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Abstract

The dynamics of isolated-photon plus one-, two- and three-jet production in pp collisions at a centre-of-
mass energy of 8 TeV are studied with the ATLAS detector at the LHC using a data set with an integrated 
luminosity of 20.2 fb−1. Measurements of isolated-photon plus jets cross sections are presented as func-
tions of the photon and jet transverse momenta. The cross sections as functions of the azimuthal angle 
between the photon and the jets, the azimuthal angle between the jets, the photon–jet invariant mass and 
the scattering angle in the photon–jet centre-of-mass system are presented. The pattern of QCD radiation 
around the photon and the leading jet is investigated by measuring jet production in an annular region cen-
tred on each object; enhancements are observed around the leading jet with respect to the photon in the 
directions towards the beams. The experimental measurements are compared to several different theoretical 
calculations, and overall a good description of the data is found.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The production of prompt photons in association with jets in proton–proton collisions, 
pp → γ + jets + X, provides a testing ground for perturbative QCD (pQCD) with a hard colour-
less probe less affected by hadronisation effects than jet production. The measurements of the 
angular correlations between the photon and the jets can be used to probe the dynamics of the 
hard-scattering process. Since the dominant production mechanism in pp collisions at the Large 
Hadron Collider (LHC) proceeds via the qg → qγ process, measurements of prompt-photon 
plus jet production are useful in constraining the gluon density in the proton [1,2]. These mea-

� E-mail address: atlas.publications@cern.ch.
http://dx.doi.org/10.1016/j.nuclphysb.2017.03.006
0550-3213/© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.nuclphysb.2017.03.006
http://www.elsevier.com/locate/nuclphysb
http://creativecommons.org/licenses/by/4.0/
mailto:atlas.publications@cern.ch
http://dx.doi.org/10.1016/j.nuclphysb.2017.03.006
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nuclphysb.2017.03.006&domain=pdf


258 The ATLAS Collaboration / Nuclear Physics B 918 (2017) 257–316
surements can also be used to tune the Monte Carlo (MC) models and to test t -channel quark 
exchange [3].

At leading order (LO) in pQCD, the reaction pp → γ + jet + X is understood to proceed via 
two separate production mechanisms: direct photons (D), which originate from the hard process, 
and fragmentation photons (F), which arise from the fragmentation of a coloured, high transverse 
momentum (pT) parton [4,5]. The direct and fragmentation contributions are only well defined 
at LO; at higher orders such distinction is no longer possible. Measurements of prompt-photon 
production in a final state with accompanying hadrons require isolation of photons to avoid the 
large contribution from neutral-hadron decays into photons. The production of inclusive isolated 
photons in pp collisions was studied by the ATLAS [6–9] and CMS [10,11] collaborations. The 
cross section for isolated photons in association with jets as a function of the photon transverse 
energy1 (Eγ

T ) in different regions of rapidity of the highest-pT jet was measured by ATLAS [12]. 
The production of isolated photons in association with jets was also measured by CMS [13–15].

The dynamics of the underlying processes in 2 → 2 hard scattering can be investigated using 
the variable θ∗, where cos θ∗ ≡ tanh(�y/2) and �y is the difference between the rapidities of the 
two final-state particles. The variable θ∗ coincides with the scattering angle in the centre-of-mass 
frame for collinear scattering of massless particles, and its distribution is sensitive to the spin of 
the exchanged particle. For processes dominated by t -channel gluon exchange, such as dijet 
production in pp collisions, the cross section behaves as (1 −| cos θ∗|)−2 when | cos θ∗| → 1. In 
contrast, processes dominated by t -channel quark exchange, such as W/Z + jet production, are 
expected to have an asymptotic (1 − | cos θ∗|)−1 behaviour. This prediction from QCD can be 
tested in photon plus jet production in high-energy hadron–hadron collisions. The direct-photon 
contribution, as shown in Fig. 1(a), is expected to exhibit a (1 − | cos θ∗|)−1 dependence when 
| cos θ∗| → 1, whereas that of fragmentation processes, as shown in Fig. 1(b), is predicted to 
be the same as in dijet production, namely (1 − | cos θ∗|)−2. For both processes, there are also 
s-channel contributions which are, however, non-singular when | cosθ∗| → 1. At higher orders, 
direct processes such as qq → qqγ are dominated by t -channel gluon exchange and contribute 
to the distribution in | cosθ∗| with a component similar to that of fragmentation. However, a 
measurement of the cross section for prompt-photon plus jet production as a function of | cosθ∗|
is still sensitive to the relative contributions of the direct and fragmentation components and 
allows a test of the dominance of the t -channel quark exchange, such as that shown in Fig. 1(a).

Colour connection between the partons in the initial and final states modifies the pattern of 
QCD radiation around the final-state partons. Colour-coherence effects were studied at the Teva-
tron [16,17] using dijet events by comparing the measurements with predictions with and without 
such effects. Photon plus two-jet events are optimal for investigating jet production around the 
photon and the highest-pT jet: the partons are colour-connected while the photon is colourless.

