A FINITE CHARACTERIZATION AND RECOGNITION OF INTERSECTION GRAPHS OF HYPERGRAPHS WITH RANK AT MOST 3 AND MULTIPLICITY AT MOST 2 IN THE CLASS OF THRESHOLD GRAPHS

Yury Metelsky
Department of Mathematical Cybernetics Mechanics and Mathematics Faculty Belarusian State University
Nezavisimosti Ave. 4, 220030 Minsk, Belarus
e-mail: metelsky@bsu.by
Kseniya Schemeleva
Université Lumière Lyon 2
Laboratoire d'Economie des Transports
14 avenue Berthelot, 69363 Lyon Cedex 07, France
e-mail: kseniya.schemeleva@let.ish-lyon.cnrs.fr
AND
Frank Werner
Institute of Mathematical Optimization Otto-von-Guericke-University of Magdeburg
Universitätsplatz 2, 39106 Magdeburg, Germany
e-mail: frank.werner@mathematik.uni-magdeburg.de

Abstract

We characterize the class L_{3}^{2} of intersection graphs of hypergraphs with rank at most 3 and multiplicity at most 2 by means of a finite list of forbidden induced subgraphs in the class of threshold graphs. We also give an $O(n)$ time algorithm for the recognition of graphs from L_{3}^{2} in the class of threshold graphs, where n is the number of vertices of a tested graph. Keywords: intersection graph, hypergraph rank, hypergraph multiplicity, forbidden induced subgraph, threshold graph. 2010 Mathematics Subject Classification: 05C62, 05C75, 05C70, 05C65, 05C85.

1. Introduction

In this paper, we consider finite undirected graphs without loops and multiple edges. The vertex and the edge sets of a graph G are denoted by $V(G)$ and $E(G)$, respectively; $N(v)=N_{G}(v)$ is the neighborhood of a vertex v in G and $\operatorname{deg}(v)$ is the degree of v; the subgraph of G induced by a set $X \subseteq V(G)$ is denoted by $G(X)$. A vertex v of a graph G is called dominating if $N(v) \cup\{v\}=V(G)$.

The intersection graph $L(\mathcal{H})$ of a hypergraph \mathcal{H} is defined as follows:
(1) the vertices of $L(\mathcal{H})$ are in a bijective correspondence with the edges of \mathcal{H};
(2) two vertices are adjacent in $L(\mathcal{H})$ if and only if the corresponding edges have a non-empty intersection.
The rank of a hypergraph \mathcal{H} is the maximum size of its edges. The multiplicity of a pair of vertices u, v of \mathcal{H} is the number of edges in \mathcal{H} containing both u and v; the multiplicity $m(\mathcal{H})$ of \mathcal{H} is the maximum multiplicity among all pairs of vertices in \mathcal{H} (see for example [15]).

Denote by L_{r}^{m} the class of intersection graphs of hypergraphs with rank at most r and multiplicity at most m. So, we refer to L_{r}^{∞} as the class of intersection graphs of hypergraphs with rank at most r. The class L_{r}^{m}, where $r \geq 1, m \geq 1$ or $m=\infty$, is hereditary (i.e., every induced subgraph of a graph in L_{r}^{m} is also in L_{r}^{m}). Therefore, it can be characterized by means of a list (finite or not) of forbidden induced subgraphs.

A non-trivial characterization of the class L_{r}^{m} is known only for $r \leq 2$. These are:

- Beineke's finite characterization of the class L_{2}^{1} of line graphs (i.e., intersection graphs of simple graphs) [1];
- a finite characterization of the class L_{2}^{∞} of intersection graphs of multigraphs by Bermond and Meyer [2];
- a finite characterization of the class L_{2}^{m} by Tashkinov [22].

Such finite characterizations of the classes above imply that there exist polynomial algorithms for recognizing graphs from these classes. (For efficient algorithms for recognizing graphs from L_{2}^{1} see, e.g., [4, 11, 17, 19].) It is also known that for any $r \geq 3$ and m, where $m \geq 1$ or $m=\infty$, there does not exist a finite characterization for the class L_{r}^{m} (see $\left.[6,15,16,10]\right)$.

Poljak, Rödl and Turzik [18] proved that the problem of determining whether a graph belongs to L_{r}^{∞} is NP-complete for an arbitrary r. Moreover, they proved that for every fixed $r \geq 4$, the analogous problem remains NP-complete. The question whether or not the class L_{3}^{∞} can be recognized in polynomial time is still open, but recognizing intersection graphs of hypergraphs without multiple edges with rank at most 3 is NP-complete as well [18]. The following result generalizing one from [18] was obtained in [7]: For every fixed $m \geq 1$ and an arbitrary r, the problem of determining whether a graph belongs to L_{r}^{m} is NP-complete.

Hliněný and Kratochvíl [8] proved that for every fixed $r \geq 3$, the problem of determining whether a graph belongs to L_{r}^{1} is NP-complete. The class L_{3}^{1} was studied in different papers, and several graph classes were found, where the problem of recognizing graphs from the class is polynomially solvable or remains NP-complete ([7, 9, 14, 15, 16, 21]).

A graph G is called split [5] if there exists a partition of its vertex set $V(G)=$ $A \cup B$ into a clique A and a stable set B (bipartition (A, B)). It was proved in [12] that for every fixed r, there exists a finite characterization of the graphs from L_{r}^{1} in the class of split graphs. In [13] (see also [7]), this result was generalized to the class L_{r}^{m} for every fixed m.

A split graph with the bipartition (A, B) is called threshold $[3]$ if the vertices from B can be numbered as $b_{1}, b_{2}, \ldots, b_{k}$ so that $N\left(b_{1}\right) \supseteq N\left(b_{2}\right) \supseteq \cdots \supseteq N\left(b_{k}\right)$. In [20], the problem of determining the Krausz dimension of a graph (the minimum r such that the graph belongs to the class L_{r}^{1}) was solved in the subclass of threshold graphs of the form $K_{n}-E\left(K_{p}\right)$.

In Section 2 of this paper, we give some preliminary facts (e.g., a so-called Krausz type characterization of the class L_{3}^{2} in terms of clique coverings), prove some technical lemmas and formulate Theorem 2 that gives a finite characterization of the class L_{3}^{2} (consisting of 15 graphs) in the class of threshold graphs. In Sections 3 and 4, we prove the necessity and sufficiency of Theorem 2, respectively. In Section 5 we give an $O(n)$-time algorithm for the recognition of graphs from L_{3}^{2} in the class of threshold graphs, where n is the number of vertices of a tested graph.

2. Some Preliminaries and the Formulation of Theorem 2

A finite family $\mathscr{C}=\left(C_{1}, C_{2}, \ldots, C_{q}\right)$ of cliques of the graph G is called a covering of G if every vertex as well as every edge of G is contained in some C_{i}. The cliques C_{i} are the clusters of \mathscr{C}. For a vertex $v \in V(G)$, denote by $\mathscr{C}(v)$ the subfamily of all clusters of \mathscr{C} that contain v. A covering \mathscr{C} of the graph G is called an (r, m)-covering if any vertex of G belongs to at most r clusters of \mathscr{C}, and any two clusters of \mathscr{C} have at most m vertices in common.
Theorem $1[7,13] . A$ graph G belongs to the class L_{3}^{2} if and only if there exists $a(3,2)$-covering of G.

A clique of a graph G is called maximal if it is not contained in some other clique of G.

Let a threshold graph with the bipartition (A, B) be given, where $B=$ $\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ and $N\left(b_{1}\right) \supseteq N\left(b_{2}\right) \supseteq \cdots \supseteq N\left(b_{k}\right)$. We denote such a graph by $G\left(p, q_{1}, q_{2}, \ldots, q_{k}\right)$ if $|A|=p$ and $\operatorname{deg}\left(b_{i}\right)=q_{i}$ for any $i=1,2, \ldots, k$. Without loss of generality (W.l.o.g.), we assume below that any threshold graph
$G\left(p, q_{1}, q_{2}, \ldots, q_{k}\right)$ with the bipartition (A, B) satisfies the conditions $A=\left\{a_{1}\right.$, $\left.a_{2}, \ldots, a_{p}\right\}, B=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}, p>q_{1}$ and $N\left(b_{i}\right)=\left\{a_{1}, a_{2}, \ldots, a_{q_{i}}\right\}$ for any $i=1,2, \ldots, k$ (see Figure 1).

Figure 1. The graph $G(3,2,1)$ and its bipartition (A, B).

