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Abstract. Rapid maxillary expansion is employed for the treatment of cross-bite and 

deficiency of transversal dimension of the maxilla in patients with and without cleft of palate 

and lip. For this procedure, generally, different orthodontic appliances and devices 

generating significant transversal forces are used. The aim of this study is the finite-element 

analysis of stresses and displacements of the skull without palate cleft and the skull with 

unilateral and bilateral cleft after activation of the Hyrax orthodontic device. Two different 

constructions of the orthodontic device Hyrax with different positions of the screw relative 

palate are considered. In the first case, the screw is in the occlusal horizontal plane, and in 

the other, the screw is located near the palate. Activation of the orthodontic device 

corresponds to the rotation of the screw on one-quarter turn. It is established that the screw 

position significantly affects the distributions of stresses in skull and displacements of the 

cranium without palate cleft and with unilateral or bilateral palate cleft. Stresses in the bone 

structures of the craniums without cleft and with cleft are transferred from the maxilla to the 

pterygoid plate and pharyngeal tubercle if the screw displaces from the occlusal plane to the 

palate. Depending on the construction of the orthodontic appliance, the maxilla halves in the 

transversal plane are unfolded or the whole skull is entirely rotated in the sagittal plane. The 

stresses patterns and displacements of the skull with bilateral palate cleft are almost 

unchanged after activation of the orthodontic devices with different positions of the screw, 

only magnitudes of stresses and displacements are changed. The obtained results can be used 

for design of orthodontic appliances with the Hyrax screw, as well as for planning of 

osteotomies during the surgical assistance of the rapid maxillary expansion. 
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1. INTRODUCTION 

Cross bite is the most common transversal anomaly of the dentition interposition 

requiring a prolonged active treatment. Its frequent cause is violation of maxilla growth, 

reduced chewing function or chewing on one side, as well as congenital cleft palate. 

Among the defects of the craniofacial complex and maxilla, according to the World Health 

Organization, the congenital cleft of the lip and the palate are dominant. Rapid maxillary 

expansion (RME) is one of the treatment stages of transversal discrepancy of maxilla. Fixed 

orthodontic devices (appliances), such as devices with the Hyrax screw or palatal distractors 

are recommended for the RME [2, 18]. Among various types of orthodontic appliances the 

most hygienic ones are Hyrax devices. Moreover, devices of this type are less traumatic 

and more comfortable for the patients besides having a low incidence of complications 

after application. At the same time, the design features of the orthodontic appliances for 

RME, including Hyrax devices, significantly affect the intensity and nature of motions of 

the skull bone structures and teeth [8, 9, 19, 23]. 

The finite-element (FE) modeling is the main approach to understanding the influence 

of RME on the loads distribution in the cranium. The FE analysis of the orthodontic loads 

distributions during RME of the craniofacial complex without palate cleft was performed 

in [3, 6, 7, 10-13, 17]. An extensive review of the FE calculations of stresses and displacements 

of the maxillary complex under the action of different types of the orthodontic appliances 

was carried out in the recent study [13]. It should be noted that the common simplifying 

assumption adopted in the above-mentioned studies and other similar research projects is a 

simulation of the orthodontic appliance impact on the skull bone structures and teeth by 

means of the application of transversal displacements or forces to the anchor teeth. The 

FE analysis of RME effect on skull with the unilateral cleft palate was carried out in [16]. 

In this study the distributions of transversal forces in the craniofacial complex with the 

unilateral palate cleft were evaluated as well as their influence on the displacements of the 

naso-maxillary bones. To simulate the clinical situation the displacements of 5 mm in 

transversal plane to the maxilla premolars and first molars were applied. Assessment of 

the RME impact for patients with unilateral cleft palate using the FE method was performed 

in [4]. This study was a preliminary step in the development of surgical techniques for RME 

assistance. In accordance with [4], for effective RME of the skull with unilateral cleft the 

osteotomy of the median palatal suture and of the lateral buttress is usually required for an 

effective maxillary expansion. The FE biomechanical analysis of the RME effect on the 

craniofacial complex in patients with unilateral cleft lip and palate was carried out in [21]. It 

is assumed that the orthodontic device is a rigid body [21]. To simulate the clinical situation 

the symmetrical displacements of the anchor teeth corresponding to a certain number of the 

orthodontic devices the screw turns were employed in [21]. In [21], it was noted that the 

similar simplifying assumptions were assumed in other analogous studies [10, 11, 17]. In 