The results presented in this paper include measurements of cross sections for isolated-photon 
plus one-, two- and three-jet final states as functions of Eγ

T and the transverse momentum of 

the leading jet (jet1, pjet1
T ), the second-highest-pT jet (jet2, pjet2

T ) and the third-highest-pT jet 

(jet3, pjet3
T ) [5,18–20]. The analysis is performed using a dataset with an integrated luminosity 

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the 
detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis 
points upwards. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the 
z-axis. The pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2). Angular distance is measured in 
units of �R ≡

√
(�η)2 + (�φ)2. The rapidity is defined as y = 0.5 ln[(E + pz)/(E − pz)], where E is the energy and 

pz is the z-component of the momentum, and transverse energy is defined as ET = E sin θ .
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Fig. 1. Examples of diagrams for (a) γ + jet production through direct-photon processes and (b) γ + jet production 
through fragmentation processes.

of 20.2 fb−1 of pp collisions at 
√

s = 8 TeV. The dynamics of the photon plus one-jet system 
are studied by measuring the photon–jet invariant mass (mγ−jet1) and cos θ∗ [5]. In addition, 
the azimuthal angles between the photon and each jet (�φγ−jet2, �φγ−jet3) and between the 
jets (�φjet1–jet2, �φjet1–jet3, �φjet2–jet3) are measured for photon plus two- and three-jet events 
[19,20]. The production of jet2 around the photon and jet1 is measured separately to investigate 
the differences between the two configurations. The scale evolution of the photon plus one-jet 
system is studied by measuring the cross sections as functions of cosθ∗ in different regions of 
mγ−jet1. For photon plus two- and three-jet events, the scale evolution is investigated by measur-
ing the angular correlations in different regions of Eγ

T .
The predictions from the event generators PYTHIA [21] and SHERPA [22] are compared with 

the measurements. The next-to-leading-order (NLO) QCD predictions from JETPHOX [23,24]
are compared with the photon plus one-jet measurements, whereas those from BLACKHAT [25,
26] are compared with the photon plus two-jet and photon plus three-jet measurements.

2. The ATLAS detector

The ATLAS detector [27] at the LHC covers nearly the entire solid angle around the collision 
point. It consists of an inner tracking detector surrounded by a thin superconducting solenoid, 
electromagnetic and hadronic calorimeters, and a muon spectrometer incorporating three large 
superconducting toroidal magnets.

The inner-detector system (ID) is immersed in a 2 T axial magnetic field and provides charged-
particle tracking in the range |η| < 2.5. A high-granularity silicon pixel detector covers the 
interaction region and typically provides three measurements per track. It is followed by a silicon 
microstrip tracker, which provides eight two-dimensional measurement points per track. These 
silicon detectors are complemented by a transition radiation tracker, which enables radially ex-
tended track reconstruction up to |η| = 2.0. The transition radiation tracker also provides electron 
identification information based on the fraction of the typically 30 total hits which are above a 
higher energy-deposit threshold corresponding to transition radiation.

The calorimeter system covers the pseudorapidity range |η| < 4.9. Within the region |η| < 3.2, 
electromagnetic calorimetry is provided by barrel and endcap high-granularity lead/liquid-argon 
(LAr) electromagnetic calorimeters, with an additional thin LAr presampler covering |η| < 1.8 to 
correct for energy loss in material upstream of the calorimeters; for |η| < 2.5 the LAr calorimeter 
is divided into three layers in depth, which are finely segmented in η and φ. Hadronic calorimetry 
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is provided by a steel/scintillator-tile calorimeter, segmented into three barrel structures within 
|η| < 1.7, and two copper/LAr hadronic endcap calorimeters, which cover 1.5 < |η| < 3.2. The 
solid angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeter mod-
ules optimised for electromagnetic and hadronic measurements, respectively.

The muon spectrometer (MS) comprises separate trigger and high-precision tracking cham-
bers measuring the deflection of muons in a magnetic field generated by superconducting air-core 
toroids. The tracking chamber system covers the region |η| < 2.7 with three layers of monitored 
drift tubes, complemented by cathode-strip chambers in the forward region. The muon trigger 
system covers the range |η| < 2.4 with resistive-plate chambers in the barrel and thin-gap cham-
bers in the endcap regions.

A three-level trigger system is used to select interesting events [28]. The level-1 trigger is 
implemented in hardware and uses a subset of detector information to reduce the event rate to 
at most 75 kHz. This is followed by two software-based trigger levels which together reduce the 
event rate to about 400 Hz.