In this paper, we characterize the class L_{3}^{2} by means of a finite list of forbidden induced subgraphs in the class of threshold graphs:

Theorem 2. A threshold graph H belongs to the class L_{3}^{2} if and only if it contains none of the graphs $K_{1,4}, G(12,7), G(11,10), G(10,9,5), G(10,9,7), G(10,9,9)$, $G(10,7, k), k=1,2, \ldots, 7, G(9,8,1), G(9,8,2)$ as induced subgraphs.

Now we formulate some technical statements that will be used for proving Theorem 2.

A $(3,2)$-covering $\mathscr{C}=\left(C_{1}, C_{2}, \ldots, C_{t}\right)$ of a complete graph G is called a decomposition $(3,2)$-covering if $C_{i} \neq V(G)$ for any $i=1,2, \ldots, t$.

Lemma 3. Let $\mathscr{C}=\left(C_{1}, C_{2}, \ldots, C_{t}\right)$ be a decomposition $(3,2)$-covering of a complete graph G. Then the following statements hold:
(i) $\left|C_{i}\right| \leq 6$ for any $i=1,2, \ldots, t$.
(ii) If $C_{i} \backslash C_{j} \neq \emptyset$ for some $i, j \in\{1,2, \ldots, t\}$, then $\left|C_{j} \backslash C_{i}\right| \leq 4$.
(iii) If $\left(C_{i} \cap C_{j}\right) \backslash C_{k} \neq \emptyset$ for some different $i, j, k \in\{1,2, \ldots, t\}$, then $\mid C_{k} \backslash\left(C_{i} \cup\right.$ $\left.C_{j}\right) \mid \leq 2$.

Proof. (i) Let, to the contrary, $C_{i}=\left\{a_{1}, a_{2}, \ldots, a_{7}, \ldots\right\}$ for some $i \in\{1,2, \ldots, t\}$. Consider a vertex $v \in V(G) \backslash C_{i}$. By the definition of a $(3,2)$-covering, each cluster of \mathscr{C} contains at most two edges of $v a_{s}, s=1,2, \ldots, 7$. Hence, the edges $v a_{s}, s=1,2, \ldots, 7$, are covered by at least four clusters of \mathscr{C}, and, therefore, the vertex v is contained in at least four clusters of \mathscr{C}, which is a contradiction to the definition of \mathscr{C}.
(ii) Assume, to the contrary, that for a vertex $v \in V(G)$, we have $v \in C_{i} \backslash C_{j}$ and $C_{j} \backslash C_{i}=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \ldots\right\}$. By the definition of a (3,2)-covering, the edges $v a_{s}, s=1,2, \ldots, 5$, are covered by at least three clusters of \mathscr{C}, different from C_{i}. So, taking into account the cluster C_{i}, the vertex v is contained in at least four clusters of \mathscr{C}, which is a contradiction to the definition of \mathscr{C}.
(iii) Let, instead, $v \in\left(C_{i} \cap C_{j}\right) \backslash C_{k} \neq \emptyset$ and $C_{k} \backslash\left(C_{i} \cup C_{j}\right)=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$. By the definition of a $(3,2)$-covering, the edges $v a_{1}, v a_{2}, v a_{3}$ are covered by at least two clusters of \mathscr{C}, different from C_{i} and C_{j}. So, together with the clusters C_{i}, C_{j}, the vertex v is contained in at least four clusters of \mathscr{C}, which is a contradiction.

Lemma 4. Let $\mathscr{C}=\left(C_{1}, C_{2}, \ldots, C_{t}\right)$ be a decomposition (3,2)-covering of a complete graph G. Then the following statements hold:
(i) If G has order 11, then it contains no cluster of size at most 2 .
(ii) If G has order 12, then it contains no cluster of size at most 3 .

Proof. (i) Let $V(G)=\left\{a_{1}, a_{2}, \ldots, a_{11}\right\}, C_{1} \in \mathscr{C}\left(a_{1}\right)$ and $\left|C_{1}\right| \leq 2$. W.l.o.g., assume that $\left\{a_{3}, a_{4}, \ldots, a_{11}\right\} \subseteq V(G) \backslash C_{1}$. By the definition of \mathscr{C}, there exists a cluster $C_{2} \in \mathscr{C}\left(a_{1}\right)$ of size at least 6 among the clusters covering some of the nine edges $a_{1} a_{i}, i=3,4, \ldots, 11$. By Lemma 3 (i),(ii), $\left|C_{2}\right|=6$ and $C_{1} \subseteq C_{2}$. Hence, $\left|V(G) \backslash\left(C_{1} \cup C_{2}\right)\right|=5$ and there exists a cluster $C_{3} \in \mathscr{C}\left(a_{1}\right) \backslash\left\{C_{1}, C_{2}\right\}$ of size at least 6 containing the set $V(G) \backslash\left(C_{1} \cup C_{2}\right)$. By Lemma 3(i), $C_{3}=$ $\left\{a_{1}\right\} \cup\left(V(G) \backslash\left(C_{1} \cup C_{2}\right)\right)$. We have $\left|C_{2}\right|=\left|C_{3}\right|=6$ and $\left|C_{2} \cap C_{3}\right|=1$, which is a contradiction to Lemma 3(ii).

The statement (ii) of the lemma follows immediately from the statement (i).

3. Proof of Necessity of Theorem 2

By heredity of the class L_{3}^{2}, one has to show that none of the graphs $K_{1,4}, G(12,7)$, $G(11,10), G(10,9,5), G(10,9,7), G(10,9,9), G(10,7, k), k=1,2, \ldots, 7, G(9,8,1)$ and $G(9,8,2)$ belongs to this class. Obviously, there exists no (3,2)-covering for the star $K_{1,4}$. Therefore, $K_{1,4} \notin L_{3}^{2}$ by Theorem 1 .

Furthermore, let G be one of the graphs $G(12,7), G(11,10), G(10,9,5)$, $G(10,9,7), G(10,9,9), G(10,7, k), k=1,2, \ldots, 7, G(9,8,1), G(9,8,2)$ with the bipartition (A, B). Suppose, to the contrary, that there exists a (3,2)-covering $\mathscr{D}=\left(D_{1}, D_{2}, \ldots, D_{t}\right)$ of G.
W.l.o.g., we will assume that no cluster of \mathscr{D} is contained in some other cluster of \mathscr{D}. By Theorem 1, it can be easily seen that $D_{i} \neq A$ for any $i=1,2, \ldots, t$, since $\operatorname{deg}\left(b_{1}\right) \geq 7$.

Put $\mathscr{C}=\left(C_{1}, C_{2}, \ldots, C_{t}\right)$, where $C_{i}=D_{i} \cap A, i=1,2, \ldots, t$. Then \mathscr{C} is a decomposition (3,2)-covering of the subgraph $G(A)$, since $N\left(b_{i}\right) \neq A$ for each
$b_{i} \in B$. A cluster $C \in \mathscr{C}$ is called b_{i}-reduced with $b_{i} \in B$, if $C \cup\left\{b_{i}\right\} \in \mathscr{D}$. A cluster $C \in \mathscr{C}$ is called simply reduced if it is b_{i}-reduced for some $b_{i} \in B$. By Lemma 3 (i), \mathscr{C} contains two or three b_{1}-reduced clusters, $\operatorname{since} \operatorname{deg}\left(b_{1}\right) \geq 7$.

Lemma 5. The following statements hold:
(i) If $C_{1}, C_{2} \in \mathscr{C}$ are two different b_{i}-reduced clusters with $b_{i} \in B$, then $\mid C_{1} \cap$ $C_{2} \mid \leq 1$.
(ii) If $C_{1}, C_{2} \in \mathscr{C}$ are two different b_{i}-reduced clusters with $b_{i} \in B$, then $C_{1} \nsubseteq C_{2}$ and $C_{2} \nsubseteq C_{1}$.
(iii) If $C_{1}, C_{2}, C_{3} \in \mathscr{C}$ are three different reduced clusters, then $C_{1} \cap C_{2} \cap C_{3}=\emptyset$.

Proof. (i) The validity of the statement follows immediately from the definition of \mathscr{C}.
(ii) The statement follows from the above assumption that no cluster of \mathscr{D} is contained in some other cluster of \mathscr{D}.
(iii) If, to the contrary, $a \in C_{1} \cap C_{2} \cap C_{3}$, then the edge $a a_{p}$ is not covered by a cluster from $\mathscr{C}(a)=\left\{C_{1}, C_{2}, C_{3}\right\}$, which is a contradiction to the definition of \mathscr{C}.