[21] the FE evaluations of stresses were carried out without regard to the periodontal 

ligament, since due to the action of orthodontic appliance the anchor teeth completely 

overlay the periodontal gap. One of the conclusions of [21] was that the magnitudes of 

displacements on the normal side of skull are different from those on the skull side with 

the palate cleft. In accordance with [21] this may be caused by an asymmetrical disposition 

of the skull bone structures. One of the few FE studies on the comparative analysis of the 

stress distributions in the skull without cleft, in the skull with unilateral cleft and with 
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bilateral cleft is [5]. In [5] action of the orthodontic appliance Quad-Helix on the maxilla 

was simulated without periodontal ligament. According to [5], the smallest expansion is 

observed between the control points for the skull without palate cleft, and the difference 

between the stress distributions in the skull without cleft and in the skull with cleft 

(unilateral or bilateral) during RME is quite substantial. 

The aim of this study is a comparative analysis of the stresses patterns and displacements 

of bone structures for the skull without palate cleft and for the skulls with unilateral and 

bilateral palate cleft after activation of the Hyrax orthodontic device during RME. The feature 

of the present study is that the orthodontic device is a deformable rod construction with 

different dispositions of the screw relative to the palate. Therefore, another objective is to 

evaluate the effect of the screw location on the stresses and displacements distributions in the 

craniofacial complex with and without palate cleft. FE method was used to reach these goals. 

2. FE MODELING OF MAXILLARY EXPANSION 

2.1. Solid models of skull, Hyrax device and anchor teeth 

Stereolithography (STL) model of the skull is developed using MIMICS 14.12 

(Materialise BV, Leuven, Belgium) on the basis of 210 tomographic images of the dry 

cadaveric intact skull of an adult with a well-preserved alveolar bone and teeth. Models of 

the first and the second upper premolars (14, 15 and 24, 25 teeth), and the permanent 

molars (16 and 26 teeth) are also generated based on the tomographic data. Model of 

Hyrax orthodontic device is developed via SolidWorks 2010 (SolidWorks Corporation, 

USA). Four rods of orthodontic device are affixed to the plates with screw and to the 

crowns; another two rods are affixed to the crowns and are impacted on the second 

premolars (15 and 25 teeth). Simulation of the periodontal ligament is not carried out since 

the periodontal ligament has almost no effect on the stresses distribution in the craniofacial 

bones [22]. Cranium sutures are not accounted in the FE model. This is because in the adult 

human skull the sutures are partially or fully ossified [1]. 

2.2. Boundary conditions. Geometrical and material parameters 

The FE skull model is fixed in the nodes located around of the foramen magnum [10, 

13, 17]. Displacement of each plate of the orthodontic device is directed only transversely 

(along x-axis). Boundary conditions are indicated in Fig. 1. 

Two constructions of the orthodontic device are considered: construction with disposition 

of rods and screws in a single horizontal (occlusal) plane (Model 1); construction with plates 

and screw shifted closer to the palate relative to the horizontal plane on 8 mm (Model 2). 

The geometrical dimensions of the orthodontic devices are identical, with the exception of 

lengths of the rods fastening the plates with first premolars and molars. Models 1 and 2 are 

fixed on the anchor teeth of the skull without cleft (SWC), on the skull with a unilateral cleft 

(SULC) and on the skull with bilateral cleft (SBLC). Elastic properties of materials for 

orthodontic device, skull bones and teeth are given in Table 1. 
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Table 1 Mechanical properties of the materials 

Material Elastic modulus, GPa Poisson’s ratio 

Steel (orthodontic device) 200.0 0.3 

Cortical bone [20] 13.7 0.3 

Trabecular bone [20] 8.0 0.3 

Teeth [20] 20.7 0.3 

 

Fig. 1 Boundary conditions for the FE skull model (A is front view, B is view from below): 

the boundary conditions, marked by A and C correspond to displacements of 

orthodontic device plates in transversal direction (along the x-axis); boundary 

condition, marked by B corresponds to skull fixing in nodes around foramen magnum 

The lengths of the rods for Models 1 and 2 between the device plates and the crowns 

vary from 8.15 mm to 11.05 mm and 12.20 mm and 16.45 mm, respectively. The length 

and width of the plates for Models 1 and 2 are 10.0 mm and 4.0 mm, respectively; the 

cross-sectional radius of the rods is equal to 1.0 mm, thickness of crowns is 0.2 mm. 

