.e. the right end t is covered.

3) For each u with s < u < t there is a k such that sk < u < tk, i.e. each internal point is

covered.

An obvious adjustment is required for infinite intervals.

Thus in order to decide the above inclusion it suffices to resolve strict and non-strict inequal-

ities between s, t and the si, ti.

3. Bézout domains

We recall some facts from the model theory of modules over commutative Bézout domains.

Here a domain B is said to be Bézout, if every 2-generated (and hence finitely generated) ideal

of B is principal. Thus B is Bézout if and only if for every 0 6= a, b ∈ B there are u, v, g, h ∈ B

such that the following Bézout equations hold true:

(1) au+ bv = c and cg = a, ch = b .

Such an element c is called a greatest common denominator of a and b, written gcd(a, b), and

is unique up to a multiplicative unit.

It is well known that the intersection of two principal ideals of a Bézout domain is a principal

ideal. If aB∩ bB = dB then d is said to be a least common multiple if a and b, written lcm(a, b),

which is unique up to a multiplicative unit.
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Thus for 0 6= a, b ∈ B, under a suitable choice of units, we obtain the equality ab = gcd(a, b) ·
lcm(a, b). In particular a single generator d for the ideal (a : b) = {r ∈ B | br ∈ aB} can be

calculated by the formula d = lcm(a, b)/b.

If P is a prime ideal of B then the localization V = BP is a valuation domain.

If B is a Bézout domain, then LB will denote the first order language of B-modules. If a ∈ B

then a | x is the divisibility formula whose value on a module M equals the image of a, Ma.

Similarly xb = 0 for b ∈ B denotes the annihilator formula whose value (xb = 0)(M) is the

kernel of b.

We need the following fact.

Fact 3.1. (see [20, Lemma 2.3]) Each positive primitive formula ϕ(x) in LB is equivalent to

a finite sum of formulae a | x ∧ xb = 0, a, b ∈ B, and to a finite conjunction of formulae

c | x+ xd = 0, c, d ∈ B.

The following is a standard consequence of Fact 3.1.

Corollary 3.2. Let B be a Bézout domain. An open basis for ZgB is given by pairs (ϕ/ψ),

where ϕ
.
= a | x ∧ xb = 0, 0 6= a, b ∈ B, and ψ

.
= c | x+ xd = 0, 0 6= c, d ∈ B.

We will recall from [20] how to decide when the above basic open set is non-empty. Firstly

we may replace ϕ by ϕ+ψ without changing the open set. On the level of elements that means

taking gcd’s and lcm’s, hence we can assume that c = ga and b = dh for some g, h ∈ B. Now

this open set is empty if and only if g and h are coprime, gcd(g, h) = 1.

Now we look at this pair as follows. If P is a nonzero prime ideal of B such that gh /∈ P

then the open set (ϕ/ψ)P defined by this pair over the valuation domain V = BP is trivial.

Otherwise (see Section 2) we may consider this pair as a ‘rectangle’ (d, b] × (a, c] (or rather

(v(d), v(b)]×(v(a), v(c)]) on the plane Γ̂+× Γ̂+, where Γ̂+ is the positive cone of V completed by

cuts. By ‘projecting onto the diagonal’ (see Section 2) we represent this open set by a half-open

interval (v(ad), v(bc)].

Following [19] and [15, Ch. 17] we will consider the following setup for analyzing decidability

of the theory of modules.

A countable Bézout domain B is said to be effectively given, if its elements can be listed as

a0 = 0, a1 = 1, a2, . . . (possibly with repetitions) such that the following algorithms can be

executed effectively (when m and n range over nonnegative integers).

1) Deciding whether am = an or not.

2) Producing am + an and am · an (or rather indices of these elements in the list).

3) Establishing whether am divides an.

In fact this notion is equivalent to a standard definition of a computable algebra (see [5, Ch. 6]

or [21]).

Despite the countability assumption seems to be too restrictive in some cases, it means just the

countability of the first order language LB. Furthermore if B is written as a list, then questions

1)–3) are interpretable in the first order theory of B-modules, hence must be answered effectively.
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Under these assumptions the standard list of axioms for the theory of B-modules is recursive,

hence this theory is recursively enumerated. Furthermore the following procedures can be carried

out effectively.

4) Given am producing −am.

5) Given am, an such that an is not zero and am divides an producing the quotient an/am.