We consider the following separate cases and come to a contradiction in each of them.
(1) $G=G(12,7)$.
(a) Assume that there exist exactly two b_{1}-reduced clusters $C_{1}, C_{2} \in \mathscr{C}$. By Lemma 4(ii), $\left|C_{1}\right| \geq 4$ and $\left|C_{2}\right| \geq 4$. Hence, by Lemma 5 (i) and the equality $\left|C_{1} \cup C_{2}\right|=7$, we obtain $\left|C_{1}\right|=\left|C_{2}\right|=4$ and $\left|C_{1} \cap C_{2}\right|=1$. W.l.o.g., assume that $C_{1} \cap C_{2}=\left\{a_{1}\right\}$. Consider the cluster $C_{3} \in \mathscr{C}\left(a_{1}\right) \backslash\left\{C_{1}, C_{2}\right\}$. Then $\left\{a_{1}, a_{8}, a_{9}, a_{10}, a_{11}, a_{12}\right\} \subseteq C_{3}$. By Lemma 3(i), $C_{3}=\left\{a_{1}, a_{8}, a_{9}, a_{10}, a_{11}, a_{12}\right\}$ (see Figure 2). We have $\left|C_{3} \backslash C_{1}\right|=5$, which is a contradiction to Lemma 3(ii).

Figure 2. The clusters C_{1}, C_{2} and C_{3} of the covering \mathscr{C} in the case (1).
(b) Suppose that there exist exactly three b_{1}-reduced clusters $C_{1}, C_{2}, C_{3} \in \mathscr{C}$. Taking into account Lemmas 5(i) and 4(ii), we obtain that $\left|C_{1} \cup C_{2}\right| \geq 7$ and, therefore, $\left|C_{1} \cup C_{2} \cup C_{3}\right| \geq 9>7=\operatorname{deg}\left(b_{1}\right)$, which is a contradiction.
(2) $G=G(11,10)$.
(a) Assume that there exist exactly two b_{1}-reduced clusters $C_{1}, C_{2} \in \mathscr{C}$. By Lemma 5(i), $\left|C_{1} \cap C_{2}\right| \leq 1$. By Lemmas 5(ii) and 3(ii), $\left|C_{1} \backslash C_{2}\right| \leq 4$ and $\left|C_{2} \backslash C_{1}\right| \leq 4$. Therefore, $\operatorname{deg}\left(b_{1}\right)=\left|C_{1} \cup C_{2}\right| \leq 9$, which is a contradiction.
(b) Let \mathscr{C} contain three b_{1}-reduced clusters C_{1}, C_{2} and C_{3}.

First, we suppose that C_{1}, C_{2} and C_{3} are pairwise disjoint. By Lemmas 3(ii) and 4(i), we have $3 \leq\left|C_{i}\right| \leq 4$ for any $i=1,2,3$. W.l.o.g., assume that $C_{1}=$ $\left\{a_{1}, a_{2}, a_{3}\right\}, C_{2}=\left\{a_{4}, a_{5}, a_{6}\right\}, C_{3}=\left\{a_{7}, a_{8}, a_{9}, a_{10}\right\}$. By the definition of \mathscr{C} and Lemma 3 (i), we have $\left|\mathscr{C}\left(a_{1}\right)\right|=3$, since $\left|A \backslash C_{1}\right|=8$.

Let C_{4} and C_{5} be two clusters in $\mathscr{C}\left(a_{1}\right) \backslash\left\{C_{1}\right\}$. Each of the clusters C_{4} and C_{5} has at least one common vertex with any of the clusters C_{2}, C_{3}. If, for example, $C_{4} \cap C_{2}=\emptyset$, then $a_{1} \in\left(C_{1} \cap C_{4}\right) \backslash C_{2}$ and $\left|C_{2} \backslash\left(C_{1} \cup C_{4}\right)\right|=\left|C_{2}\right|=3$, which is a contradiction to Lemma 3(iii). Since $C_{3} \subseteq C_{4} \cup C_{5}$ by the definition of \mathscr{C} and $\left|C_{3}\right|=4$, then each of the clusters C_{4} and C_{5} has exactly two common vertices with the cluster C_{3}.

The inequalities $\left|C_{4}\right| \geq 5$ and $\left|C_{5}\right| \geq 5$ hold. Otherwise, let, for example, $\left|C_{4}\right| \leq 4$. Then $\left|C_{5}\right| \geq 6$, since $\left|C_{4} \cup C_{5}\right| \geq 9$. Hence, by Lemma $3(\mathrm{i}),\left|C_{5}\right|=6$. Therefore, $C_{4} \cap C_{5}=\left\{a_{1}\right\}$ and $\left|C_{5} \backslash C_{4}\right|=5$, which is a contradiction to Lemma 3(ii).
W.l.o.g., assume that $\left\{a_{4}, a_{7}, a_{8}\right\} \subseteq C_{4},\left\{a_{6}, a_{9}, a_{10}, a_{11}\right\} \subseteq C_{5}$. Since $\mid C_{5} \backslash$ $C_{1} \mid \leq 4$ by Lemma 3(ii), then $a_{5} \notin C_{5}$. Hence, $a_{5} \in C_{4}$. We have $a_{5} \in\left(C_{2} \cap C_{4}\right) \backslash$ C_{5}. By Lemma 3(iii), $\left|C_{5} \backslash\left(C_{2} \cup C_{4}\right)\right| \leq 2$. Then $a_{11} \in C_{4}$ and, by Lemma 3(i), $C_{4}=\left\{a_{1}, a_{4}, a_{5}, a_{7}, a_{8}, a_{11}\right\}$ (see Figure 3). Therefore, $\left|C_{4} \backslash C_{1}\right|=5$, which is a contradiction to Lemma 3(ii).

Now, w.l.o.g., assume that $a_{1} \in C_{1} \cap C_{2}$. By Lemma 5(i), $C_{1} \cap C_{2}=\left\{a_{1}\right\}$. By Lemmas 5 (ii) and $3\left(\right.$ ii),$\left|C_{1}\right| \leq 5$ and $\left|C_{2}\right| \leq 5$. Each of the clusters C_{1}, C_{2} has size at least 4. If not, then $a_{1} \in\left(C_{1} \cap C_{2}\right) \backslash C_{3}$ by Lemma 5 (iii), and $\left|C_{3} \backslash\left(C_{1} \cup C_{2}\right)\right| \geq 10-(3+5-1)=3$, which is a contradiction to Lemma 3(iii).

Furthermore, assume that at least one of the clusters C_{1}, C_{2}, say C_{1}, has size 5 . Then $\left|C_{1} \backslash C_{3}\right| \leq 4$ by Lemmas 5 (ii) and 3 (ii), and so $\left|C_{1} \cap C_{3}\right|=1$ by Lemma 5(i). Let $C_{1} \cap C_{3}=\left\{a_{2}\right\}$. Then $a_{2} \in\left(C_{1} \cap C_{3}\right) \backslash C_{2}$ by Lemma 5 (iii). We obtain that $\left|C_{2} \backslash\left(C_{1} \cup C_{3}\right)\right| \leq 2$ by Lemma 3 (iii). Therefore, $\left|C_{2} \cap C_{3}\right|=1$. Let $C_{2} \cap C_{3}=\left\{a_{3}\right\}$. We have $a_{3} \in\left(C_{2} \cap C_{3}\right) \backslash C_{1}$ and $\left|C_{1} \backslash\left(C_{2} \cup C_{3}\right)\right|=3$, contradicting Lemma 3(iii).

Thus, $\left|C_{1}\right|=\left|C_{2}\right|=4$. Let, w.l.o.g., $C_{1}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}, C_{2}=\left\{a_{1}, a_{5}, a_{6}\right.$, $\left.a_{7}\right\}$. Then $\left\{a_{8}, a_{9}, a_{10}\right\} \subseteq C_{3}$, since $\left\{a_{1}, a_{2}, \ldots, a_{10}\right\}=N\left(b_{1}\right)$. By Lemma 5 (iii), $a_{1} \in\left(C_{1} \cap C_{2}\right) \backslash C_{3}$. However, then $\left|C_{3} \backslash\left(C_{1} \cup C_{2}\right)\right|=3$, which is a contradiction to Lemma 3(iii).

Figure 3. The clusters $C_{1}, C_{2}, C_{3}, C_{4}$ and C_{5} of the covering \mathscr{C} in the case (2).
(3) $G=G(10,9,5)$.