2.3. Parameters of FE models 

The FE models of the skull are developed after processing the STL-model in 3-matic 

6.1 MIMICS. Discrete skull model is converted via FE Modeler of ANSYS 

Workbench14 (ANSYS Inc., USA). FE meshing is made in automatic mode (Solid72 type 

elements are used). The number of elements and nodes for the FE models of skulls, 

anchor teeth and orthodontic devices are given in Table 2. 

Table 2 Parameters of the FE models  

Model Node number Element number 

SWC 77036 185302 

SULC 24556 85087 

SBLC 24494 85138 

Model 1 15918 7798 

Model 2 16410 8022 
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Contacts between the crowns and the teeth, as well as between the maxilla and the 

teeth are 'Bonded' type without sliding and mutual penetration. 

3. FE ANALYSIS OF CRANIOFACIAL STRESSES 

The FE analysis of stresses (von Mises) and displacements for SWC, SULC and 

SBLC is carried out after activations of Models 1 and 2 by means of the transversal 

displacements of the orthodontic device plates. Transversal displacement of each plate of 

Models 1 and 2 is 0.2 mm (corresponding to the activation of the orthodontic device 

screw on a quarter turn [2, 8, 15]). 

3.1. Skull without cleft 

The stress patterns in SWC after activations of Models 1 and 2 are depicted in Figs. 2 

and 3, respectively. In Figs. 2-7 the magnitudes of stresses are given in MPa. 

Fig. 2 shows that the sufficient stresses in SWC after activation of Model 1 appear 

mostly in the maxilla. High stresses occur in the middle and bottom of the nasal cavity 

and the bottom of the left orbit. The stresses near only one orbit can be explained by the 

asymmetry of the craniofacial complex and asymmetric disposition of points of rods 

fixing on the crowns. The higher stresses in the left infraorbital foramen in comparison 

with the right one (see Fig. 2, A) are also obviously caused by this asymmetry. 

 

Fig. 2 Stress patterns in SWC after activation of Model 1:  

А is pattern in front of skull; В is pattern in base of skull 

Stress distribution in SWC after activation of Model 2 significantly changes when 

compared to Model 1. Fig. 3 shows that the maxilla is loaded partially and the highest 

stresses are reduced approximately to 16.10 MPa. The region with nonzero stresses in the 

anterior part of SWC after activation of Model 2 displaces from the maxilla to the nasal 

cavity and zygomatic process. In the median palatine suture region there are almost no 

stresses; they only appear in the incisive bone (see Fig. 3, B). At the same time, the 

stresses are observed in the occipital bone near the foramen magnum and in the pterygoid 

plate, but almost no stresses exist in the median palatine suture. 
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Fig. 3 Stress patterns in SWC after activation of Model 2: 

А is pattern in the front of the skull; В is pattern in the base of the skull 

The highest stresses in SWC after activation both of Models 1 and 2 occur in the 

alveolar bone surrounding the anchor teeth (see Figs. 2, B and 3, B). Nonzero stresses also 

appear in the zygomatic arches after activation of Models 1 or 2. If the screw of the 

orthodontic device is displaced to the palate, the region with nonzero stresses of the 

zygomatic arches increases. 

3.2. Skull with unilateral cleft 

The palate cleft is complete and passes on the level of second maxilla incisor. Figs. 4 

and 5 depict the stresses patterns in SULC after activations of Models 1 and 2, 

respectively. 

 

Fig. 4 Stress patterns in SULC after activation of Model 1:  

А is pattern in front of skull; В is pattern in base of skull 

Fig. 4 shows that after activation of Model 1 high stresses occur in the maxilla bone, 

particularly in the zygomatic processes of the maxilla below the infraorbital foramen. 
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High stresses appear in the regions of the nasal cavity and orbits, in the bone of frontal 

process of the maxilla on the cleft side, in the nasal bones as well as in the regions of the 

fronto-nasal, inter-nasal and inter-nasal-maxillary sutures. The high stresses in the base of 

the skull are distributed through the lateral and medial pterygoid plate to the pharyngeal 

tubercle. Stresses also occur in the region surrounding the silcus of the auditory tube. This 

indicates that the RME can have a significant impact on the increase of the nasal cavity 

dimension and improve nasal breathing [1, 11, 12, 16, 23] just as it leads to changes of 

the auditory conductivity in patients with cleft palate. The short-term and long-term 

impacts of maxillary expansion on the auditory conduction are described in [14]. 