6) Given am deciding whether am is a unit in B and, if so, computing its inverse.

7) Given nonzero am, an, producing a representative of their greatest common divisor and a

representative of their least common multiple.

Recall that the prime radical relation a ∈ rad(b) on a commutative ring R is equivalent to

an ∈ bR for some n ∈ N, so in general it is not first order in the language of rings.

Lemma 3.3. Suppose that B is a Bézout domain such that each nonzero prime ideal is maximal.

Then the principal radical relation is first order in the language of rings.

Furthermore if B is effectively given, then a ∈ rad(b) can be decided effectively.

Proof. We prove that this relation is equivalent to the first order statement ∀x gcd(a, x) = 1 →
gcd(b, x) = 1 and check only the right to left implication.

Otherwise a /∈ rad(b), hence a /∈ P for some prime ideal containing b. By the assumption P

is maximal, hence ar+ x = 1 for some x ∈ P and r ∈ B. It follows that gcd(a, x) = 1 but b and

x are not coprime, a contradiction.

To prove effectiveness make a list of powers a, a2, . . . and check at each step, using 3), whether

an ∈ bB or not. If this is the case stop with the answer a ∈ rad(b). Otherwise continue.

On the other hand for each x that occurs so far in the list check, using 7), whether gcd(a, x) =

1. If this is not the case then continue, otherwise check whether gcd(b, x) = 1. If not then stop

with the a /∈ rad(b) answer, otherwise continue.

Clearly these two parallel processes will provide the answer after finitely many runs. �

Now we are in a position to prove the main theorem.

Theorem 3.4. Suppose that B is an effectively given Bézout domain such that each nonzero

prime ideal P is maximal, the residue field B/P is infinite and the maximal ideal of the local-

ization BP is not finitely generated. Then the theory T of all B-modules is decidable.

Proof. By Baur–Monk theorem (which eliminates quantifiers down to ∀ ∃-level, see [16, Sect. 2.4])
each sentence in T is equivalent to a Boolean combination of the so-called invariant sentences.

Clearly (just knowing that this equivalence exists) this elimination procedure can be executed

effectively.

Furthermore both equivalent forms from Lemma 3.1 can be found effectively (just knowing

that they exist). Because each residue field of B is infinite, standard arguments (see [19, Sect. 5])

show that it suffices to decide effectively the following inclusion of basic open sets:

(2) (ϕ/ψ) ⊆
n⋃

i=1

(ϕi/ψi) ,
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where ϕ
.
= a | x ∧ xb = 0, ψ

.
= c | x + xd = 0, ϕi

.
= ai | x ∧ xbi = 0, ψi

.
= ci | x ∧ xdi = 0 and

all elements are from B. Furthermore (see [20, before Prop. 3.2]) we may assume that c = ag,

b = dh and c = aigi and bi = dhi for some elements in B.

Now this inclusion clearly localizes: it holds true over B if and only if it is true over any

localization BP , where P is a prime nonzero ideal. By the assumption the value group of each

localization is countable, dense and archimedean, hence isomorphic to (Q,+,≤).

According to Section 2 we will consider (2) as the following inclusion of half-open intervals:

(3) (v(ad), v(bc)] ⊆
n⋃

i=1

(v(aidi), v(bici)] .

We will decide on existence of a prime ideal P such that this inclusion fails. For this we use

the explanation after Corollary 3.2.

First of all the interval (v(ad), v(bc)] should be nontrivial over BP . That means just that

g, h ∈ P . Thus we have gotten a first condition in our projected P .

Furthermore (see Section 2) the remaining conditions can be written in the form v(s) < v(t)

or v(s) ≤ v(t) where s, t take values among ad, bc, aidi, bici. Let u generate the ideal (t : s) and

w generate the ideal (s : t). Then the former equality v(s) < v(t) is equivalent to u ∈ P , and

the latter is equivalent to w /∈ P .

Summing up we see that the inclusion (3) does not hold if and only if there exists a prime

nonzero ideal P which includes a prescribed finite set of elements of B, and excludes a prescribed

finite set of elements. Using gcd’s and lcm’s we may assume that both sets consist of one element.