Each vertex a_{i}, where $i=1,2, \ldots, 5$, belongs to one b_{1} - and one b_{2}-reduced clusters. Therefore, by Lemma 5(iii), each two of the b_{2}-reduced clusters have no common vertices. By Lemma 5 (iii), if a vertex belongs to two of the b_{1}-reduced clusters, then this vertex belongs to the set $\left\{a_{6}, a_{7}, a_{8}, a_{9}\right\}$.
(a) Let \mathscr{C} contain exactly two b_{1}-reduced clusters C_{1}, C_{2}. Since $\left|C_{1} \cup C_{2}\right|=9$, we get $\left|C_{1} \cap C_{2}\right|=1$ and $\left|C_{1}\right|=\left|C_{2}\right|=5$ by Lemmas 5(i),(ii) and 3(ii). Let, w.l.o.g., $C_{1} \cap C_{2}=\left\{a_{9}\right\}$. By the definition of \mathscr{C}, any vertex a_{i}, where $i=$ $1,2, \ldots, 8$, belongs to exactly two clusters from $\mathscr{C}\left(a_{i}\right) \backslash\left\{C_{1}, C_{2}\right\}$. Moreover, it is easy to obtain that, for any vertex a_{i}, where $i=1,2, \ldots, 8$, each cluster $C \in$ $\mathscr{C}\left(a_{i}\right) \backslash\left\{C_{1}, C_{2}\right\}$ satisfies the equalities $\left|C \cap\left(C_{1} \backslash C_{2}\right)\right|=2$ and $\left|C \cap\left(C_{2} \backslash C_{1}\right)\right|=2$. Since every b_{2}-reduced cluster is a subset of $\left(C_{1} \backslash C_{2}\right) \cup\left(C_{2} \backslash C_{1}\right)$ and belongs to $\mathscr{C}\left(a_{i}\right) \backslash\left\{C_{1}, C_{2}\right\}$, it has size 4 , which is a contradiction.
(b) Let \mathscr{C} contain three pairwise non-intersecting b_{1}-reduced clusters C_{1}, C_{2} and C_{3}. By Lemma 3(ii), $\left|C_{i}\right| \leq 4$ for every $i=1,2,3$.
(b1) First, suppose that $\left|C_{1}\right|=1,\left|C_{2}\right|=4$ and $\left|C_{3}\right|=4$. Put $C_{1}=\left\{a_{1}\right\}$. Consider the clusters $C_{4}, C_{5} \in \mathscr{C}\left(a_{1}\right) \backslash\left\{C_{1}\right\}$. By the definition of $\mathscr{C},\left|C_{i} \cap C_{j}\right|=2$ for any $i=2,3$ and $j=4,5$. In particular, $\left(C_{4} \cap C_{5}\right) \cap\left(C_{2} \cup C_{3}\right)=\emptyset$. Since $\left(C_{2} \cap C_{4}\right) \backslash C_{5} \neq \emptyset$, then $\left|C_{5} \backslash\left(C_{2} \cup C_{4}\right)\right| \leq 2$ by Lemma 3(iii). Similarly, $\left|C_{4} \backslash\left(C_{2} \cup C_{5}\right)\right| \leq 2$. Therefore, $a_{10} \in C_{4} \cap C_{5}$. We obtain that there does not exist a b_{2}-reduced cluster in $\mathscr{C}\left(a_{1}\right)$, which is a contradiction.

Now, let $C_{1} \subset\left\{a_{6}, a_{7}, a_{8}, a_{9}\right\}$. W.l.o.g., put $C_{1}=\left\{a_{9}\right\}$. Note that each $b_{2}-$ reduced cluster C in \mathscr{C} has size at most 4 . If not (i.e., $|C|=\operatorname{deg}\left(b_{2}\right)=5$), then the inclusion $C \subseteq C_{2} \cup C_{3}$ implies that $\left|C \cap C_{2}\right| \geq 3$ or $\left|C \cap C_{3}\right| \geq 3$, which is
a contradiction to the definition of \mathscr{C}. Let C_{4} be a b_{2}-reduced cluster in \mathscr{C} with size at most 2. Let $a_{1} \in C_{4} \cap C_{2}$. Consider the cluster $C_{5} \in \mathscr{C}\left(a_{1}\right) \backslash\left\{C_{2}, C_{4}\right\}$. By the definition of \mathscr{C}, we have $C_{3} \backslash C_{4} \subseteq C_{5}$. Since $\left|C_{4}\right| \leq 2$ and $C_{4} \cap C_{2} \neq \emptyset$, we have $\left|C_{3} \backslash C_{4}\right| \geq 3$. Therefore, $\left|C_{3} \cap C_{5}\right| \geq 3$, which is a contradiction.
(b2) Suppose that $\left|C_{1}\right|=2,\left|C_{2}\right|=3$ and $\left|C_{3}\right|=4$. Let $a \in C_{1}$, where $a \in\left\{a_{1}, a_{2}, \ldots, a_{9}\right\}$. Consider the clusters $C_{4}, C_{5} \in \mathscr{C}(a) \backslash\left\{C_{1}\right\}$. By the definition of $\mathscr{C}, 1 \leq\left|C_{i} \cap C_{2}\right| \leq 2$ and $\left|C_{i} \cap C_{3}\right|=2$ for any $i=4,5$. Moreover, at least one of the clusters C_{4}, C_{5}, say C_{5}, has exactly two common vertices with C_{2}. Clearly, $\left(C_{4} \cap C_{5}\right) \cap C_{3}=\emptyset$ and $\left|\left(C_{4} \cap C_{5}\right) \cap C_{2}\right| \leq 1$. If $a_{10} \in C_{5}$, then $\left|C_{5}\right|=6$ by Lemma 3(i). We have $C_{1} \backslash C_{5} \neq \emptyset$ and $\left|C_{5} \backslash C_{1}\right|=5>4$, which is a contradiction to Lemma 3(ii). Therefore, $a_{10} \in C_{4} \backslash C_{5}$. By Lemma 3(i), at least one vertex a^{\prime} of the set $C_{5} \cap C_{2}$ does not belong to C_{4}. We obtain that $a^{\prime} \in\left(C_{2} \cap C_{5}\right) \backslash C_{4}$ and $\left|C_{4} \backslash\left(C_{2} \cup C_{5}\right)\right| \geq 3$, which is a contradiction to Lemma 3(iii).
(b3) Let $\left|C_{1}\right|=\left|C_{2}\right|=\left|C_{3}\right|=3$. Assume that there exists a b_{2}-reduced cluster in \mathscr{C} with size at most 2. Therefore, this cluster does not intersect with some of the clusters C_{1}, C_{2} and C_{3}, which is a contradiction to the definition of \mathscr{C}.