 

Fig. 5 Stress patterns in SULC after activation of Model 2: 

А is pattern in front of skull; В is pattern in base of skull 

Figs. 4 and 5 indicate that the stresses patterns in the anterior part of SULC slightly 

differ after activations of Models 1 and 2. However, the maximum stresses in SULC after 

the activation of Model 2 are significantly lower than the maximum stresses in SULC after 

activation of Model 1. At the same time, high stresses occur in the zygomatic process after 

activation of both Models 1 and 2. Significant stresses appear at the skull base in the 

foramen magnum region after activation of Model 2 (see Fig. 5, B). In the palatal region of 

the maxilla after activations of Models 1 and 2 there are almost no stresses, with the 

exception of small regions of the alveolar processes. 

3.3. Skull with bilateral cleft 

The bilateral palate cleft is complete and passes at the level of the second maxilla 

incisors on the left and the right sides of the skull. Figs. 6 and 7 depict the stresses 

patterns in SBLC after activations of Models 1 and 2. 

It is seen from Fig. 6, A and Fig. 7, B, the stresses patterns in the anterior part of SBLC 

after activations of Models 1 and 2 are almost the same. At the same time, the magnitudes of 

stresses in SBLC vary significantly in dependence on Model 1 or Model 2. After activation 

of Model 1 the maximum stresses are approximately equal to 24.0 MPa, while after 

activation of Model 2 the maximum stresses are approximately equal to 1.55 MPa. The 

highest stresses in SBLC after activations of Models 1 and 2 are observed in the zygomatic 
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and alveolar processes of the maxilla and in the zygomatic bone. Also, the high stresses in 

SBLC compared with SWC and SULC after activation of Model 1 occur in the sphenoid 

and nasal bones, as well as in the frontal processes of the maxilla. 

 

Fig. 6 Stress patterns in SBLC after activation of Model 1: 

А is pattern in front of skull; В is pattern in base of skull 

 

Fig. 7 Stress patterns in SBLC after activation of Model 2: 

А is pattern in front of skull; В is pattern in base of skull 

The stress patterns are almost the same in the base of SBLC after activation of Models 

1 or 2 (see Fig. 6, B and Fig. 7, B). However, the region with the nonzero stresses of the 

pharyngeal tubercle is larger after activation of Model 2 compared with Model 1. The 

magnitudes of the stresses in SBLC after activation of Model 2 (maximal stresses 

approximately are 1.21 MPa, see Fig. 7, B) are significantly less than the stresses in 

SBLC after activation of Model 1 (maximal stresses approximately equal to 16.0 MPa, 

see Fig. 6, B). 
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4. FE ANALYSIS OF DISPLACEMENTS 

4.1. Intact skull 

The vector fields of the total displacements and the distributions of displacements 

along the coordinate axes for SWC points after activations of Models 1 and 2 are depicted 

in Figs. 8 and 9. Displacements along the x-, y- and z-axes are the transversal, sagittal and 

vertical displacements, respectively. The magnitudes of displacements in Figs. 8-13 are 

given in mm. 

 

Fig. 8 Displacements of SWC points after activation of Model 1: A is vector field of total 

displacements; B is distribution of transversal displacements; C is distribution of 

sagittal displacements; D is distribution of vertical displacements 

It is seen from Fig. 8 that the two maxilla halves after activation of Model 1 turn 

relative to the horizontal axis passing approximately through the nasal aperture region and 

parallel to the y-axis. The highest components of the total displacements are transversal 

and vertical displacements (see Fig. 8, B and D). The vertical displacements of SWC 
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points in the region of the anterior incisors and nasal aperture are directed downwards, 

while the displacements of rest of the skull are directed upwards. 

The sagittal displacements of SWC points after activation of Model 1 are the smallest of 

the three components of total displacements (see Fig. 8, C). The upper part of SWC and 

anterior region of the maxilla after the activation of Model 1 are moved backwards in the 

horizontal direction, while the rest of the maxilla and zygomatic arches slightly moves 

forwards. 