Thus we are left with the following question. Given nonzero a, b ∈ B decide on the existence

of a prime ideal P such that a /∈ P and b ∈ P . But this is the same as a /∈ rad(b), hence

Lemma 3.3 applies. �

Struggling more one could likely relax the hypotheses of Theorem 3.4 to include the case when

some residue fields B/P are finite. However because of the lack of nice examples, we will not

pursue this goal.

Here is a modeling example when the situation described in Theorem 3.4 occurs. Let A be

a domain with quotient field Q whose algebraic closure is denoted by Q̃. Then the algebraic

closure Ã of A is its integral closure in Q̃.

Proposition 3.5. Suppose that A is a countable domain such that each nonzero prime ideal of

A is maximal and its algebraic closure B is an effectively given Bézout domain. Then the theory

of all B-modules is decidable.

Proof. We will check that the hypotheses of Theorem 3.4 are satisfied.

Firstly it follows from standard properties of integral closures (see [1, Cor. 5.8, 5.9]) that each

nonzero prime ideal of B is maximal.

Secondly we check that the maximal ideal PP of BP is not principal. Otherwise let the image

of r ∈ P generate this ideal. Since
√
r ∈ B we conclude that

√
r = rt for some t ∈ RP , hence

1 =
√
r · t, a contradiction.
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It remains to show that each residue field B/P is infinite. If the characteristic of A is p then

B includes a copy of any finite field Fq, q = pm, which survives after the localization.

Otherwise A contains a copy of Z, therefore B contains the ring of algebraic integers A = Z̃.

It is well known that each residue field of this ring is infinite. For instance one can argue as

follows.

Let P be a maximal ideal of A, hence P contains a rational prime p. Let m = pk − 1 and let

θm denote the mth primitive root of unity. Then Z[θm] is the ring of algebraic integers in the

field Q[θm] and (see [10, p. 52, Exer. 5]) p completely ramifies in Z[θm].

Furthermore if pZ[θm] =M1 · . . . ·Ml for maximal ideals Mi, then each field Z[θm]/Mi contains

pk elements, hence the same is true for B/P . Since k is arbitrary, we obtain the desired. �

If A is completely integrally closed in its quotient field, then some necessary conditions for

Ã to be Bézout are pointed out in [4, Prop. 5.2]. For instance A should be Prüfer with torsion

Picard group. The latter means that for each finitely generated (and hence projective) ideal I

of A some power In (n a positive integer) is a principal ideal. For instance (see [4, Exam. 5.3])

if a field F is not algebraic over a finite field and A = F [t], then the ring Ã is not Bézout.

On the other hand if B = Ã is a union of Prüfer domains Bi with torsion Picard groups

then it is Bézout. Namely if nonzero a, b are in the same Bi, then choose n such that the

ideal (aBi + bBi)
n of Bi is principal generated by c. Then d = n

√
c generates aB + bB. This

clearly applies to A and also to the algebraic closure of the polynomial ring Fp[t], as well as

their localizations. Furthermore (see [4, 5.5]) it works if A is the localization Q̃[t](t) of Q̃[t] with

respect to the ideal t Q̃[t].

To apply Proposition 3.5 (to prove decidability) we need the effectiveness of the algebraic

closure of A, which is a subtle question. If A is effectively given then the same obviously holds

for its quotient ring Q. As follows from [21, Thm. 7] the algebraic closure Q̃ is also effectively

given. Actually the construction of this paper creates a new one-to-one numeration for Q̃ such

that even recovering Q inside this field is not straightforward. Namely by [21, Lemma 6] this is

the case if and only if Q possesses a splitting algorithm (for polynomials in one variable).

On the basis of this we obtain.

Proposition 3.6. Suppose that A is a countable effectively given domain with the quotient field

Q which possesses a splitting algorithm for polynomials in one variable. If the algebraic closure

B of A is Bézout, then the theory of all B-modules is decidable.

Proof. By Proposition 3.5 it suffices to create an effective list for elements of B.

Start with an effective list of elements of A. Clearly this extends to an effective list of elements

of Q. As in [21] create an effective list of the algebraic closure of Q such that Q, and hence A

can be effectively recovered within this list.

Make a list of monic polynomials f(x) in one variable with coefficients in A. For a parallel

list of elements a ∈ A check whether f(a) = 0. If this holds true, include a, otherwise drop f

and continue.
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This way we will create a list of elements of B. The operations on B are effective, because

they are effective in Q̃. �

Now we are in a position to analyze examples of our original interest.