3. Data selection

The data used in this analysis were collected during the proton–proton collision running pe-
riod of 2012, when the LHC operated at a centre-of-mass energy of 

√
s = 8 TeV. Only events 

taken in stable beam conditions and passing detector and data-quality requirements are con-
sidered. Events were recorded using a single-photon trigger, with a nominal transverse energy 
threshold of 120 GeV; this trigger is used offline to select events in which the photon transverse 
energy, after reconstruction and calibration, is greater than 130 GeV. For isolated photons with 
E

γ
T > 130 GeV and pseudorapidity |ηγ | < 2.37 the trigger efficiency is higher than 99.8%. The 

integrated luminosity of the collected sample is 20.2 ± 0.4 fb−1 [29].
The sample of isolated-photon plus jets events is selected using offline criteria similar to those 

reported in previous publications [3,9]. Events are required to have a reconstructed primary ver-
tex consistent with the average beam-spot position, with at least two associated charged-particle 
tracks with pT > 400 MeV. If more than one such vertex is present in the event, the one with the 
highest sum of the p2

T of the associated tracks is selected as the primary vertex.
During the 2012 data-taking period there were on average 19 proton–proton interactions per 

bunch crossing. The methods used to mitigate the effects of the additional pp interactions (pile-
up) on the photon isolation and jet reconstruction are described below.

3.1. Photon selection

The selection of photon candidates is based on energy clusters reconstructed in the elec-
tromagnetic calorimeter with transverse energies exceeding 2.5 GeV. The clusters matched to 
charged-particle tracks, based on the distance in (η, φ) between the cluster barycentre and the 
track impact point extrapolated to the second layer of the LAr calorimeter, are classified as elec-
tron candidates. Those clusters without matching tracks are classified as unconverted photon 
candidates, and clusters matched to pairs of tracks originating from reconstructed conversion 
vertices in the inner detector or to single tracks with no hit in the innermost layer of the pixel de-
tector are classified as converted photon candidates [30]. From MC simulations, 96% of prompt 
photons with Eγ

T > 25 GeV are expected to be reconstructed as photon candidates, while the 
remaining 4% are incorrectly reconstructed as electrons but not as photons. The efficiency to 
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reconstruct photon conversions decreases at high Eγ
T (>150 GeV), where it becomes more dif-

ficult to separate the two tracks from the conversions. Such conversions with very nearby tracks 
are often not recovered as single-track conversions because of the tighter selections applied to 
single-track conversion candidates. The overall photon reconstruction efficiency is thus reduced 
to about 90% for Eγ

T ∼ 1 TeV [30].
The energy measurement is performed using calorimeter and tracking information. A dedi-

cated energy calibration [31] is applied separately for converted and unconverted photon candi-
dates to account for upstream energy loss and both lateral and longitudinal leakage.

The direction of the photon is determined from the barycentre of the energy cluster in the 
electromagnetic calorimeter and the position of the primary vertex. Events with at least one pho-
ton candidate with calibrated Eγ

T > 130 GeV and |ηγ | < 2.37 are selected; candidates in the 
region 1.37 < |ηγ | < 1.56, which includes the transition region between the barrel and endcap 
calorimeters, are not considered. The same shower-shape and isolation requirements as described 
in previous publications [6,7,9,12,30] are applied to the candidates; these requirements are re-
ferred to as “tight” identification criteria. The photon identification efficiency for Eγ

T > 130 GeV
varies in the range (94–100)% depending on ηγ and whether the candidate is classified as an 
unconverted or converted photon [30].

The photon candidate is required to be isolated based on the amount of transverse energy in 
a cone of size �R = 0.4 around the photon. The isolation transverse energy is computed from 
three-dimensional topological clusters of calorimeter cells (see Section 3.3) [32] and is denoted 
by Eiso

T,det. The measured value of Eiso
T,det is corrected for leakage of the photon’s energy into the 

isolation cone and the estimated contributions from the underlying event and pile-up. The latter 
correction is performed using the jet-area method [33] to estimate the ambient transverse energy 
density on an event-by-event basis; this estimate is used to subtract the joint contribution of the 
underlying event and pile-up to Eiso

T,det and amounts to 1.5–2 GeV in the 2012 data-taking period. 
After these corrections, Eiso

T,det is required to be lower than 4.8 GeV + 4.2 · 10−3 · Eγ
T [GeV] [9]; 

the requirement is Eγ
T -dependent so that in simulation the fraction of identified photons which 

are isolated stays high as Eγ
T increases. The isolation requirement significantly reduces the main 

background, which consists of multi-jet events where one jet typically contains a π0 or η meson 
that carries most of the jet energy and is misidentified as a prompt photon.

A small fraction of the events contain more than one photon candidate satisfying the selection 
criteria. In such events, the highest-Eγ

T photon is considered for further study.