Now, let $C_{4}=N\left(b_{2}\right)$ be the only b_{2}-reduced cluster in \mathscr{C}. W.l.o.g., assume that $C_{1}=\left\{a_{1}, a_{6}, a_{7}\right\}, C_{2}=\left\{a_{2}, a_{3}, a_{8}\right\}$ and $C_{3}=\left\{a_{4}, a_{5}, a_{9}\right\}$. Consider the clusters $C^{\prime} \in \mathscr{C}\left(a_{2}\right) \backslash\left\{C_{2}, C_{4}\right\}$ and $C^{\prime \prime} \in \mathscr{C}\left(a_{3}\right) \backslash\left\{C_{2}, C_{4}\right\}$. By the definition of \mathscr{C}, we have $a_{6}, a_{7}, a_{9}, a_{10} \in C^{\prime} \cap C^{\prime \prime}$. Therefore, $C^{\prime}=C^{\prime \prime}$. Put $C_{5}=C^{\prime}$. Then $C_{3} \backslash C_{5} \neq \emptyset$ and $\left|C_{5} \backslash C_{3}\right|=5>4$, which is a contradiction to Lemma 3(ii).
(c) Let \mathscr{C} contain three b_{1}-reduced clusters C_{1}, C_{2}, C_{3} and $C_{1} \cap C_{2} \neq \emptyset$. W.l.o.g., assume that $\left|C_{1}\right| \geq\left|C_{2}\right|$. By Lemma 5 (iii), we obtain that $\left(C_{1} \cap C_{2}\right) \backslash$ $C_{3} \neq \emptyset$. It follows from Lemma 3(iii) that $\left|C_{3} \backslash\left(C_{1} \cup C_{2}\right)\right| \leq 2$. Hence, $\left|C_{1} \cup C_{2}\right|$ ≥ 7. Then $\left|C_{1}\right| \geq 4$. Moreover, by Lemmas 5 (ii) and 3 (ii), we have $\left|C_{1}\right| \leq 5$.
(c1) Let $\left|C_{1}\right|=5$. Then $C_{1} \cap C_{3} \neq \emptyset$ by Lemmas 5 (ii) and 3 (ii). Furthermore, $C_{2} \cap C_{3}=\emptyset$ by Lemmas 5 (iii) and 3(iii). Since $\left(C_{1} \cap C_{3}\right) \backslash C_{2} \neq \emptyset$ and, by Lemma 3(iii), $\left|C_{2} \backslash\left(C_{1} \cup C_{3}\right)\right| \leq 2$, we have $\left|C_{1}\right|=5,\left|C_{2}\right|=3$ and $\left|C_{3}\right|=3$. Recall that $C_{1} \cap C_{2}, C_{1} \cap C_{3} \subseteq\left\{a_{6}, a_{7}, a_{8}, a_{9}\right\}$. W.l.o.g., assume that $C_{1} \cap C_{2}=$ $\left\{a_{8}\right\}, C_{1} \cap C_{3}=\left\{a_{9}\right\}$. Consider the clusters $C_{4} \in \mathscr{C}\left(a_{8}\right) \backslash\left\{C_{1}, C_{2}\right\}$ and $C_{5} \in$ $\mathscr{C}\left(a_{9}\right) \backslash\left\{C_{1}, C_{3}\right\}$. By the definition of \mathscr{C}, we have $\left|C_{4} \cap\left(C_{1} \backslash\left\{a_{8}, a_{9}\right\}\right)\right| \leq 1$ and $\left|C_{5} \cap\left(C_{1} \backslash\left\{a_{8}, a_{9}\right\}\right)\right| \leq 1$. Note that $C_{4} \cap\left(C_{2} \backslash\left\{a_{8}\right\}\right)=\emptyset$. If, to the contrary, $a \in C_{4} \cap\left(C_{2} \backslash\left\{a_{8}\right\}\right)$, then $\mathscr{C}(a)=\left\{C_{2}, C_{4}, C_{5}\right\}$ and some vertex of the set $C_{1} \backslash\left\{a_{8}, a_{9}\right\}$ does not belong to the set $C_{2} \cup C_{4} \cup C_{5}$, contradicting the definition of \mathscr{C}. Analogously, $C_{5} \cap\left(C_{3} \backslash\left\{a_{9}\right\}\right)=\emptyset$. At least one of the clusters C_{2}, C_{3}, say C_{3}, contains a vertex $a^{\prime} \in\left\{a_{1}, a_{2}, \ldots, a_{5}\right\}$, since $\left|\left\{a_{1}, a_{2}, \ldots, a_{5}\right\} \cap C_{1}\right| \leq 3$. Let $a^{\prime \prime}$ be another vertex in the set $C_{3} \backslash\left\{a_{9}\right\}$. Consider the clusters $C^{\prime} \in \mathscr{C}\left(a^{\prime}\right) \backslash\left\{C_{3}, C_{4}\right\}$ and $C^{\prime \prime} \in \mathscr{C}\left(a^{\prime \prime}\right) \backslash\left\{C_{3}, C_{4}\right\}$. Each of them contains the set $\left(C_{2} \backslash\left\{a_{8}\right\}\right) \cup\left(C_{1} \backslash\left(C_{3} \cup C_{4}\right)\right)$ of size at least 4 . Therefore, $C^{\prime}=C^{\prime \prime}=C_{6}$ is a cluster of \mathscr{C} of size at least 6 . By Lemma $3(\mathrm{i}),\left|C_{6}\right|=6$ (see Figure 4). Since $a^{\prime} \in\left\{a_{1}, a_{2}, \ldots, a_{5}\right\}$, then C_{6} is a b_{2}-reduced cluster in \mathscr{C}, which is a contradiction.

Figure 4. The clusters $C_{1}, C_{2}, C_{3}, C_{4}, C_{5}$ and C_{6} of the covering \mathscr{C} in the case (3).
(c2) Now, let $\left|C_{1}\right|=4$. Then, taking into consideration the inequalities $\left|C_{1} \cup C_{2}\right| \geq 7$ and $\left|C_{1}\right| \geq\left|C_{2}\right|$, we have $\left|C_{2}\right|=4$.

Let C_{3} intersect with C_{1} or C_{2}. Then, by Lemma 3(iii), C_{3} intersects with both C_{1} and C_{2}. By Lemma $5(\mathrm{i})$,(iii), we can assume, w.l.o.g., that $C_{1}=$ $\left\{a_{1}, a_{2}, a_{7}, a_{8}\right\}, C_{2}=\left\{a_{3}, a_{4}, a_{7}, a_{9}\right\}$ and $C_{3}=\left\{a_{5}, a_{6}, a_{8}, a_{9}\right\}$. Consider the cluster $C_{4} \in \mathscr{C}\left(a_{7}\right) \backslash\left\{C_{1}, C_{2}\right\}$. By the definition of \mathscr{C}, we have $a_{5}, a_{6}, a_{10} \in C_{4}$. Initially, let $C_{4}=\left\{a_{5}, a_{6}, a_{7}, a_{10}\right\}$. Consider the cluster $C_{5} \in \mathscr{C}\left(a_{5}\right) \backslash\left\{C_{3}, C_{4}\right\}$. By the definition of \mathscr{C}, we have $a_{1}, a_{2}, a_{3}, a_{4} \in C_{5}$. Both clusters C_{3}, C_{4} are not $b_{2^{-}}$ reduced since each of them contains at least one of the vertices $a_{6}, a_{7}, a_{8}, a_{9}, a_{10}$. Hence C_{5} is a b_{2}-reduced cluster. It follows from the inclusion $N\left(b_{2}\right) \subseteq C_{5}$ that $C_{5}=N\left(b_{2}\right)=\left\{a_{1}, a_{2}, \ldots, a_{5}\right\}$. Consider the cluster $C_{6} \in \mathscr{C}\left(a_{6}\right) \backslash\left\{C_{3}, C_{4}\right\}$. By the definition of \mathscr{C}, we have $a_{1}, a_{2}, a_{3}, a_{4} \in C_{6}$. Thus $C_{6} \neq C_{5}$ and $\left|C_{6} \cap C_{5}\right| \geq$ $4>2$, which is a contradiction to the definition of \mathscr{C}. If the cluster C_{4} has a non-empty intersection with the set $\left(C_{1} \backslash C_{2}\right) \cup\left(C_{2} \backslash C_{1}\right)$, for example $a_{1} \in C_{4}$, then at least one of the vertices a_{3}, a_{4} also belongs to C_{4}. Otherwise, by the definition of \mathscr{C}, the cluster $C_{5} \in \mathscr{C}\left(a_{1}\right) \backslash\left\{C_{1}, C_{4}\right\}$ contains the vertices a_{3}, a_{4} and a_{9}. We obtain that $C_{5} \neq C_{2}$ and $\left|C_{5} \cap C_{2}\right| \geq 3>2$, which is a contradiction. Let $a_{3} \in C_{4}$ and $C_{5} \in \mathscr{C}\left(a_{1}\right) \backslash\left\{C_{1}, C_{4}\right\}$. Then $a_{4}, a_{9} \in C_{5}$. We obtain that none of the clusters $C_{1}, C_{4}, C_{5} \in \mathscr{C}\left(a_{1}\right)$ is b_{2}-reduced, which is a contradiction.