Theorem 3.7. 1) The theory of all modules over the ring A of algebraic integers in decidable.

2) The same is true for the algebraic closure of the polynomial ring Fp[t] (p a prime).

Proof. We start with A = Z in the case of algebraic integers, and with A = Fp[t] in the second

case, both are effectively given principal ideal domains whose algebraic closures are Bézout. To

apply Proposition 3.6 we need a splitting algorithm for their quotient fields. In case of integers

Q is the field of rationals, hence such algorithm is known from Kronecker.

In the second case Q is the function field Fp(t), hence the required algorithm can be extracted

for instance from [13]. Namely let f(x) be a polynomial whose coefficients are rational functions.

By clearing denominators we may assume that these coefficients are in Fp[t]. Since Fp[t] is a

factorial ring, by Gauss’ lemma, this polynomial is irreducible over Fp(t) iff it is irreducible over

Fp[t], i.e. as a polynomial in two variables. However the splitting algorithm for such polynomials

over finite fields is known from Lenstra [13]. Of course factoring in Fp[t][x] is not just the same as

factoring in Fp[t, x], because, for instance, t is a coefficient in the former case and an irreducible

factor in the latter; but a factorization in Fp[t, x] clearly determines that in Fp[t][x]. �

Note that in both cases one could construct the algebraic closure directly, hence apply Propo-

sition 3.5.

Namely in the case of A (see [2, Ch. 3]) each algebraic integer can be given by a monic

irreducible polynomial f(x) ∈ Z[x] and an approximation good enough to separate it from other

roots of f (this approximation can be found very effectively - see [22, p. 132] or [14]).

To execute the addition a + b of algebraic integers defined by polynomials f(x) and g(x)

we calculate the resultant h(x) of f(x) and g(x − y) considered as polynomials in y whose

coefficients are in Z[x]. Then a+ b is a root of h(x). To separate it from the remaining roots of

this polynomial we might need a better approximation for a and b, but this is easily arranged.

Similarly the product a · b is a root of the resultant ymf(x/y) and g(y), where m is the degree

of f(x).

Finally the ratio c = a/b (which is an algebraic number) is a root of the resultant of f(xy) and

g(x). To decide whether this ratio is an algebraic integer one could find, calculating in Q(a, b),

the minimal polynomial of c and check whether it is monic.

In the case Fp[t] we are less certain. It appears (see [4, after 1.11]) that the algebraic closure of

this ring equals to the union of fields Fp(t
1/pd)[x]/(f), where f(x) is an irreducible polynomial;

however it is difficult to find a proof of this result. Note that nontrivial polynomials occur: for

instance (see [12]) the Artin–Schreier polynomial f = xp − x − t−1 has no roots even in the

corresponding power series field.

Question 3.8. Is the theory of all Q̃[t](t)-modules decidable?

We will complete this section by the following conjecture.
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Conjecture 3.9. The Ziegler spectrum over the ring of algebraic integer A is a spectral space.

4. Conclusions

Recall that Gregory [8] proved that the theory of all modules over an effectively given valuation

domain V (with a prescribed size of the residue field) is decidable if and only if the prime

radical relation in V is computable. Bearing this in mind one would expect that the following

metatheorem can be proven. Suppose that B is an effectively given countable Bézout domain

such that the prime radical relation is decidable and few (yet unspecified) questions on finite

invariants (and hence on the maximal spectrum of B) can be answered effectively. Then the

first order theory of all B-modules is decidable.

However taking into account the very technical proofs in [8] one should be urged by nice

examples to embark on such a journey. In our opinion one should be guided by examples to

create theories. From this point of view dropping the countability of the ring assumption is a

more urgent issue.

Given a sentence ϕ in the language of modules over the ring R, it mentions only finitely many

names r of elements of R. Could one (uniformly in r) decide, using only finite fragments of the

ring, whether this sentence holds true in each R-module?

The following instance of this question seems to be of particular importance in the spirit of

this paper.

Question 4.1. Let E be the ring of entire complex or real functions. Is the theory of all E-

modules decidable?

Another perspective line of research would be to consider a combined two-sorted language

of rings and modules (see [11, Ch. 9]). Guided by the decidability of the theory of algebraic

integers in the language of rings (see [3]) and Theorem 3.7 we dare to ask the following.

Question 4.2. Is the first order theory of algebraic integers in the two-sorted language decidable?
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