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1. Introduction

In this paper, we consider finite undirected graphs without loops and multiple
edges. The vertex and the edge sets of a graph G are denoted by V (G) and E(G),
respectively; N(v) = NG(v) is the neighborhood of a vertex v in G and deg(v)
is the degree of v; the subgraph of G induced by a set X ⊆ V (G) is denoted by
G(X). A vertex v of a graph G is called dominating if N(v) ∪ {v} = V (G).

The intersection graph L(H) of a hypergraph H is defined as follows:

(1) the vertices of L(H) are in a bijective correspondence with the edges of H;

(2) two vertices are adjacent in L(H) if and only if the corresponding edges have
a non-empty intersection.

The rank of a hypergraphH is the maximum size of its edges. Themultiplicity

of a pair of vertices u, v of H is the number of edges in H containing both u and
v; the multiplicity m(H) of H is the maximum multiplicity among all pairs of
vertices in H (see for example [15]).

Denote by Lm
r the class of intersection graphs of hypergraphs with rank at

most r and multiplicity at most m. So, we refer to L∞

r as the class of intersection
graphs of hypergraphs with rank at most r. The class Lm

r , where r ≥ 1, m ≥ 1
or m = ∞, is hereditary (i.e., every induced subgraph of a graph in Lm

r is also
in Lm

r ). Therefore, it can be characterized by means of a list (finite or not) of
forbidden induced subgraphs.

A non-trivial characterization of the class Lm
r is known only for r ≤ 2. These

are:
• Beineke’s finite characterization of the class L1

2
of line graphs (i.e., intersec-

tion graphs of simple graphs) [1];

• a finite characterization of the class L∞

2
of intersection graphs of multigraphs

by Bermond and Meyer [2];

• a finite characterization of the class Lm
2

by Tashkinov [22].

Such finite characterizations of the classes above imply that there exist polynomial
algorithms for recognizing graphs from these classes. (For efficient algorithms for
recognizing graphs from L1

2
see, e.g., [4, 11, 17, 19].) It is also known that for any

r ≥ 3 andm, wherem ≥ 1 orm = ∞, there does not exist a finite characterization
for the class Lm

r (see [6, 15, 16, 10]).
Poljak, Rödl and Turzik [18] proved that the problem of determining whether

a graph belongs to L∞

r is NP-complete for an arbitrary r. Moreover, they proved
that for every fixed r ≥ 4, the analogous problem remains NP-complete. The
question whether or not the class L∞

3
can be recognized in polynomial time is still

open, but recognizing intersection graphs of hypergraphs without multiple edges
with rank at most 3 is NP-complete as well [18]. The following result generalizing
one from [18] was obtained in [7]: For every fixed m ≥ 1 and an arbitrary r, the
problem of determining whether a graph belongs to Lm

r is NP-complete.
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Hliněný and Kratochv́ıl [8] proved that for every fixed r ≥ 3, the problem
of determining whether a graph belongs to L1

r is NP-complete. The class L1
3

was studied in different papers, and several graph classes were found, where the
problem of recognizing graphs from the class is polynomially solvable or remains
NP-complete ([7, 9, 14, 15, 16, 21]).

A graph G is called split [5] if there exists a partition of its vertex set V (G) =
A ∪ B into a clique A and a stable set B (bipartition (A,B)). It was proved in
[12] that for every fixed r, there exists a finite characterization of the graphs from
L1
r in the class of split graphs. In [13] (see also [7]), this result was generalized

to the class Lm
r for every fixed m.

A split graph with the bipartition (A,B) is called threshold [3] if the vertices
fromB can be numbered as b1, b2, . . . , bk so thatN(b1) ⊇ N(b2) ⊇ · · · ⊇ N(bk). In
[20], the problem of determining the Krausz dimension of a graph (the minimum
r such that the graph belongs to the class L1

r) was solved in the subclass of
threshold graphs of the form Kn − E(Kp).

In Section 2 of this paper, we give some preliminary facts (e.g., a so-called
Krausz type characterization of the class L2

3
in terms of clique coverings), prove

some technical lemmas and formulate Theorem 2 that gives a finite characteri-
zation of the class L2

3
(consisting of 15 graphs) in the class of threshold graphs.

In Sections 3 and 4, we prove the necessity and sufficiency of Theorem 2, respec-
tively. In Section 5 we give an O(n)-time algorithm for the recognition of graphs
from L2

3
in the class of threshold graphs, where n is the number of vertices of a

tested graph.

2. Some Preliminaries and the Formulation of Theorem 2

A finite family C = (C1, C2, . . . , Cq) of cliques of the graph G is called a covering

of G if every vertex as well as every edge of G is contained in some Ci. The
cliques Ci are the clusters of C . For a vertex v ∈ V (G), denote by C (v) the
subfamily of all clusters of C that contain v. A covering C of the graph G is
called an (r,m)-covering if any vertex of G belongs to at most r clusters of C ,
and any two clusters of C have at most m vertices in common.

Theorem 1 [7, 13]. A graph G belongs to the class L2
3
if and only if there exists

a (3, 2)-covering of G.

A clique of a graph G is called maximal if it is not contained in some other
clique of G.