3.2. Jet selection

Jets are reconstructed using the anti-kt algorithm [34] with radius parameter R = 0.6. The 
inputs to the jet reconstruction are three-dimensional topological clusters of calorimeter cells. 
This method first clusters topologically connected calorimeter cells and classifies these clusters 
as either electromagnetic or hadronic. The classification uses a local cluster weighting (LCW) 
calibration scheme based on cell-energy density and longitudinal depth within the calorime-
ter [35]. Based on this classification, energy corrections derived from single-pion MC simulations 
are applied. Dedicated corrections are derived for the effects of the non-compensating response 
of the calorimeter, signal losses due to noise-suppression threshold effects, and energy lost in 
non-instrumented regions. The jet four-momenta are computed from the sum of the topologi-
cal cluster four-momenta, treating each as a four-vector with zero mass. These jets are referred 
to as detector-level jets. The direction of the jet is then corrected such that the jet originates 
from the selected primary vertex of the event. Prior to the final calibration, the contribution from 
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the underlying event and pile-up is subtracted on a jet-by-jet basis using the jet-area method. 
An additional jet-energy calibration is derived from MC simulations as a correction relating the 
calorimeter response to the true jet energy. To determine these corrections, the jet reconstruc-
tion procedure applied to the topological clusters is also applied to the generated stable particles, 
which are defined as those with a lifetime τ longer than 10 ps, including muons and neutri-
nos; these jets are referred to as particle-level jets. In addition, sequential jet corrections, derived 
from MC simulated events and using global properties of the jet such as tracking information, 
calorimeter energy deposits and muon spectrometer information, are applied [36]. Finally, the 
detector-level jets are further calibrated with additional correction factors derived in situ from a 
combination of γ + jet, Z + jet and dijet balance methods [35,37].

Jets reconstructed from calorimeter signals not originating from a pp collision are rejected by 
applying jet-quality criteria [35,38]. These criteria suppress spurious jets from electronic noise in 
the calorimeter, cosmic rays and beam-related backgrounds. Remaining jets are required to have 
calibrated transverse momenta greater than 50 GeV and rapidity |yjet| < 4.4. Jets overlapping 
with the candidate photon are not considered if the jet axis lies within a cone of size �R = 1.0
around the photon candidate; this requirement prevents any overlap between the photon isolation 
cone (�R = 0.4) and the jet cone (�R = 0.6).

3.3. Event categorisation

To investigate the production of jets in association with a photon, six samples are selected; the 
requirements are listed in Table 1:

• “Photon plus one-jet sample” (P1J): it is used to study the major features of an inclusive 
sample of events with a photon and at least one jet. In this sample, jet1 is required to have 
p

jet1
T > 100 GeV; asymmetric requirements on Eγ

T and pjet1
T are applied to reduce the in-

frared sensitivity of the NLO QCD calculations [39].
• “Photon plus one-jet mγ−jet1 and cos θ∗ sample” (P1JM): for the measurements of the cross 

sections as functions of mγ−jet1 and | cos θ∗| additional constraints are needed to remove 
biases due to the rapidity and transverse momentum requirements on the photon and jet1 [3]. 
To perform unbiased measurements, the requirements |ηγ + yjet1| < 2.37, | cos θ∗| < 0.83
and mγ−jet1 > 467 GeV are applied.2 These selections define a kinematic region where the 
acceptance is independent of the variables being studied.

• “Photon plus two-jet sample” (P2J): it is used to study the major features of an inclusive sam-
ple of events with a photon and at least two jets and the azimuthal correlations between the 
photon and jet2 as well as between jet1 and jet2. Due to the resolution in pT the highest- and 
next-to-highest-pT particle-level jets can end up being reconstructed as jet2 and jet1, respec-
tively. To suppress such migrations, asymmetric requirements are applied: pjet1

T > 100 GeV

and pjet2
T > 65 GeV.

• “Photon plus three-jet sample” (P3J): it is used to investigate the major characteristics of an 
inclusive sample of events with a photon and at least three jets; in addition, measurements of 
the azimuthal correlations between the photon and jet3, jet1 and jet3, as well as between jet2 

2 The maximal (minimal) value of | cos θ∗| (mγ−jet1) for which the measurement is unbiased corresponds to 
tanh(2.37/2) (2 · Eγ

/ sin θ∗) with Eγ = 130 GeV and cos θ∗ = 0.83.
T T
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and jet3 are performed. Asymmetric requirements are applied to suppress the migrations in 
pT between the three highest-pT jets: pjet1

T > 100 GeV, pjet2
T > 65 GeV and pjet3

T > 50 GeV.

To compare the pattern of QCD radiation around the photon and jet1, two additional samples 
of photon plus two-jet events are selected. The phase-space regions are defined to avoid biases 
due to different pT and η requirements on the final-state objects as well as to have no overlap 
between the two samples. The following requirements are common to the two samples:

• The jets must satisfy pjet1
T > 130 GeV, |ηjet1| < 2.37 and pjet2

T > 50 GeV. The first two 
requirements are imposed to be the same as for the photon so as to compare additional jet 
production in similar regions of phase space. The third requirement is chosen to select jets 
with the lowest pT threshold, while suppressing the contribution from the underlying event 
and pile-up.

• The angular distance between the photon and jet1, �Rγ−jet1, is restricted to �Rγ−jet1 > 3
to avoid any overlap between the two samples and any bias within the regions that are used 
to study additional jet production.