Assume that the cluster C_{3} does not intersect with C_{1} and C_{2}. Then $\left|C_{3}\right|=2$. One of the vertices a_{6}, a_{7}, a_{8} and a_{9}, say a_{9}, belongs to $C_{1} \cap C_{2}$. Consider the cluster $C_{4} \in \mathscr{C}\left(a_{9}\right) \backslash\left\{C_{1}, C_{2}\right\}$. Clearly, $C_{3} \cup\left\{a_{10}\right\} \subseteq C_{4}$. We show that $\mid C_{4} \cap$
$\left(C_{1} \backslash C_{2}\right) \mid=1$ and $\left|C_{4} \cap\left(C_{2} \backslash C_{1}\right)\right|=1$. Indeed, if C_{4} has no common vertices with one of the sets $C_{1} \backslash C_{2}$ or $C_{2} \backslash C_{1}$, say with $C_{1} \backslash C_{2}$, then $\left(C_{3} \cap C_{4}\right) \backslash C_{1} \neq$ \emptyset and $\left|C_{1} \backslash\left(C_{3} \cup C_{4}\right)\right|=3$, contradicting Lemma 3(iii). Let $C_{3}=\left\{a^{\prime}, a^{\prime \prime}\right\}$. Consider the clusters $C^{\prime} \in \mathscr{C}\left(a^{\prime}\right) \backslash\left\{C_{3}, C_{4}\right\}$ and $C^{\prime \prime} \in \mathscr{C}\left(a^{\prime \prime}\right) \backslash\left\{C_{3}, C_{4}\right\}$. We have $\left(C_{1} \backslash C_{4}\right) \cup\left(C_{2} \backslash C_{4}\right) \subseteq C^{\prime} \cap C^{\prime \prime}$. Since $\left|\left(C_{1} \backslash C_{4}\right) \cup\left(C_{2} \backslash C_{4}\right)\right|=4$, we obtain that $C^{\prime}=C^{\prime \prime}$ by the definition of \mathscr{C}. Denote the cluster C^{\prime} by C_{5}. It can be easily obtained by the definition of \mathscr{C} that there are two clusters C_{6} and C_{7} in \mathscr{C} such that $\left(\left(C_{1} \backslash C_{2}\right) \cap C_{4}\right) \cup\left(C_{2} \cap C_{5}\right) \cup\left\{a_{10}\right\} \subseteq C_{6}$ and $\left(\left(C_{2} \backslash C_{1}\right) \cap C_{4}\right) \cup\left(C_{1} \cap C_{5}\right) \cup$ $\left\{a_{10}\right\} \subseteq C_{7}$. Each vertex from the set $\left(C_{1} \backslash C_{2}\right) \cup\left(C_{2} \backslash C_{1}\right)$ belongs to exactly three of the non- b_{2}-reduced clusters $C_{1}, C_{2}, C_{4}, C_{5}, C_{6}, C_{7}$. Clearly, at least three of the vertices $a_{1}, a_{2}, \ldots, a_{5}$ belong to the set $\left(C_{1} \backslash C_{2}\right) \cup\left(C_{2} \backslash C_{1}\right)$, which is a contradiction.
(4) We can come to a contradiction for each of the graphs $G=G(10,9,9)$ and $G=G(10,9,7)$ analogously to the graph $G=G(10,9,5)$.
(5) $G=G(10,7, k), k=1,2, \ldots, 7$.
(a) First, assume that $4 \leq k \leq 7$. For any $i=1,2,3,4$, denote by $C_{i 1}$ and $C_{i 2}$, respectively, b_{1} - and b_{2}-reduced clusters from $\mathscr{C}\left(a_{i}\right)$. Consider the cluster $C_{i 3} \in$ $\mathscr{C}\left(a_{i}\right) \backslash\left\{C_{i 1}, C_{i 2}\right\}$. Since $C_{i 1}, C_{i 2} \subseteq\left\{a_{1}, a_{2}, \ldots, a_{7}\right\}$, we have $\left\{a_{8}, a_{9}, a_{10}\right\} \subseteq C_{i 3}$ for any $i=1,2,3,4$. By the definition of \mathscr{C}, we obtain $C_{13}=C_{23}=C_{33}=C_{43}$ and $\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{8}, a_{9}, a_{10}\right\} \subseteq C_{i 3}$ for any $i=1,2,3,4$, which is a contradiction to Lemma 3(i).
(b) Put $k=1$. Let C_{1} and C_{2}, respectively, be b_{1} - and b_{2}-reduced clusters from $\mathscr{C}\left(a_{1}\right)$. Then $C_{1} \subseteq\left\{a_{1}, a_{2}, \ldots, a_{7}\right\}, C_{2}=\left\{a_{1}\right\}$. By Lemma $3(\mathrm{i}),\left|C_{1}\right| \leq 6$. Consider the cluster $C_{3} \in \mathscr{C}\left(a_{1}\right) \backslash\left\{C_{1}, C_{2}\right\}$. The equality $C_{1} \cup C_{2} \cup C_{3}=C_{1} \cup C_{3}=$ A implies that $\left|C_{1}\right| \geq 5$ by Lemma 3(i).
W.l.o.g., assume that $C_{1}=\left\{a_{1}, a_{2}, \ldots, a_{5}\right\}$. Then $C_{3}=\left\{a_{1}, a_{6}, a_{7}, \ldots, a_{10}\right\}$ by Lemma 3(i). We obtain $C_{1} \backslash C_{3} \neq \emptyset$ and $\left|C_{3} \backslash C_{1}\right|=5$, contradicting Lemma 3(ii). Now, w.l.o.g. put $C_{1}=\left\{a_{1}, a_{2}, \ldots, a_{6}\right\}$. Then $\left\{a_{1}, a_{7}, a_{8}, a_{9}, a_{10}\right\} \subseteq$ C_{3}. By Lemma 3(ii), $\left|C_{1} \backslash C_{3}\right| \leq 4$. Therefore, one of the vertices $a_{2}, a_{3}, \ldots, a_{6}$, say a_{2}, belongs to C_{3}. By Lemma 3(i), $C_{3}=\left\{a_{1}, a_{2}, a_{7}, a_{8}, a_{9}, a_{10}\right\}$. Let C_{4} be a $b_{1}-$ reduced cluster from $\mathscr{C}\left(a_{7}\right)$. We get $C_{3} \neq C_{4}$, since $C_{3} \nsubseteq N\left(b_{1}\right)$. By Lemma $5(\mathrm{i})$, $\left|C_{4} \cap C_{1}\right| \leq 1$. We obtain that $a_{7} \in\left(C_{3} \cap C_{4}\right) \backslash C_{1}$ and $\left|C_{1} \backslash\left(C_{3} \cup C_{4}\right)\right| \geq 3$, which is a contradiction to Lemma 3(iii).
(c) Put $k=2$. Let C_{1} and C_{2}, respectively, be b_{1} - and b_{2}-reduced clusters from $\mathscr{C}\left(a_{1}\right)$. Taking into account the case (b), we can assume that $C_{2}=\left\{a_{1}, a_{2}\right\}$. Then we can proceed analogously to the case (b).
(d) Finally, we assume that $k=3$. For any $i=1,2,3$, denote by $C_{i 1}$ and $C_{i 2}$, respectively, b_{1} - and b_{2}-reduced clusters from $\mathscr{C}\left(a_{i}\right)$. Taking into account the cases (b) and (c), we can assume that $C_{12}=\left\{a_{1}, a_{2}, a_{3}\right\}$. Consider the cluster $C_{i 3} \in \mathscr{C}\left(a_{i}\right) \backslash\left\{C_{i 1}, C_{i 2}\right\}$. Since $C_{i 1}, C_{i 2} \subseteq\left\{a_{1}, a_{2}, \ldots, a_{7}\right\}$, we have $\left\{a_{8}, a_{9}, a_{10}\right\} \subseteq C_{i 3}$ for any $i=1,2,3$. By the definition of $\mathscr{C}, C_{13}=C_{23}=C_{33}$
and $\left\{a_{1}, a_{2}, a_{3}, a_{8}, a_{9}, a_{10}\right\} \subseteq C_{i 3}$ for any $i=1,2,3$. By Lemma $3(\mathrm{i}), C_{i 3}=$ $\left\{a_{1}, a_{2}, a_{3}, a_{8}, a_{9}, a_{10}\right\}$. We obtain that $C_{12} \neq C_{13}$ and $\left|C_{12} \cap C_{13}\right|=3$, which is a contradiction to the definition of \mathscr{C}.
(6) $G=G(9,8,1)$.
(a) Assume that there exist exactly two b_{1}-reduced clusters $C_{1}, C_{2} \in \mathscr{C}$. Clearly, \mathscr{C} contains a unique b_{2}-reduced cluster $C_{3}=\left\{a_{1}\right\}$. If $C_{1} \cap C_{2}=\emptyset$, then $\left|C_{1}\right|=\left|C_{2}\right|=4$ by Lemma 3(ii). W.l.o.g., assume that $a_{1} \in C_{1}$. Thus, $a_{1} \in\left(C_{1} \cap C_{3}\right) \backslash C_{2}$ and $\left|C_{2} \backslash\left(C_{1} \cup C_{3}\right)\right|=4>2$, which is a contradiction to Lemma 3(iii).

Let $C_{1} \cap C_{2} \neq \emptyset$. It follows from Lemma 5 (i) that $\left|C_{1} \cap C_{2}\right|=1$. Then $C_{1} \cap C_{2} \neq\left\{a_{1}\right\}$ by Lemma 5(iii). Let $C_{1} \cap C_{2}=\left\{a_{2}\right\}$ and $a_{1} \in C_{1}$. Since $C_{1} \nsubseteq C_{2}$ and $C_{2} \nsubseteq C_{1}$, we have $\left|C_{1}\right| \leq 5$ and $\left|C_{2}\right| \leq 5$ by Lemma 3 (ii). The equality $\left|C_{1} \cup C_{2}\right|=8$ implies $\left|C_{1}\right| \geq 4$ and $\left|C_{2}\right| \geq 4$. We have $a_{1} \in\left(C_{1} \cap C_{3}\right) \backslash C_{2}$ and $\left|C_{2} \backslash\left(C_{1} \cup C_{3}\right)\right| \geq 3$, which is a contradiction to Lemma 3(iii).
(b) Now, let C_{1}, C_{2}, C_{3} and $C_{4}=\left\{a_{1}\right\}$, respectively, be three b_{1} - and a unique b_{2}-reduced clusters in \mathscr{C}. W.l.o.g., assume that $a_{1} \in C_{1}$. By Lemma 5 (iii), $C_{1} \cap C_{i} \neq\left\{a_{1}\right\}$ for any $i=2,3$.