It is seen from Fig. 9 that the total displacement of SWC points after activation of Model 2 

are directed, basically, along z-axis so that the anterior part of SWC is moved downwards, 

while the posterior part of SWC is moved upwards, which leads to rotation of SWC 

counterclockwise (relative to the positive direction z-axis). This conclusion is confirmed by the 

distribution of vertical displacements (see Fig. 9, D). Fig. 9, A and Fig. 9, D indicate that the 

maximal (in absolute value) vertical displacements of SWC points after activation of Model 2 

are directed downwards in the anterior part. Such direction of the vertical displacements 

corresponds to the distribution of the sagittal displacements (see Fig. 9, C). The displacements 

distributions in Fig. 9 show that SWC after activation of Model 2 is rotated relative a horizontal 

axis without passing through the cranium itself. Axis of SWC rotation is located in the region of 

the foramen magnum and pharyngeal tubercle and parallel to the x-axis. 

4.2. Skull with unilateral cleft 

The vector field of the total displacements and distributions of the transversal, sagittal 

and vertical displacements of SULC points after activation of Models 1 and 2 are shown 

in Figs. 10 and 11. 

Fig. 10, A and Fig. 10, B show that the transversal displacements are the largest components 

of SULC total displacements after activation of Model 1. The vector field of the total 

displacements and the transversal displacements distribution are almost symmetrical (see 

Fig. 10, A and Fig. 10, B). For instance, the highest magnitudes of oppositely directed 

transversal displacements are approximately equal to 0.204 mm and 2.0 mm respectively. 

Fig. 10, C and Fig. 10, D show that the distributions of the sagittal and vertical displacements of 

SULC points after activation of Model 1 are almost symmetrical as well. The maximum values 

of these displacements differ slightly. Distribution of sagittal displacement shows that the 

frontal bone deflects backwards, while the maxillary region containing the inter-maxillary 

suture and the cleft is moved forwards (see Fig. 9, C). The vertical displacements of SULC 

anterior part are directed upwards, while the displacements the points on SULC posterior 

part are directed downwards (see Fig. 10, D). The largest vertical displacements are 

observed for points of the zygomatic processes and the zygomatic bones. 

The maximal total displacement of SULC points after activation of Model 2 and 

Model 1 (see Fig. 10, A and Fig. 11, A) are almost the same. However, basically, the total 

displacements of SULC points after activation of Model 2 are directed downwards unlike 

the directions of the total displacements of SULC points after activation of Model 1. 
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Fig. 9 Displacements of SULC points after activation of Model 2: A is vector field of total 

displacements; B is distribution of transversal displacements; C is distribution of 

sagittal displacements; D is distribution of vertical displacements 

After activation of Model 2 the maximal transversal displacements (in dependence on 

direction) are equal to 0.0684 mm and 0.0536 mm (see Fig. 11, B), which is significantly 

less than the maximal transversal displacements of SULC points after activation of Model 

1. Distributions of sagittal displacement of SULC points after activation of Models 1 (Fig. 

10, C) and 2 (Fig. 11, C) significantly differ from each other. According to Fig. 11, C, the 

SULC anterior part is moved backwards while the bone structures of maxilla and 

zygomatic bone are moved forwards. The sagittal displacements direction of SULC points 

indicates its anti-clockwise rotation (from the positive direction of the x-axis). This is 

confirmed by the distribution of the vertical displacements (see Fig. 11, D). According to 

Fig. 11, D, the facial and occipital parts and of SULC are moved downwards and 

upwards, respectively. Considering symmetrical distribution of the sagittal and vertical 

displacements, it can be concluded that after activation of Model 2 SULC is rotated in yz-

plane relative horizontal axis located approximately above the foramen magnum and 

parallel to the x-axis. 
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Fig. 10 Displacements of SULC points after activation of Model 1: A is vector field of 

total displacements; B is distribution of transversal displacements; C is distribution 

of sagittal displacements; D is distribution of vertical displacements 

Note that the after activations of Models 1 and 2 the transversal displacements of 

SULC points on the side with cleft are larger than the displacements of the normal side. 

Distributions of the transversal displacements of SULC (see Fig. 10, B and Fig. 11, B) 

also indicate asymmetry of the cranium displacements. This is consistent with the results 

of the [16] that the displacements of side of the skull with cleft are larger than those of the 

normal side. 