The requirements specific to each of the two samples are listed below:

• “Photon plus two-jet βγ selection” (P2JBP): it is used to measure the production of jet2 
around the photon. The cross section is measured as a function of the observable βγ [16,17], 
which is defined as3

βγ = tan−1 |φjet2 − φγ |
sign(ηγ ) · (ηjet2 − ηγ )

. (1)

The phase space is restricted to 1 < �Rγ−jet2 < 1.5; the lower requirement avoids the over-
lap with the photon isolation cone while the upper requirement is the largest value which 
makes this sample and the next one non-overlapping. In addition, pjet2

T < E
γ
T is imposed for 

comparison with the other sample.
• “Photon plus two-jet β jet1 selection” (P2JBJ): it is used to measure the production of jet2 

around jet1 using the observable β jet1, defined as

β jet1 = tan−1 |φjet2 − φjet1|
sign(ηjet1) · (ηjet2 − ηjet1)

. (2)

To compare on equal footing with the measurement of the previous sample, the restriction 
1 < �Rjet1−jet2 < 1.5 is applied.

Schematic diagrams for the definitions of βγ and β jet1 are shown in Fig. 2. The variable βγ

(β jet1) is defined in such a way that βγ = 0 or π (β jet1 = 0 or π ) corresponds to a plane in space 
containing jet2, the beam axis and the photon (jet1); β = 0 (π ) always points to the beam which 
is closer to (farther from) the photon or jet1 in the η–φ plane.

3 In the definitions of βγ and βjet1, the arctangent function with two arguments is used to keep track of the proper 
quadrant.
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Fig. 2. Schematic diagrams that show the definitions of (a) βγ and (b) βjet1.

The number of selected events in data for each of the six samples is included in Table 1. 
The overlap between the different samples is as follows: (a) P3J is contained within P2J, which 
in turn is a subset of P1J; (b) P1JM is contained within P1J; (c) P2JBP and P2JBJ have no 
overlap.
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Table 1
Characteristics of the six samples of γ + jet(s) events: kinematic requirements, number of selected events in data and 
normalisation factors applied to the MC predictions.

Sample

P1J P1JM P2J P2JBP P2JBJ P3J

Common requirements E
γ
T > 130 GeV and |ηγ | < 2.37, excluding 1.37 < |ηγ | < 1.56

|yjet| < 4.4 and �Rγ−jet > 1

p
jet1
T [GeV] >100 >100 >100 >130 >130 >100

p
jet2
T [GeV] – – >65 >50 >50 >65

p
jet3
T [GeV] – – – – – >50

|ηγ + yjet1| – <2.37 – – – –
| cos θ∗| – <0.83 – – – –
mγ−jet1 [GeV] – >467 – – – –
�Rγ−jet1 – – – >3 >3 –
�Rγ−jet2 – – – 1 < �Rγ−jet2 < 1.5 – –
�Rjet1−jet2 – – – – 1 < �Rjet1−jet2 < 1.5 –
|ηjet1| – – – <2.37 <2.37 –

p
jet2
T ,E

γ
T – – – p

jet2
T < E

γ
T – –

Number of events 2 451 236 344 572 567 796 40 537 37 429 164 062

Normalisation 
factor SHERPA

(PYTHIA)

1.0 (1.1) 1.0 (1.2) 1.1 (1.2) 1.0 (1.2) 1.0 (1.2) 1.1 (1.1)

4. Monte Carlo simulations

Samples of MC events were generated to study the characteristics of signal events. The MC 
samples were also used to determine the response of the detector and the correction factors 
necessary to obtain the particle-level cross sections. In addition, these samples were used to 
estimate hadronisation corrections to the NLO QCD calculations.

The MC programs PYTHIA 8.165 [21] and SHERPA 1.4.0 [22] were used to generate the 
simulated events (see Table 2). In both generators, the partonic processes were simulated using 
LO matrix elements, with the inclusion of initial- and final-state parton showers. Fragmentation 
into hadrons was performed using the Lund string model [40] in the case of PYTHIA, and a 
modified version of the cluster model [41] in the case of SHERPA, for which it is the default 
treatment. The LO CTEQ6L1 [42] (NLO CT10 [43]) parton distribution functions (PDF) were 
used to parameterise the proton structure in PYTHIA (SHERPA). Both samples included a simu-
lation of the underlying event. The event generator parameters were set according to the “AU2 
CTEQ6L1” [44] tune for PYTHIA and the “CT10” tune for SHERPA. All samples of generated 
events were passed through the GEANT4-based [45] ATLAS detector- and trigger-simulation 
programs [46]. They were reconstructed and analysed by the same program chain as the data.

The PYTHIA simulation of the signal included LO photon plus jet events from both direct 
processes (the hard subprocesses qg → qγ and qq̄ → gγ , called “hard component”) and pho-
ton bremsstrahlung in QCD dijet events (called “brem component”). The SHERPA samples were 
generated with LO matrix elements for photon plus jet final states with up to three additional par-
tons, supplemented with parton showers. While the brem component was modelled in PYTHIA by 
final-state QED radiation arising from calculations of all 2 → 2 QCD processes, it was accounted 
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Table 2
The generators used for correcting the data are listed, together with their matrix elements, the PDF and the tunes.