Furthermore, we have $\left|C_{1}\right| \geq 5$. Otherwise, $\left|A \backslash C_{1}\right| \geq 5$ and, by the definition of \mathscr{C}, there exists a cluster $C_{5} \in \mathscr{C}\left(a_{1}\right) \backslash\left\{C_{1}, C_{4}\right\}$ such that $\left(A \backslash C_{1}\right) \cup\left\{a_{1}\right\} \subseteq C_{5}$. By Lemma 3(i), it follows that $\left|A \backslash C_{1}\right|=5$, i.e., $\left|C_{1}\right|=4$. We have $C_{1} \backslash C_{5} \neq \emptyset$ and $\left|C_{5} \backslash C_{1}\right| \geq 5$, which is a contradiction to Lemma 3(ii). Therefore, by the same lemma, $C_{1} \cap C_{2} \neq \emptyset$ and $C_{1} \cap C_{3} \neq \emptyset$. By Lemmas 5 (ii) and 3(ii), we have $\left|C_{1} \backslash C_{2}\right| \leq 4$ and, consequently, $\left|C_{1}\right|=5$.

The equality $C_{2} \cap C_{3}=\emptyset$ holds. Otherwise, by Lemma 5 (i) and (iii), we have $\left(C_{2} \cap C_{3}\right) \backslash C_{1} \neq \emptyset$ and $\left|C_{1} \backslash\left(C_{2} \cup C_{3}\right)\right|=3$, which is a contradiction to Lemma 3(iii).

Let $C_{5} \in \mathscr{C}\left(a_{1}\right) \backslash\left\{C_{1}, C_{4}\right\}$. Since $A \backslash\left(C_{1} \cup C_{4}\right) \subset C_{5}$, we have $\left|C_{5}\right| \geq 5$. Since $\left|C_{1} \cap C_{i}\right|=1$ for any $i=2,3, C_{2} \cap C_{3}=\emptyset$ and $\left|\left(C_{2} \cup C_{3}\right) \backslash C_{1}\right|=3$, one of the clusters C_{2}, C_{3}, say C_{2}, has size 2 . So, we have $\left(C_{2} \cap C_{5}\right) \backslash C_{1} \neq \emptyset$ and $\left|C_{1} \backslash\left(C_{2} \cup C_{5}\right)\right| \geq 3$ both in the case $\left|C_{5}\right|=6$ (since $C_{2} \subseteq C_{5}$ by Lemma 3(ii)) and in the case $\left|\bar{C}_{5}\right|=5$, which is a contradiction to Lemma 3(iii).
(7) We can come to a contradiction for the graph $G=G(9,8,2)$ analogously to the graph $G=G(9,8,1)$.

4. Proof of Sufficiency of Theorem 2

Let a threshold graph $H=G\left(p, q_{1}, q_{2}, \ldots, q_{k}\right)$ with the bipartition (A, B) not contain any of the graphs $K_{1,4}, G(12,7), G(11,10), G(10,9,9), G(10,9,7), G(10,9,5)$, $G(10,7, k), k=1,2, \ldots, 7, G(9,8,2), G(9,8,1)$ as an induced subgraph. By Theorem 1 , we have to show that there exists a $(3,2)$-covering of H.
W.l.o.g., assume that H is a connected non-complete graph. Therefore, H
has a dominating vertex by the definition of H. Furthermore, $|B| \leq 2$, since H does not contain $K_{1,4}$ as an induced subgraph. Thus, we have $H=G\left(p, q_{1}\right)$ or $H=G\left(p, q_{1}, q_{2}\right)$.

First, we suppose that $|A|=p \geq 14$. Then $q_{1} \leq 6$, since H does not contain any of the graphs $G(11,10)$ and $G(12,7)$ as an induced subgraph. For any vertex $b \in B$, partition the set $N(b)$ into $n_{b} \leq 3$ pairwise disjoint cliques C_{i}^{b} each having size at most 2. Obviously, the list of cliques $\left(C_{i}^{b} \cup\{b\}: b \in B, i=1, \ldots, n_{b}\right)$ together with the clique A gives a desired (3,2)-covering of H.

If $|A| \leq 7$, then $q_{1} \leq 6$ by the maximality of the clique A. Therefore, a desired (3,2)-covering of H can be constructed as above.

Now, let $8 \leq|A| \leq 13$. Taking into account the above considerations, we can assume that $q_{1} \geq 7$.

Let $H=G\left(p, q_{1}\right)$. Since H does not contain any of the graphs $G(12,7)$ and $G(11,10)$ as an induced subgraph, it is isomorphic to one of the graphs $G(13,9)$, $G(12,9), G(12,8), G(11,9), G(11,8), G(11,7), G(10,9), G(10,8), G(10,7), G(9,8)$, $G(9,7), G(8,7)$. Clearly, the set of cliques

$$
\begin{aligned}
\mathscr{C}= & \left\{\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, b_{1}\right\},\left\{a_{1}, a_{6}, a_{7}, a_{8}, a_{9}, b_{1}\right\},\left\{a_{1}, a_{10}, a_{11}, a_{12}, a_{13}\right\},\right. \\
& \left\{a_{2}, a_{3}, a_{6}, a_{7}, a_{10}, a_{11}\right\},\left\{a_{2}, a_{3}, a_{8}, a_{9}, a_{12}, a_{13}\right\},\left\{a_{4}, a_{5}, a_{6}, a_{7}, a_{12}, a_{13}\right\}, \\
& \left.\left\{a_{4}, a_{5}, a_{8}, a_{9}, a_{10}, a_{11}\right\}\right\}
\end{aligned}
$$

of the graph $G(13,9)$ is one of its (3,2)-coverings. Each of the graphs $G(12,9)$, $G(12,8), G(11,9), G(11,8), G(11,7), G(10,9), G(10,8), G(10,7), G(9,8), G(9,7)$ and $G(8,7)$ is an induced subgraph of $G(13,9)$. Therefore, a desired $(3,2)-$ covering for each of these graphs can be obtained from the covering \mathscr{C}.

Now, let $H=G\left(p, q_{1}, q_{2}\right)$. Since H does not contain any of the graphs $G(12,7), G(11,10), G(10,9,9), G(10,9,7), G(10,9,5), G(10,7, k), k=1,2, \ldots, 7$, $G(9,8,2)$ and $G(9,8,1)$ as an induced subgraph, it is isomorphic to one of the graphs $G(11,9,8), G(11,9,6), G(11,9,4), G(10,9,8), G(10,9,6), G(10,9,4)$, $G(10,8,8), G(10,8,7), G(10,8,6), G(10,8,5), G(10,8,4), G(10,8,3), G(9,8,8)$, $G(9,8,7), G(9,8,6), G(9,8,5), G(9,8,4), G(9,8,3), G(9,7,7), G(9,7,6), G(9,7,5)$, $G(9,7,4), G(9,7,3), G(9,7,2), G(9,7,1), G(8,7,7), G(8,7,6), G(8,7,5), G(8,7,4)$, $G(8,7,3), G(8,7,2), G(8,7,1)$. Some of the desired (3,2)-coverings $\mathscr{C}_{1}, \mathscr{C}_{2}, \mathscr{C}_{3}$, \mathscr{C}_{4} for the graphs $G(11,9,8), G(11,9,6), G(11,9,4), G(9,7,1)$, respectively, are given below:

$$
\begin{aligned}
\mathscr{C}_{1}= & \left\{\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{9}, b_{1}\right\},\left\{a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, b_{1}\right\},\left\{a_{1}, a_{2}, a_{7}, a_{8}, b_{2}\right\},\right. \\
& \left\{a_{3}, a_{4}, a_{5}, a_{6}, b_{2}\right\},\left\{a_{1}, a_{2}, a_{5}, a_{6}, a_{10}, a_{11}\right\},\left\{a_{3}, a_{4}, a_{7}, a_{8}, a_{10}, a_{11}\right\}, \\
& \left.\left\{a_{9}, a_{10}, a_{11}\right\}\right\}, \\
\mathscr{C}_{2}= & \left\{\left\{a_{1}, a_{2}, a_{7}, a_{9}, b_{1}\right\},\left\{a_{3}, a_{4}, a_{7}, a_{8}, b_{1}\right\},\left\{a_{5}, a_{6}, a_{8}, a_{9}, b_{1}\right\},\right. \\
& \left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, b_{2}\right\},\left\{a_{5}, a_{6}, a_{7}, a_{10}, a_{11}\right\},\left\{a_{1}, a_{2}, a_{8}, a_{10}, a_{11}\right\}, \\
& \left.\left\{a_{3}, a_{4}, a_{9}, a_{10}, a_{11}\right\}\right\},
\end{aligned}
$$