Let a threshold graph with the bipartition (A,B) be given, where B =
{b1, b2, . . . , bk} and N(b1) ⊇ N(b2) ⊇ · · · ⊇ N(bk). We denote such a graph by
G(p, q1, q2, . . . , qk) if |A| = p and deg(bi) = qi for any i = 1, 2, . . . , k. With-
out loss of generality (W.l.o.g.), we assume below that any threshold graph
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G(p, q1, q2, . . . , qk) with the bipartition (A,B) satisfies the conditions A = {a1,
a2, . . . , ap}, B = {b1, b2, . . . , bk}, p > q1 and N(bi) = {a1, a2, . . . , aqi} for any
i = 1, 2, . . . , k (see Figure 1).
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Figure 1. The graph G(3, 2, 1) and its bipartition (A,B).

In this paper, we characterize the class L2
3
by means of a finite list of forbidden

induced subgraphs in the class of threshold graphs:

Theorem 2. A threshold graph H belongs to the class L2
3
if and only if it contains

none of the graphs K1,4, G(12, 7), G(11, 10), G(10, 9, 5), G(10, 9, 7), G(10, 9, 9),
G(10, 7, k), k = 1, 2, . . . , 7, G(9, 8, 1), G(9, 8, 2) as induced subgraphs.

Now we formulate some technical statements that will be used for proving
Theorem 2.

A (3, 2)-covering C = (C1, C2, . . . , Ct) of a complete graph G is called a
decomposition (3, 2)-covering if Ci 6= V (G) for any i = 1, 2, . . . , t.

Lemma 3. Let C = (C1, C2, . . . , Ct) be a decomposition (3, 2)-covering of a

complete graph G. Then the following statements hold:

(i) |Ci| ≤ 6 for any i = 1, 2, . . . , t.

(ii) If Ci \ Cj 6= ∅ for some i, j ∈ {1, 2, . . . , t}, then |Cj \ Ci| ≤ 4.

(iii) If (Ci ∩Cj) \Ck 6= ∅ for some different i, j, k ∈ {1, 2, . . . , t}, then |Ck \ (Ci ∪
Cj)| ≤ 2.

Proof. (i) Let, to the contrary, Ci = {a1, a2, . . . , a7, . . .} for some i ∈ {1, 2, . . . , t}.
Consider a vertex v ∈ V (G) \Ci. By the definition of a (3, 2)-covering, each clus-
ter of C contains at most two edges of vas, s = 1, 2, . . . , 7. Hence, the edges
vas, s = 1, 2, . . . , 7, are covered by at least four clusters of C , and, therefore, the
vertex v is contained in at least four clusters of C , which is a contradiction to
the definition of C .
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(ii) Assume, to the contrary, that for a vertex v ∈ V (G), we have v ∈ Ci\Cj

and Cj\Ci = {a1, a2, a3, a4, a5, . . .}. By the definition of a (3, 2)-covering, the
edges vas, s = 1, 2, . . . , 5, are covered by at least three clusters of C , different
from Ci. So, taking into account the cluster Ci, the vertex v is contained in at
least four clusters of C , which is a contradiction to the definition of C .

(iii) Let, instead, v ∈ (Ci ∩Cj) \Ck 6= ∅ and Ck \ (Ci ∪Cj) = {a1, a2, a3, . . .}.
By the definition of a (3, 2)-covering, the edges va1, va2, va3 are covered by at
least two clusters of C , different from Ci and Cj . So, together with the clusters Ci,
Cj , the vertex v is contained in at least four clusters of C , which is a contradiction.

Lemma 4. Let C = (C1, C2, . . . , Ct) be a decomposition (3, 2)-covering of a

complete graph G. Then the following statements hold:

(i) If G has order 11, then it contains no cluster of size at most 2.

(ii) If G has order 12, then it contains no cluster of size at most 3.

Proof. (i) Let V (G) = {a1, a2, . . . , a11}, C1 ∈ C (a1) and |C1| ≤ 2. W.l.o.g.,
assume that {a3, a4, . . . , a11} ⊆ V (G) \ C1. By the definition of C , there exists
a cluster C2 ∈ C (a1) of size at least 6 among the clusters covering some of the
nine edges a1ai, i = 3, 4, . . . , 11. By Lemma 3(i),(ii), |C2| = 6 and C1 ⊆ C2.
Hence, |V (G) \ (C1 ∪ C2)| = 5 and there exists a cluster C3 ∈ C (a1) \ {C1, C2}
of size at least 6 containing the set V (G) \ (C1 ∪ C2). By Lemma 3(i), C3 =
{a1} ∪ (V (G) \ (C1 ∪ C2)). We have |C2| = |C3| = 6 and |C2 ∩ C3| = 1, which is
a contradiction to Lemma 3(ii).

The statement (ii) of the lemma follows immediately from the statement (i).

3. Proof of Necessity of Theorem 2

By heredity of the class L2
3
, one has to show that none of the graphsK1,4, G(12, 7),

G(11, 10), G(10, 9, 5), G(10, 9, 7), G(10, 9, 9), G(10, 7, k), k = 1, 2, . . . , 7, G(9, 8, 1)
and G(9, 8, 2) belongs to this class. Obviously, there exists no (3, 2)-covering for
the star K1,4. Therefore, K1,4 6∈ L2

3
by Theorem 1.

Furthermore, let G be one of the graphs G(12, 7), G(11, 10), G(10, 9, 5),
G(10, 9, 7), G(10, 9, 9), G(10, 7, k), k = 1, 2, . . . , 7, G(9, 8, 1), G(9, 8, 2) with the
bipartition (A,B). Suppose, to the contrary, that there exists a (3, 2)-covering
D = (D1, D2, . . . , Dt) of G.

W.l.o.g., we will assume that no cluster of D is contained in some other cluster
of D . By Theorem 1, it can be easily seen that Di 6= A for any i = 1, 2, . . . , t,
since deg(b1) ≥ 7.