Name Matrix elements PDF Tune

PYTHIA 8.165 2 → 2 LO CTEQ6L1 AU2 CTEQ6L1
SHERPA 1.4.0 2 → n, n = 2, ...,5 NLO CT10 CT10

for in SHERPA through the matrix elements of 2 → n processes with n ≥ 3; in the evaluation of 
the matrix elements the photon was required to be farther than �R = 0.3 from any parton.

All samples were simulated taking into account the effects of the pile-up appropriate for 
2012 data. The additional interactions were modelled by overlaying simulated hits from events 
with exactly one high momentum-transfer (signal) collision per bunch crossing with hits from 
minimum-bias events that were produced with the PYTHIA 8.160 program [21] using the A2M 
tune [44] and the MSTW2008 LO [47] PDF set.

Dedicated PYTHIA and SHERPA samples of events were generated at particle and parton lev-
els, switching off the mechanisms that account for the underlying event to correct the NLO 
calculations for hadronisation and underlying-event effects.

The particle-level isolation variable on the photon was built from the transverse energy of all 
stable particles, except for muons and neutrinos, in a cone of size �R = 0.4 around the photon 
direction after the contribution from the underlying event was subtracted; in this case, the same 
underlying-event subtraction procedure used on data was applied at the particle level. The iso-
lation transverse energy at particle level is denoted by Eiso

T,part. The particle-level requirement on 

Eiso
T,part was determined using the PYTHIA and SHERPA MC samples, by comparing the calorime-

ter isolation transverse energy with the particle-level isolation on an event-by-event basis. The 
effect of the experimental isolation requirement used in the data is close to a particle-level re-
quirement of Eiso

T,part < 10 GeV over the measured Eγ
T range. The measured cross sections refer 

to particle-level jets and photons that are isolated by requiring Eiso
T,part < 10 GeV.

The MC predictions at particle level are normalised to the measured integrated cross sections. 
The normalisation factors are applied globally for each sample defined in Section 3.3 and are 
listed in Table 1.

5. Signal extraction

5.1. Backgrounds

A non-negligible background contribution from jets remains in the selected sample, even after 
the application of the tight identification and isolation requirements on the photon. The back-
ground subtraction uses a data-driven method based on signal-suppressed control regions. The 
background contamination in the selected sample is estimated using the same two-dimensional 
sideband technique as in the previous analyses [3,6,7,9,12] and then subtracted bin-by-bin from 
the observed yield. In the two-dimensional plane formed by Eiso

T,det and the photon identification 
variable, four regions are defined:

• A: the “signal” region, containing tight isolated photon candidates.
• B: the “non-isolated” background control region, containing tight non-isolated photon can-

didates. A candidate photon is considered to be non-isolated if Eiso > (4.8 + 2) GeV +
T,det
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4.2 · 10−3 · Eγ
T [GeV]; the threshold is 2 GeV higher than the isolation requirement for the 

signal region.
• C: the “non-tight” background control region, containing isolated non-tight photon candi-

dates. A candidate photon is labelled as “non-tight” if it fails at least one among four of the 
tight requirements on the shower-shape variables computed from the energy deposits in the 
first layer of the electromagnetic calorimeter, but satisfies the tight requirement on the total 
lateral shower width [30] in the first layer and all the other tight identification criteria in other 
layers.

• D: the background control region containing non-isolated non-tight photon candidates.

The signal yield in region A, N sig
A , is estimated from the numbers of events in regions A, B , 

C and D and takes into account the expected number of signal events in the three background 
control regions via signal leakage fractions, which are extracted from MC simulations of the 
signal. The only hypothesis is that the isolation and identification variables are uncorrelated in 
background events, thus Rbg = (N

bg
A · Nbg

D )/(N
bg
B · Nbg

C ) = 1, where Nbg
K with K = A, B, C, D

is the number of background events in each region. This assumption is verified [9] both in simu-
lated background samples and in data in a background-dominated region. Deviations from unity 
are taken as systematic uncertainties (see Section 7). In addition, a systematic uncertainty is 
assigned to the modelling of the signal leakage fractions. Since the simulation does not accu-
rately describe the electromagnetic shower profiles, a correction factor for each simulated shape 
variable is applied to better match the data [6,7].

There is an additional background from electrons misidentified as photons, mainly produced 
in Z → e+e− and W → eν processes. Such misidentified electrons are largely suppressed by 
the photon selection. The remaining electron background is estimated using MC simulations and 
found to be negligible in the phase-space region of the analysis presented here.

5.2. Signal yield

The signal purity, defined as N sig
A /NA, is typically above 0.9 and is similar whether PYTHIA

or SHERPA is used to extract the signal leakage fractions. The signal purity increases as Eγ
T , pjet1

T
and mγ−jet1 increase and decreases as | cosθ∗| increases.