$$
\begin{aligned}
\mathscr{C}_{3}= & \left\{\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{9}, b_{1}\right\},\left\{a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, b_{1}\right\},\left\{a_{1}, a_{2}, a_{7}, a_{8}, b_{2}\right\},\right. \\
& \left\{a_{3}, a_{4}, a_{5}, a_{6}\right\},\left\{a_{1}, a_{2}, a_{5}, a_{6}, a_{10}, a_{11}\right\},\left\{a_{3}, a_{4}, a_{7}, a_{8}, a_{10}, a_{11}\right\}, \\
& \left.\left\{a_{9}, a_{10}, a_{11}\right\}\right\}, \\
\mathscr{C}_{4}= & \left\{\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, b_{1}\right\},\left\{a_{5}, a_{6}, a_{7}, b_{1}\right\},\left\{a_{1}, b_{2}\right\},\left\{a_{1}, a_{2}, a_{6}, a_{7}, a_{8}, a_{9}\right\},\right. \\
& \left.\left\{a_{3}, a_{4}, a_{6}, a_{7}\right\},\left\{a_{3}, a_{4}, a_{8}, a_{9}\right\},\left\{a_{5}, a_{6}, a_{7}\right\},\left\{a_{5}, a_{8}, a_{9}\right\}\right\} .
\end{aligned}
$$

Each of the remaining graphs $G(10,9,8), G(10,9,6), G(10,9,4), G(10,8,8), G(10$, $8,7), G(10,8,6), G(10,8,5), G(10,8,4), G(10,8,3), G(9,8,8), G(9,8,7), G(9,8,6)$, $G(9,8,5), G(9,8,4), G(9,8,3), G(9,7,7), G(9,7,6), G(9,7,5), G(9,7,4), G(9,7,3)$, $G(9,7,2), G(8,7,7), G(8,7,6), G(8,7,5), G(8,7,4), G(8,7,3), G(8,7,2), G(8,7,1)$ is an induced subgraph for some of the graphs $G(11,9,8), G(11,9,6), G(11,9,4)$, $G(9,7,1)$. Therefore, a desired (3,2)-covering for each of the remaining graphs can be obtained from one of the coverings $\mathscr{C}_{1}, \mathscr{C}_{2}, \mathscr{C}_{3}, \mathscr{C}_{4}$.

5. Recognition Algorithm

The proof of sufficiency of Theorem 2 implies the following linear algorithm for recognizing graphs from L_{3}^{2} in the class of threshold graphs.

Algorithm

Input: a connected threshold graph H with bipartition (A, B), where A is a maximal clique in H.

Output: 1 if $H \in L_{3}^{2}$, and 0 otherwise.

1. begin
2. if $B=\emptyset$, i.e., the graph H is complete,
3. return 1 ;
4. if $|B| \geq 3$
5. return 0 ;
6. \quad if $\operatorname{deg}(b) \leq 6$ for every $b \in B$
7. return 1 ;
8. if $|A| \geq 14$
9. return 0 ;
10. if H contains some of the graphs $G(12,7), G(11,10), G(10,9,9)$, $G(10,9,7), G(10,9,5), G(10,7, k), k=1,2, \ldots, 7, G(9,8,2), G(9,8,1)$ as an induced subgraph
11. return 0 ;
12. return 1 ;
13. end.

The complexity of the algorithm in lines $1-9$ is at most $O(n)$, where $n=$ $|V(H)|$. Since the order of the graph H in line 10 is at most 13, this line takes $O(1)$ time.

So, the total complexity of the recognition algorithm is $O(n)$.

Acknowledgements

This work is partially supported by BRFFR (Projects F11OB-064 and F13MLD012), and by DAAD.

References

[1] L.W. Beineke, Derived graphs and digraphs, in: Beitrage zur Graphentheorie, H. Sachs, H.-J. Voss, H.-J. Walter (Ed(s)), (Leipzig, Teubner, 1968) 17-33.
[2] J.C. Bermond and J.C. Meyer, Graphs representatif des arêtes d'un multigraphe, J. Math. Pures Appl. 52 (1973) 299-308.
[3] V. Chvátal and P.L. Hammer, Set-Packing and Threshold Graphs (Comp. Sci. Dept. Univ. of Waterloo, Ontario, 1973).
[4] D.G. Degiorgi and K. Simon, A dynamic algorithm for line graph recognition, Lect. Notes in Comput. Sci. 1017 (1995) 37-48. doi:10.1007/3-540-60618-1_64
[5] S. Földes and P.L. Hammer, Split graphs having Dilworth number two, Canad. J. Math. 29 (1977) 666-672. doi:10.4153/CJM-1977-069-1
[6] M.L. Gardner, Forbidden configurations in intersection graphs of r-graphs, Discrete Math. 31 (1980) 85-88. doi:10.1016/0012-365X(80)90175-2
[7] O.V. Glebova, Yu.M. Metelsky and P.V. Skums, Krausz dimension and its generalizations in special graph classes, Discrete Math. Theor. Comput. Sci. 15 (2013) 107-120.
[8] P. Hliněný and J. Kratochvíl, Computational complexity of the Krausz dimension of graphs, Lect. Notes in Comput. Sci. 1335 (1997) 214-228. doi:10.1007/BFb0024500
[9] M.S. Jacobson, A.E. Kezdy and J. Lehel, Recognizing intersection graphs of linear uniform hypergraphs, Graphs Combin. 4 (1997) 359-367. doi:10.1007/BF03353014
[10] A.G. Levin and R.I. Tyshkevich, Edge Hypergraphs, Diskret. Mat. 5 (1993) 112-129, in Russian.
[11] P.G.H. Lehot, An optimal algorithm to detect a line graph and output its root graph, J. Assoc. Comput. Mach. 21 (1974) 569-575.
doi:10.1145/321850.321853
[12] Yu. Metelsky, Split intersection graphs of hypergraphs with bounded rank, Vestsi Nats. Akad. Navuk Belarusi. Ser. Fiz.-Mat. Navuk 3 (1997) 117-122, in Russian.
[13] Yu. Metelsky and K.N. Shchamialiova, Finite characterizability of intersection graphs of hypergraphs with bounded rank and multiplicity in the class of split graphs, Vestn. Beloruss. Gos. Univ. Ser. 1 Fiz. Mat. Inform. 1 (2008) 102-105, in Russian.
[14] Yu. Metelsky and R. Tyshkevich, Line graphs of linear 3-uniform hypergraphs, J. Graph Theory 25 (1997) 243-251. doi:10.1002/(SICI)1097-0118(199708)25:4〈243::AID-JGT1 $\rangle 3.0 . \mathrm{CO} ; 2-\mathrm{K}$
[15] R.N. Naik, S.B. Rao, S.S. Shrikhande and N.M. Singhi, Intersection graphs of k uniform linear hypergraphs, Ann. Discrete Math. 6 (1980) 275-279. doi:10.1016/S0167-5060(08)70711-8
[16] R.N. Naik, S.B. Rao, S.S. Shrikhande and N.M. Singhi, Intersection graphs of k uniform linear hypergraphs, European J. Combin. 3 (1982) 159-172. doi:10.1016/S0195-6698(82)80029-2
[17] J. Naor and M.B. Novick, An efficient reconstruction of a graph from its line graph in parallel, J. Algorithms 11 (1990) 132-143. doi:10.1016/0196-6774(90)90034-C
[18] S. Poljak, V. Rödl and D. Turzik, Complexity of representation of graphs by set systems, Discrete Appl. Math. 3 (1981) 301-312. doi:10.1016/0166-218X(81)90007-X
[19] N.D. Roussopoulos, $A \max \{m, n\}$ algorithm for determining the graph H from its line graph G, Inform. Process. Lett. 2 (1973) 108-112. doi:10.1016/0020-0190(73)90029-X
[20] P.V. Skums, Krausz decomposition in special classes of split graphs, Vestn. Beloruss. Gos. Univ. Ser. 1 Fiz. Mat. Inform. 3 (2005) 96-100, in Russian.
[21] P.V. Skums, S.V. Suzdal and R.I. Tyshkevich, Edge intersection graphs of linear 3-uniform hypergraphs, Discrete Math. 309 (2009) 3500-3517. doi:10.1016/j.disc.2007.12.082
[22] V.A. Tashkinov, Characterization of intersection graphs of p-graphs, in: Proc. 5th all-USSR Conference on Problems of Theoretical Cybernetics (Novosibirsk, 1980) 135-137, in Russian.

Revised 29 January 2016
Accepted 29 January 2016