Put C = (C1, C2, . . . , Ct), where Ci = Di ∩ A, i = 1, 2, . . . , t. Then C is a
decomposition (3, 2)-covering of the subgraph G(A), since N(bi) 6= A for each
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bi ∈ B. A cluster C ∈ C is called bi-reduced with bi ∈ B, if C ∪ {bi} ∈ D . A
cluster C ∈ C is called simply reduced if it is bi-reduced for some bi ∈ B. By
Lemma 3(i), C contains two or three b1-reduced clusters, since deg(b1) ≥ 7.

Lemma 5. The following statements hold:

(i) If C1, C2 ∈ C are two different bi-reduced clusters with bi ∈ B, then |C1 ∩
C2| ≤ 1.

(ii) If C1, C2 ∈ C are two different bi-reduced clusters with bi ∈ B, then C1 * C2

and C2 * C1.

(iii) If C1, C2, C3 ∈ C are three different reduced clusters, then C1 ∩C2 ∩C3 = ∅.

Proof. (i) The validity of the statement follows immediately from the definition
of C .

(ii) The statement follows from the above assumption that no cluster of D is
contained in some other cluster of D .

(iii) If, to the contrary, a ∈ C1 ∩ C2 ∩ C3, then the edge aap is not covered
by a cluster from C (a) = {C1, C2, C3}, which is a contradiction to the definition
of C .

We consider the following separate cases and come to a contradiction in each
of them.

(1) G = G(12, 7).
(a) Assume that there exist exactly two b1-reduced clusters C1, C2 ∈ C . By

Lemma 4(ii), |C1| ≥ 4 and |C2| ≥ 4. Hence, by Lemma 5(i) and the equality
|C1 ∪ C2| = 7, we obtain |C1| = |C2| = 4 and |C1 ∩ C2| = 1. W.l.o.g., as-
sume that C1 ∩ C2 = {a1}. Consider the cluster C3 ∈ C (a1) \ {C1, C2}. Then
{a1, a8, a9, a10, a11, a12} ⊆ C3. By Lemma 3(i), C3 = {a1, a8, a9, a10, a11, a12} (see
Figure 2). We have |C3 \ C1| = 5, which is a contradiction to Lemma 3(ii).
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Figure 2. The clusters C1, C2 and C3 of the covering C in the case (1).
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(b) Suppose that there exist exactly three b1-reduced clusters C1, C2, C3 ∈ C .
Taking into account Lemmas 5(i) and 4(ii), we obtain that |C1 ∪ C2| ≥ 7 and,
therefore, |C1 ∪ C2 ∪ C3| ≥ 9 > 7 = deg(b1), which is a contradiction.

(2) G = G(11, 10).

(a) Assume that there exist exactly two b1-reduced clusters C1, C2 ∈ C . By
Lemma 5(i), |C1 ∩ C2| ≤ 1. By Lemmas 5(ii) and 3(ii), |C1 \ C2| ≤ 4 and
|C2 \ C1| ≤ 4. Therefore, deg(b1) = |C1 ∪ C2| ≤ 9, which is a contradiction.

(b) Let C contain three b1-reduced clusters C1, C2 and C3.

First, we suppose that C1, C2 and C3 are pairwise disjoint. By Lemmas 3(ii)
and 4(i), we have 3 ≤ |Ci| ≤ 4 for any i = 1, 2, 3. W.l.o.g., assume that C1 =
{a1, a2, a3}, C2 = {a4, a5, a6}, C3 = {a7, a8, a9, a10}. By the definition of C and
Lemma 3(i), we have |C (a1)| = 3, since |A \ C1| = 8.

Let C4 and C5 be two clusters in C (a1)\{C1}. Each of the clusters C4 and C5

has at least one common vertex with any of the clusters C2, C3. If, for example,
C4 ∩ C2 = ∅, then a1 ∈ (C1 ∩ C4) \ C2 and |C2 \ (C1 ∪ C4)| = |C2| = 3, which is
a contradiction to Lemma 3(iii). Since C3 ⊆ C4 ∪ C5 by the definition of C and
|C3| = 4, then each of the clusters C4 and C5 has exactly two common vertices
with the cluster C3.

The inequalities |C4| ≥ 5 and |C5| ≥ 5 hold. Otherwise, let, for example,
|C4| ≤ 4. Then |C5| ≥ 6, since |C4 ∪ C5| ≥ 9. Hence, by Lemma 3(i), |C5| = 6.
Therefore, C4 ∩ C5 = {a1} and |C5 \ C4| = 5, which is a contradiction to
Lemma 3(ii).

W.l.o.g., assume that {a4, a7, a8} ⊆ C4, {a6, a9, a10, a11} ⊆ C5. Since |C5 \
C1| ≤ 4 by Lemma 3(ii), then a5 6∈ C5. Hence, a5 ∈ C4. We have a5 ∈ (C2∩C4)\
C5. By Lemma 3(iii), |C5 \ (C2 ∪ C4)| ≤ 2. Then a11 ∈ C4 and, by Lemma 3(i),
C4 = {a1, a4, a5, a7, a8, a11} (see Figure 3). Therefore, |C4 \ C1| = 5, which is a
contradiction to Lemma 3(ii).

Now, w.l.o.g., assume that a1 ∈ C1 ∩ C2. By Lemma 5(i), C1 ∩ C2 = {a1}.
By Lemmas 5(ii) and 3(ii), |C1| ≤ 5 and |C2| ≤ 5. Each of the clusters C1,
C2 has size at least 4. If not, then a1 ∈ (C1 ∩ C2) \ C3 by Lemma 5(iii), and
|C3 \ (C1 ∪C2)| ≥ 10− (3 + 5− 1) = 3, which is a contradiction to Lemma 3(iii).