For most of the distributions studied, the shapes of the hard and brem components in the 
signal MC simulated by PYTHIA are somewhat different. Therefore, in each case, the shape of 
the total MC distribution depends on the relative fraction of the two contributions. To improve 
the description of the data by the PYTHIA MC samples, a fit [3] to each data distribution is 
performed with the weight of the hard contribution, α, as the free parameter; the weight of the 
brem contribution is given by 1 − α. The fitted values of α are in the range 0.26–0.86. After 
these fits, a good description of the data is obtained from the PYTHIA MC simulations for all the 
observables, except for the distributions in the azimuthal angle between the jets. The simulations 
of SHERPA give a good description of the data, except for the tail of the distributions in Eγ

T .
The integrated efficiency, including the effects of trigger, reconstruction, particle identification 

and event selection, is evaluated from the simulated signal samples described in Section 4. The 
integrated efficiency is computed as ε = Ndet,part/Npart, where Ndet,part is the number of MC 
events that pass all the selection requirements at both the detector and particle levels and Npart is 
the number of MC events that pass the selection requirements at the particle level. The integrated 
efficiency using SHERPA (PYTHIA) is found to be 81.3% (81.5%) for the photon plus one-jet, 
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74.6% (75.3%) for the photon plus two-jet and 70.2% (70.6%) for the photon plus three-jet 
sample.

The bin-to-bin efficiency is computed as εi = N
det,part
i /N

part
i , where Ndet,part

i is the number 
of MC events that pass all the selection requirements at both the detector and particle levels and 
are generated and reconstructed in bin i, and Npart

i is the number of MC events that pass the 
selection requirements at the particle level and are generated in bin i. The bin-to-bin efficiencies 
are typically above 50%, except for the pjet

T observables (� 40%) due to the resolution in these 
steeply falling distributions, and are similar for SHERPA and PYTHIA.

The bin-to-bin reconstruction purity is computed as κi = N
det,part
i /Ndet

i , where Ndet
i is the 

number of MC events that pass the selection requirements at the detector level and are recon-
structed in bin i. The bin-to-bin reconstruction purities are typically above 55%, except for 
p

jet
T (� 40%) for the same reason as the bin-to-bin efficiency, and are similar for SHERPA and

PYTHIA.

6. Cross-section measurement procedure

The cross sections, after background subtraction, are corrected to the particle level using a 
bin-by-bin correction procedure. The bin-by-bin correction factors are determined using the MC 
samples; these correction factors take into account the efficiency of the selection criteria and the 
jet and photon reconstruction, as well as migration effects. The SHERPA samples are used to 
compute the nominal correction factors to the cross sections and the PYTHIA samples are used to 
estimate systematic uncertainties due to the modelling of the parton shower, hadronisation and 
signal (see Section 7).

The cross sections are corrected to the particle level via the formula

dσ

dA
(i) = N

sig
A (i) CMC(i)

L �A(i)
, (3)

where (dσ/dA)(i) is the cross section as a function of observable A, N sig
A (i) is the signal yield 

in bin i, CMC(i) is the correction factor in bin i, L is the integrated luminosity and �A(i) is the 
width of bin i. The correction factors are computed as

CMC(i) = NSHERPA
part (i)

N
Sherpa
det (i)

, (4)

where NSherpa
det (part)(i) is the number of events in the SHERPA samples at detector (particle) level in 

bin i.
For the systematic uncertainties estimated with the PYTHIA samples, the acceptance correc-

tion factors are computed as

CMC(i) = α N
PYTHIA,H
part (i) + (1 − α) N

Pythia,B
part (i)

α N
Pythia,H
det (i) + (1 − α) N

Pythia,B
det (i)

, (5)

where α is the value obtained from the fit to the data distribution of each observable and 
N

Pythia
det (part)(i) is the number of events in the PYTHIA samples at detector (particle) level in bin i. 

The indices H and B correspond to the hard and brem PYTHIA components, respectively. The 
correction factors from PYTHIA and SHERPA are very similar and differ from unity by typically 
� 20%. The average correction factor for each distribution is listed in Table 3. The results of 
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Table 3
Overview of the average correction factor CMC for each distribution using the SHERPA and PYTHIA samples.

Sample Distribution: CMC using SHERPA (PYTHIA)

P1J E
γ
T : 1.18 (1.17) p

jet1
T : 1.20 (1.17)

P1JM mγ−jet1: 1.21 (1.18) | cos θ∗|: 1.16 (1.14)

P2J E
γ
T : 1.17 (1.15) p

jet2
T : 1.22 (1.15) �φγ−jet2: 

1.13 (1.11)
�φjet1–jet2: 
1.13 (1.11)

P3J E
γ
T : 1.15 (1.13) p

jet3
T : 1.19 (1.18) �φγ−jet3: 

1.11 (1.09)
�φjet1–jet3: 
1.11 (1.09)

�φjet2–jet3: 
1.12 (1.10)

Table 4
Overview of the relative systematic uncertainties in the cross sections.