4.3. Skull with bilateral cleft 

The vector field of the total displacements and distributions of the transversal, sagittal 

and vertical displacements in SBLC after activations Models 1 and 2 are shown in Figs. 

12 and 13. 
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Fig. 11 Displacements of SULC points after activation of Model 2: A is vector field of 

total displacements; B is distribution of transversal displacements; C is distribution 

of sagittal displacements; D is distribution of vertical displacements 

It is seen from Figs. 12, A and 13, A, that the directions of total displacements of SBLC 

points are almost identical after activations of both Models 1 and 2, while the magnitudes of 

the total displacements for these two cases are significantly different. The maximal 

component of the total displacement after activations of Models 1 and 2 is transversal. The 

region of SBLC with the inter-maxillary suture does not move in the horizontal direction 

after activation of Model 1. The transversal displacements of this region after activation of 

Model 2 are very small (see Fig. 13, B). Sagittal and vertical displacements of SBLC points 

are significantly less than transversal displacements after activation of Models 1 and 2. 

Directions of the sagittal and vertical displacements indicate that there is a slight 

rotation of SBLC in yz-plane clockwise (relative to the positive direction of the x-axis); 

the angle of SBLC rotation is larger after activation of Model 1 compared with Model 2. 

The SBLC rotation axis after activation of Model 2 is located in the foramen magnum 

region, and it is slightly displaced towards the occipital bone. 
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Fig. 12 Displacements of SBLC points after activation of Model 1: A is vector field of 

total displacements; B is distribution of transversal displacements; C is distribution 

of sagittal displacements; D is distribution of vertical displacements 

5. DISCUSSION 

Higher stresses in SWC, SULC SBLC occur after activation of Model 1 compared 

with Model 2. The smallest difference (in 1.86 times) between stresses after activations of 

Models 1 and 2 is observed in SULC. The highest difference (in 15.5 times) between the 

stresses is in SBLC after activations of Models 1 and 2. It should be noted that very low 

stresses appear in SBLC after activation of Model 2 (maximal magnitude of stresses is 

equal to 1.55 MPa). 

The obtained results indicate that the regions of maximal stresses in SWC, SULC and 

SBLC, regardless of the orthodontic device model, occur in the alveolar processes of the 

maxilla and in the zygomatic bone (except SWC after activation of Model 2). Displacement 

of the orthodontic device screw to the palate leads to redistribution of stresses in SWC from 

the maxilla to the nasal cavity and to the foramen magnum. The most complicated 

distribution of stresses is observed in SULC after the activation of Models 1 and 2. In these 
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cases, sufficiently high stresses propagate to many bone structures. Following displacement 

of the orthodontic device screw to the palate, the stresses in SWC and SULC are transferred 

to the foramen magnum and the pharyngeal tubercle. The orthodontic device construction 

has almost no effect on the stresses distribution in SBLC bone structures. Stresses in the 

sphenoid bone occur in SULC as well as in SBLC after activation of Model 2. This indicates 

the expediency of the osteotomy for reducing of resistance of the sphenoid bone (and the 

sphenoid plate) during RME. 

 

Fig. 13 Displacements of SBLC points after activation of Model 2: A is vector field of 

total displacements; B is distribution of transversal displacements; C is distribution 

of sagittal displacements; D is distribution of vertical displacements 

Displacements of SBLC and SWC points after activation of Model 1 are some of the 

smallest. The highest total displacements are observed in SBLC after activation of Model 

1. Also, the high displacements of SWC points are observed after activation of Model 2. 

The maximal displacements of SULC points are approximately the same after activations 

of both Models 1 and 2. At the same time, the transversal displacements of SWC points 

after activation of Model 1 can reach more than 91% of its total displacement, and 95% of 

the total displacements of SULC and the SBLC. The highest transversal, sagittal and 
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vertical displacements are 11%, 92% and 97% of the maximal total displacements, 

respectively. This indicates that SWC moves forwards and downwards after the activation 

of Model 2. Similar ratios (13%, 74%, and 92%) between the maximal transversal, sagittal, 

vertical displacements and maximal total displacements of SULC points are observed after 

activation of Model 2. SBLC points displace significantly in the transversal direction after 

activations of Models 1 and 2. Magnitudes of the transversal displacement of some SBLC 

points coincide with the total displacement of the same points; the highest sagittal and 

vertical displacements are not more than 5% of the maximum total displacements. 
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