Furthermore, assume that at least one of the clusters C1, C2, say C1, has
size 5. Then |C1 \ C3| ≤ 4 by Lemmas 5(ii) and 3(ii), and so |C1 ∩ C3| = 1 by
Lemma 5(i). Let C1 ∩ C3 = {a2}. Then a2 ∈ (C1 ∩ C3) \ C2 by Lemma 5(iii).
We obtain that |C2 \ (C1 ∪ C3)| ≤ 2 by Lemma 3(iii). Therefore, |C2 ∩ C3| = 1.
Let C2 ∩ C3 = {a3}. We have a3 ∈ (C2 ∩ C3) \ C1 and |C1 \ (C2 ∪ C3)| = 3,
contradicting Lemma 3(iii).

Thus, |C1| = |C2| = 4. Let, w.l.o.g., C1 = {a1, a2, a3, a4}, C2 = {a1, a5, a6,
a7}. Then {a8, a9, a10} ⊆ C3, since {a1, a2, . . . , a10} = N(b1). By Lemma 5(iii),
a1 ∈ (C1 ∩C2) \C3. However, then |C3 \ (C1 ∪C2)| = 3, which is a contradiction
to Lemma 3(iii).
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Figure 3. The clusters C1, C2, C3, C4 and C5 of the covering C in the case (2).

(3) G = G(10, 9, 5).

Each vertex ai, where i = 1, 2, . . . , 5, belongs to one b1- and one b2-reduced
clusters. Therefore, by Lemma 5(iii), each two of the b2-reduced clusters have no
common vertices. By Lemma 5(iii), if a vertex belongs to two of the b1-reduced
clusters, then this vertex belongs to the set {a6, a7, a8, a9}.

(a) Let C contain exactly two b1-reduced clusters C1, C2. Since |C1∪C2| = 9,
we get |C1 ∩ C2| = 1 and |C1| = |C2| = 5 by Lemmas 5(i),(ii) and 3(ii). Let,
w.l.o.g., C1 ∩ C2 = {a9}. By the definition of C , any vertex ai, where i =
1, 2, . . . , 8, belongs to exactly two clusters from C (ai) \ {C1, C2}. Moreover, it
is easy to obtain that, for any vertex ai, where i = 1, 2, . . . , 8, each cluster C ∈
C (ai)\{C1, C2} satisfies the equalities |C∩(C1 \C2)| = 2 and |C∩(C2 \C1)| = 2.
Since every b2-reduced cluster is a subset of (C1 \C2)∪ (C2 \C1) and belongs to
C (ai) \ {C1, C2}, it has size 4, which is a contradiction.

(b) Let C contain three pairwise non-intersecting b1-reduced clusters C1, C2

and C3. By Lemma 3(ii), |Ci| ≤ 4 for every i = 1, 2, 3.

(b1) First, suppose that |C1| = 1, |C2| = 4 and |C3| = 4. Put C1 = {a1}.
Consider the clusters C4, C5 ∈ C (a1)\{C1}. By the definition of C , |Ci∩Cj | = 2
for any i = 2, 3 and j = 4, 5. In particular, (C4 ∩ C5) ∩ (C2 ∪ C3) = ∅. Since
(C2 ∩ C4) \ C5 6= ∅, then |C5 \ (C2 ∪ C4)| ≤ 2 by Lemma 3(iii). Similarly,
|C4 \ (C2 ∪ C5)| ≤ 2. Therefore, a10 ∈ C4 ∩ C5. We obtain that there does not
exist a b2-reduced cluster in C (a1), which is a contradiction.

Now, let C1 ⊂ {a6, a7, a8, a9}. W.l.o.g., put C1 = {a9}. Note that each b2-
reduced cluster C in C has size at most 4. If not (i.e., |C| = deg(b2) = 5), then
the inclusion C ⊆ C2 ∪ C3 implies that |C ∩ C2| ≥ 3 or |C ∩ C3| ≥ 3, which is
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a contradiction to the definition of C . Let C4 be a b2-reduced cluster in C with
size at most 2. Let a1 ∈ C4 ∩C2. Consider the cluster C5 ∈ C (a1) \ {C2, C4}. By
the definition of C , we have C3 \ C4 ⊆ C5. Since |C4| ≤ 2 and C4 ∩ C2 6= ∅, we
have |C3 \ C4| ≥ 3. Therefore, |C3 ∩ C5| ≥ 3, which is a contradiction.

(b2) Suppose that |C1| = 2, |C2| = 3 and |C3| = 4. Let a ∈ C1, where
a ∈ {a1, a2, . . . , a9}. Consider the clusters C4, C5 ∈ C (a)\{C1}. By the definition
of C , 1 ≤ |Ci ∩C2| ≤ 2 and |Ci ∩C3| = 2 for any i = 4, 5. Moreover, at least one
of the clusters C4, C5, say C5, has exactly two common vertices with C2. Clearly,
(C4 ∩ C5) ∩ C3 = ∅ and |(C4 ∩ C5) ∩ C2| ≤ 1. If a10 ∈ C5, then |C5| = 6 by
Lemma 3(i). We have C1 \C5 6= ∅ and |C5 \C1| = 5 > 4, which is a contradiction
to Lemma 3(ii). Therefore, a10 ∈ C4 \C5. By Lemma 3(i), at least one vertex a′

of the set C5 ∩C2 does not belong to C4. We obtain that a′ ∈ (C2 ∩C5) \C4 and
|C4 \ (C2 ∪ C5)| ≥ 3, which is a contradiction to Lemma 3(iii).

(b3) Let |C1| = |C2| = |C3| = 3. Assume that there exists a b2-reduced
cluster in C with size at most 2. Therefore, this cluster does not intersect with
some of the clusters C1, C2 and C3, which is a contradiction to the definition of C .

Now, let C4 = N(b2) be the only b2-reduced cluster in C . W.l.o.g., assume
that C1 = {a1, a6, a7}, C2 = {a2, a3, a8} and C3 = {a4, a5, a9}. Consider the
clusters C ′ ∈ C (a2) \ {C2, C4} and C ′′ ∈ C (a3) \ {C2, C4}. By the definition of
C , we have a6, a7, a9, a10 ∈ C ′ ∩ C ′′. Therefore, C ′ = C ′′. Put C5 = C ′. Then
C3 \ C5 6= ∅ and |C5 \ C3| = 5 > 4, which is a contradiction to Lemma 3(ii).

(c) Let C contain three b1-reduced clusters C1, C2, C3 and C1 ∩ C2 6= ∅.
W.l.o.g., assume that |C1| ≥ |C2|. By Lemma 5(iii), we obtain that (C1 ∩ C2) \
C3 6= ∅. It follows from Lemma 3(iii) that |C3 \ (C1 ∪C2)| ≤ 2. Hence, |C1 ∪C2|
≥ 7. Then |C1| ≥ 4. Moreover, by Lemmas 5(ii) and 3(ii), we have |C1| ≤ 5.

(c1) Let |C1| = 5. Then C1∩C3 6= ∅ by Lemmas 5(ii) and 3(ii). Furthermore,
C2 ∩ C3 = ∅ by Lemmas 5(iii) and 3(iii). Since (C1 ∩ C3) \ C2 6= ∅ and, by
Lemma 3(iii), |C2 \ (C1 ∪ C3)| ≤ 2, we have |C1| = 5, |C2| = 3 and |C3| = 3.
Recall that C1 ∩ C2, C1 ∩ C3 ⊆ {a6, a7, a8, a9}. W.l.o.g., assume that C1 ∩ C2 =
{a8}, C1 ∩ C3 = {a9}. Consider the clusters C4 ∈ C (a8) \ {C1, C2} and C5 ∈
C (a9) \ {C1, C3}. By the definition of C , we have |C4 ∩ (C1 \ {a8, a9})| ≤ 1 and
|C5 ∩ (C1 \ {a8, a9})| ≤ 1. Note that C4 ∩ (C2 \ {a8}) = ∅. If, to the contrary,
a ∈ C4 ∩ (C2 \ {a8}), then C (a) = {C2, C4, C5} and some vertex of the set
C1 \ {a8, a9} does not belong to the set C2 ∪C4 ∪C5, contradicting the definition
of C . Analogously, C5∩(C3\{a9}) = ∅. At least one of the clusters C2, C3, say C3,
contains a vertex a′ ∈ {a1, a2, . . . , a5}, since |{a1, a2, . . . , a5}∩C1| ≤ 3. Let a′′ be
another vertex in the set C3\{a9}. Consider the clusters C

′ ∈ C (a′)\{C3, C4} and
C ′′ ∈ C (a′′)\{C3, C4}. Each of them contains the set (C2\{a8})∪(C1\(C3∪C4))
of size at least 4. Therefore, C ′ = C ′′ = C6 is a cluster of C of size at least 6.
By Lemma 3(i), |C6| = 6 (see Figure 4). Since a′ ∈ {a1, a2, . . . , a5}, then C6 is a
b2-reduced cluster in C , which is a contradiction.
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Figure 4. The clusters C1, C2, C3, C4, C5 and C6 of the covering C in the case (3).

(c2) Now, let |C1| = 4. Then, taking into consideration the inequalities
|C1 ∪ C2| ≥ 7 and |C1| ≥ |C2|, we have |C2| = 4.

Let C3 intersect with C1 or C2. Then, by Lemma 3(iii), C3 intersects with
both C1 and C2. By Lemma 5(i),(iii), we can assume, w.l.o.g., that C1 =
{a1, a2, a7, a8}, C2 = {a3, a4, a7, a9} and C3 = {a5, a6, a8, a9}. Consider the clus-
ter C4 ∈ C (a7) \ {C1, C2}. By the definition of C , we have a5, a6, a10 ∈ C4.
Initially, let C4 = {a5, a6, a7, a10}. Consider the cluster C5 ∈ C (a5) \ {C3, C4}.
By the definition of C , we have a1, a2, a3, a4 ∈ C5. Both clusters C3, C4 are not b2-
reduced since each of them contains at least one of the vertices a6, a7, a8, a9, a10.
Hence C5 is a b2-reduced cluster. It follows from the inclusion N(b2) ⊆ C5 that
C5 = N(b2) = {a1, a2, . . . , a5}. Consider the cluster C6 ∈ C (a6) \ {C3, C4}. By
the definition of C , we have a1, a2, a3, a4 ∈ C6. Thus C6 6= C5 and |C6 ∩ C5| ≥
4 > 2, which is a contradiction to the definition of C . If the cluster C4 has a
non-empty intersection with the set (C1 \ C2) ∪ (C2 \ C1), for example a1 ∈ C4,
then at least one of the vertices a3, a4 also belongs to C4. Otherwise, by the
definition of C , the cluster C5 ∈ C (a1) \ {C1, C4} contains the vertices a3, a4 and
a9. We obtain that C5 6= C2 and |C5 ∩C2| ≥ 3 > 2, which is a contradiction. Let
a3 ∈ C4 and C5 ∈ C (a1) \ {C1, C4}. Then a4, a9 ∈ C5. We obtain that none of
the clusters C1, C4, C5 ∈ C (a1) is b2-reduced, which is a contradiction.

Assume that the cluster C3 does not intersect with C1 and C2. Then |C3| = 2.
One of the vertices a6, a7, a8 and a9, say a9, belongs to C1 ∩ C2. Consider the
cluster C4 ∈ C (a9) \ {C1, C2}. Clearly, C3 ∪ {a10} ⊆ C4. We show that |C4 ∩
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(C1 \ C2)| = 1 and |C4 ∩ (C2 \ C1)| = 1. Indeed, if C4 has no common vertices
with one of the sets C1 \ C2 or C2 \ C1, say with C1 \ C2, then (C3 ∩ C4) \ C1 6=
∅ and |C1 \ (C3 ∪ C4)| = 3, contradicting Lemma 3(iii). Let C3 = {a′, a′′}.
Consider the clusters C ′ ∈ C (a′) \ {C3, C4} and C ′′ ∈ C (a′′) \ {C3, C4}. We have
(C1 \C4)∪ (C2 \C4) ⊆ C ′ ∩C ′′. Since |(C1 \C4)∪ (C2 \C4)| = 4, we obtain that
C ′ = C ′′ by the definition of C . Denote the cluster C ′ by C5. It can be easily
obtained by the definition of C that there are two clusters C6 and C7 in C such
that ((C1 \C2)∩C4)∪ (C2 ∩C5)∪ {a10} ⊆ C6 and ((C2 \C1)∩C4)∪ (C1 ∩C5)∪
{a10} ⊆ C7. Each vertex from the set (C1 \ C2) ∪ (C2 \ C1) belongs to exactly
three of the non-b2-reduced clusters C1, C2, C4, C5, C6, C7. Clearly, at least three
of the vertices a1, a2, . . . , a5 belong to the set (C1 \ C2) ∪ (C2 \ C1), which is a
contradiction.

(4) We can come to a contradiction for each of the graphs G = G(10, 9, 9)
and G = G(10, 9, 7) analogously to the graph G = G(10, 9, 5).

(5) G = G(10, 7, k), k = 1, 2, . . . , 7.

(a) First, assume that 4 ≤ k ≤ 7. For any i = 1, 2, 3, 4, denote by Ci1 and Ci2,
respectively, b1- and b2-reduced clusters from C (ai). Consider the cluster Ci3 ∈
C (ai) \ {Ci1, Ci2}. Since Ci1, Ci2 ⊆ {a1, a2, . . . , a7}, we have {a8, a9, a10} ⊆ Ci3

for any i = 1, 2, 3, 4. By the definition of C , we obtain C13 = C23 = C33 = C43

and {a1, a2, a3, a4, a8, a9, a10} ⊆ Ci3 for any i = 1, 2, 3, 4, which is a contradiction
to Lemma 3(i).

(b) Put k = 1. Let C1 and C2, respectively, be b1- and b2-reduced clusters
from C (a1). Then C1 ⊆ {a1, a2, . . . , a7}, C2 = {a1}. By Lemma 3(i), |C1| ≤ 6.
Consider the cluster C3 ∈ C (a1)\{C1, C2}. The equality C1∪C2∪C3 = C1∪C3 =
A implies that |C1| ≥ 5 by Lemma 3(i).

W.l.o.g., assume that C1 = {a1, a2, . . . , a5}. Then C3 = {a1, a6, a7, . . . , a10}
by Lemma 3(i). We obtain C1 \ C3 6= ∅ and |C3 \ C1| = 5, contradicting
Lemma 3(ii). Now, w.l.o.g. put C1 = {a1, a2, . . . , a6}. Then {a1, a7, a8, a9, a10} ⊆
C3. By Lemma 3(ii), |C1\C3| ≤ 4. Therefore, one of the vertices a2, a3, . . . , a6, say
a2, belongs to C3. By Lemma 3(i), C3 = {a1, a2, a7, a8, a9, a10}. Let C4 be a b1-
reduced cluster from C (a7). We get C3 6= C4, since C3 * N(b1). By Lemma 5(i),
|C4∩C1| ≤ 1. We obtain that a7 ∈ (C3∩C4)\C1 and |C1 \ (C3∪C4)| ≥ 3, which
is a contradiction to Lemma 3(iii).

(c) Put k = 2. Let C1 and C2, respectively, be b1- and b2-reduced clusters
from C (a1). Taking into account the case (b), we can assume that C2 = {a1, a2}.
Then we can proceed analogously to the case (b).

(d) Finally, we assume that k = 3. For any i = 1, 2, 3, denote by Ci1

and Ci2, respectively, b1- and b2-reduced clusters from C (ai). Taking into ac-
count the cases (b) and (c), we can assume that C12 = {a1, a2, a3}. Consider
the cluster Ci3 ∈ C (ai) \ {Ci1, Ci2}. Since Ci1, Ci2 ⊆ {a1, a2, . . . , a7}, we have
{a8, a9, a10} ⊆ Ci3 for any i = 1, 2, 3. By the definition of C , C13 = C23 = C33
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and {a1, a2, a3, a8, a9, a10} ⊆ Ci3 for any i = 1, 2, 3. By Lemma 3(i), Ci3 =
{a1, a2, a3, a8, a9, a10}. We obtain that C12 6= C13 and |C12 ∩C13| = 3, which is a
contradiction to the definition of C .

(6) G = G(9, 8, 1).

(a) Assume that there exist exactly two b1-reduced clusters C1, C2 ∈ C .
Clearly, C contains a unique b2-reduced cluster C3 = {a1}. If C1 ∩ C2 = ∅,
then |C1| = |C2| = 4 by Lemma 3(ii). W.l.o.g., assume that a1 ∈ C1. Thus,
a1 ∈ (C1 ∩ C3) \ C2 and |C2 \ (C1 ∪ C3)| = 4 > 2, which is a contradiction to
Lemma 3(iii).

Let C1 ∩ C2 6= ∅. It follows from Lemma 5(i) that |C1 ∩ C2| = 1. Then
C1∩C2 6= {a1} by Lemma 5(iii). Let C1∩C2 = {a2} and a1 ∈ C1. Since C1 * C2

and C2 * C1, we have |C1| ≤ 5 and |C2| ≤ 5 by Lemma 3(ii). The equality
|C1 ∪ C2| = 8 implies |C1| ≥ 4 and |C2| ≥ 4. We have a1 ∈ (C1 ∩ C3) \ C2 and
|C2 \ (C1 ∪ C3)| ≥ 3, which is a contradiction to Lemma 3(iii).

(b) Now, let C1, C2, C3 and C4 = {a1}, respectively, be three b1- and a unique
b2-reduced clusters in C . W.l.o.g., assume that a1 ∈ C1. By Lemma 5(iii),
C1 ∩ Ci 6= {a1} for any i = 2, 3.

Furthermore, we have |C1| ≥ 5. Otherwise, |A\C1| ≥ 5 and, by the definition
of C , there exists a cluster C5 ∈ C (a1) \ {C1, C4} such that (A \C1)∪{a1} ⊆ C5.
By Lemma 3(i), it follows that |A \ C1| = 5, i.e., |C1| = 4. We have C1 \ C5 6= ∅
and |C5 \ C1| ≥ 5, which is a contradiction to Lemma 3(ii). Therefore, by the
same lemma, C1 ∩ C2 6= ∅ and C1 ∩ C3 6= ∅. By Lemmas 5(ii) and 3(ii), we have
|C1 \ C2| ≤ 4 and, consequently, |C1| = 5.

The equality C2 ∩ C3 = ∅ holds. Otherwise, by Lemma 5(i) and (iii), we
have (C2 ∩ C3) \ C1 6= ∅ and |C1 \ (C2 ∪ C3)| = 3, which is a contradiction to
Lemma 3(iii).

Let C5 ∈ C (a1) \ {C1, C4}. Since A \ (C1 ∪ C4) ⊂ C5, we have |C5| ≥ 5.
Since |C1 ∩ Ci| = 1 for any i = 2, 3, C2 ∩ C3 = ∅ and |(C2 ∪ C3) \ C1| = 3, one
of the clusters C2, C3, say C2, has size 2. So, we have (C2 ∩ C5) \ C1 6= ∅ and
|C1 \ (C2 ∪ C5)| ≥ 3 both in the case |C5| = 6 (since C2 ⊆ C5 by Lemma 3(ii))
and in the case |C5| = 5, which is a contradiction to Lemma 3(iii).

(7) We can come to a contradiction for the graph G = G(9, 8, 2) analogously
to the graph G = G(9, 8, 1).

4. Proof of Sufficiency of Theorem 2

Let a threshold graphH = G(p, q1, q2, . . . , qk) with the bipartition (A,B) not con-
tain any of the graphsK1,4, G(12, 7), G(11, 10), G(10, 9, 9), G(10, 9, 7), G(10, 9, 5),
G(10, 7, k), k = 1, 2, . . . , 7, G(9, 8, 2), G(9, 8, 1) as an induced subgraph. By The-
orem 1, we have to show that there exists a (3, 2)-covering of H.

W.l.o.g., assume that H is a connected non-complete graph. Therefore, H
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has a dominating vertex by the definition of H. Furthermore, |B| ≤ 2, since H

does not contain K1,4 as an induced subgraph. Thus, we have H = G(p, q1) or
H = G(p, q1, q2).

First, we suppose that |A| = p ≥ 14. Then q1 ≤ 6, since H does not contain
any of the graphs G(11, 10) and G(12, 7) as an induced subgraph. For any vertex
b ∈ B, partition the set N(b) into nb ≤ 3 pairwise disjoint cliques C b

i each having
size at most 2. Obviously, the list of cliques (C b

i ∪ {b} : b ∈ B, i = 1, . . . , nb)
together with the clique A gives a desired (3, 2)-covering of H.

If |A| ≤ 7, then q1 ≤ 6 by the maximality of the clique A. Therefore, a
desired (3, 2)-covering of H can be constructed as above.

Now, let 8 ≤ |A| ≤ 13. Taking into account the above considerations, we can
assume that q1 ≥ 7.

Let H = G(p, q1). Since H does not contain any of the graphs G(12, 7) and
G(11, 10) as an induced subgraph, it is isomorphic to one of the graphs G(13, 9),
G(12, 9), G(12, 8), G(11, 9), G(11, 8), G(11, 7),G(10, 9),G(10, 8),G(10, 7), G(9, 8),
G(9, 7),G(8, 7). Clearly, the set of cliques

C = {{a1, a2, a3, a4, a5, b1}, {a1, a6, a7, a8, a9, b1}, {a1, a10, a11, a12, a13},
{a2, a3, a6, a7, a10, a11}, {a2, a3, a8, a9, a12, a13}, {a4, a5, a6, a7, a12, a13},
{a4, a5, a8, a9, a10, a11}}

of the graph G(13, 9) is one of its (3, 2)-coverings. Each of the graphs G(12, 9),
G(12, 8), G(11, 9), G(11, 8), G(11, 7), G(10, 9), G(10, 8), G(10, 7), G(9, 8), G(9, 7)
and G(8, 7) is an induced subgraph of G(13, 9). Therefore, a desired (3, 2)-
covering for each of these graphs can be obtained from the covering C .

Now, let H = G(p, q1, q2). Since H does not contain any of the graphs
G(12, 7), G(11, 10), G(10, 9, 9), G(10, 9, 7), G(10, 9, 5), G(10, 7, k), k = 1, 2, . . . , 7,
G(9, 8, 2) and G(9, 8, 1) as an induced subgraph, it is isomorphic to one of the
graphs G(11, 9, 8), G(11, 9, 6), G(11, 9, 4), G(10, 9, 8), G(10, 9, 6), G(10, 9, 4),
G(10, 8, 8), G(10, 8, 7), G(10, 8, 6), G(10, 8, 5), G(10, 8, 4), G(10, 8, 3), G(9, 8, 8),
G(9, 8, 7), G(9, 8, 6), G(9, 8, 5), G(9, 8, 4),G(9, 8, 3),G(9, 7, 7),G(9, 7, 6),G(9, 7, 5),
G(9, 7, 4), G(9, 7, 3), G(9, 7, 2), G(9, 7, 1),G(8, 7, 7),G(8, 7, 6),G(8, 7, 5),G(8, 7, 4),
G(8, 7, 3), G(8, 7, 2), G(8, 7, 1). Some of the desired (3, 2)-coverings C1, C2, C3,
C4 for the graphs G(11, 9, 8), G(11, 9, 6), G(11, 9, 4), G(9, 7, 1), respectively, are
given below:

C1 = {{a1, a2, a3, a4, a9, b1}, {a5, a6, a7, a8, a9, b1}, {a1, a2, a7, a8, b2},
{a3, a4, a5, a6, b2}, {a1, a2, a5, a6, a10, a11}, {a3, a4, a7, a8, a10, a11},
{a9, a10, a11}},

C2 = {{a1, a2, a7, a9, b1}, {a3, a4, a7, a8, b1}, {a5, a6, a8, a9, b1},
{a1, a2, a3, a4, a5, a6, b2}, {a5, a6, a7, a10, a11}, {a1, a2, a8, a10, a11},
{a3, a4, a9, a10, a11}},
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C3 = {{a1, a2, a3, a4, a9, b1}, {a5, a6, a7, a8, a9, b1}, {a1, a2, a7, a8, b2},
{a3, a4, a5, a6}, {a1, a2, a5, a6, a10, a11}, {a3, a4, a7, a8, a10, a11},
{a9, a10, a11}},

C4 = {{a1, a2, a3, a4, a5, b1}, {a5, a6, a7, b1}, {a1, b2}, {a1, a2, a6, a7, a8, a9},
{a3, a4, a6, a7}, {a3, a4, a8, a9}, {a5, a6, a7}, {a5, a8, a9}}.

Each of the remaining graphsG(10, 9, 8), G(10, 9, 6), G(10, 9, 4), G(10, 8, 8), G(10,
8, 7), G(10, 8, 6), G(10, 8, 5), G(10, 8, 4), G(10, 8, 3),G(9, 8, 8),G(9, 8, 7),G(9, 8, 6),
G(9, 8, 5), G(9, 8, 4), G(9, 8, 3),G(9, 7, 7),G(9, 7, 6),G(9, 7, 5),G(9, 7, 4), G(9, 7, 3),
G(9, 7, 2), G(8, 7, 7), G(8, 7, 6), G(8, 7, 5), G(8, 7, 4),G(8, 7, 3),G(8, 7, 2),G(8, 7, 1)
is an induced subgraph for some of the graphs G(11, 9, 8), G(11, 9, 6), G(11, 9, 4),
G(9, 7, 1). Therefore, a desired (3, 2)-covering for each of the remaining graphs
can be obtained from one of the coverings C1, C2, C3, C4.

5. Recognition Algorithm

The proof of sufficiency of Theorem 2 implies the following linear algorithm for
recognizing graphs from L2

3
in the class of threshold graphs.

Algorithm

Input: a connected threshold graph H with bipartition (A,B), where A is
a maximal clique in H.

Output: 1 if H ∈ L2
3
, and 0 otherwise.

1. begin

2. if B = ∅, i.e., the graph H is complete,

3. return 1;

4. if |B| ≥ 3

5. return 0;

6. if deg(b) ≤ 6 for every b ∈ B

7. return 1;

8. if |A| ≥ 14

9. return 0;

10. if H contains some of the graphs G(12, 7), G(11, 10), G(10, 9, 9),

G(10, 9, 7), G(10, 9, 5), G(10, 7, k), k = 1, 2, . . . , 7, G(9, 8, 2), G(9, 8, 1)

as an induced subgraph

11. return 0;

12. return 1;

13. end.
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The complexity of the algorithm in lines 1–9 is at most O(n), where n =
|V (H)|. Since the order of the graph H in line 10 is at most 13, this line takes
O(1) time.

So, the total complexity of the recognition algorithm is O(n).
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