Source of 
uncertainty

Variable

Photon plus one-jet Photon plus two-jet Photon plus three-jet

E
γ
T p

jet1
T | cos θ∗| p

jet2
T �φ p

jet3
T �φ

Photon energy 
scale and 
resolution

(1–4)% (0–3.5)% (1–1.4)% (0–2.5)% (0–2.4)% (0–1.9)% (0–1.7)%

Jet energy scale (0–1.7)% (2.4–15)% (1.8–2.3)% (3.6–10)% (1.8–9)% (5.5–14)% (4.5–11)%
Jet energy resolution (0–0.3)% (0.1–1.0)% (0.1–0.4)% (0.1–1.5)% (0.2–2.0)% (1.1–4.0)% (0.1–2.5)%
Parton shower and 

hadronisation 
models

(0–0.8)% (1.1–9)% (0.6–1.3)% (1–13)% (0.8–4.6)% (2.3–5.6)% (2.1–7)%

Photon identification (0–0.4)% (0–0.4)% (0–0.4)% (0–0.4)% (0–0.4)% (0–0.4)% (0–0.4)%
Background 

control 
regions

(0–1)% (0–1.1)% (0–0.6)% (0–1.2)% (0–0.5)% (0–1.9)% (0–1)%

Signal modelling (0–0.1)% (0–0.14)% (0–0.4)% (0–0.6)% (0–0.7)% (0–0.5)% (0–1.2)%
Correlation in 

background
(0–0.8)% (0–0.7)% (0–0.9)% (0–0.6)% (0–0.6)% (0–0.6)% (0–0.5)%

the bin-by-bin unfolding procedure are checked with a Bayesian unfolding method [48], giving 
consistent results.

7. Systematic uncertainties

Several sources of systematic uncertainty are investigated. These sources include the photon 
energy scale and resolution, the jet energy scale and resolution, the parton-shower and hadroni-
sation model dependence, the photon identification efficiency, the choice of background control 
regions, the signal modelling and the identification and isolation correlation in the background. 
Each source is discussed below. An overview of the systematic uncertainties in the cross sections 
is given in Table 4.

7.1. Photon energy scale and resolution

Differences between the photon energy scale and resolution in data and the simulations 
lead to systematic uncertainties. A total of 20 individual components [31] influencing the en-
ergy measurement of the photon are identified and varied within their uncertainties to assess 
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the overall uncertainty in the energy measurement. These uncertainties are propagated through 
the analysis separately to maintain the full information about the correlations. The total rela-
tive photon energy-scale uncertainty is in the range (0.3–0.9)% for |ηγ | < 1.37, (1.3–2.4)% for 
1.56 < |ηγ | < 1.81 and (0.3–0.7)% for 1.81 < |ηγ | < 2.37 depending on the photon transverse 
energy and whether the candidate is classified as an unconverted or converted photon.

Similarly to the energy scale uncertainty, the energy resolution is also influenced by different 
contributions (seven components), which are also propagated through the analysis separately to 
maintain the full information about the correlations.

The systematic uncertainties in the measured cross sections due to the effects mentioned above 
are estimated by varying each individual source of uncertainty separately in the MC simulations 
and then added in quadrature. The largest contribution arises from the uncertainty in the gain 
of the second layer of the electromagnetic calorimeter. The photon energy scale contributes an 
uncertainty in the cross section measured as a function of Eγ

T of ±1% (±4%) at low (high) 
E

γ
T , and typically less than ±2% when measured with the jet observables. The photon energy 

resolution contributes an uncertainty in the measured cross sections of less than ±1% for all 
observables.

7.2. Jet energy scale and resolution

The jet energy scale (JES) uncertainty contains a full treatment of bin-to-bin correlations 
for systematic uncertainties. A total of 67 individual components [37] influencing the energy 
measurement of the jets are identified and varied within their uncertainties to assess the overall 
uncertainty in the jet energy measurement. These parameters are propagated through the analysis 
separately to maintain the full information about the correlations. The total relative jet energy-
scale uncertainty is �±3% in the phase-space region of the measurements.

The jet energy resolution (JER) uncertainty accounts for the differences between data and 
simulated events. The impact of the JER uncertainty is estimated by smearing the MC simulated 
distributions and comparing the smeared and non-smeared results.

The systematic uncertainties in the measured cross sections due to the effects mentioned above 
are estimated by varying each individual source of uncertainty separately in the MC simulations 
and then added in quadrature. The major contributions arise from uncertainties in (a) the electron 
and photon energy scale, which affect the in situ corrections obtained from γ + jet and Z + jet
events, (b) the modelling of the ambient transverse energy used in the subtraction of the under-
lying event and pile-up, and (c) the modelling of the quark and gluon composition of the jets. 
The resulting uncertainty due to the JES is the dominant effect on the measured cross sections, 
except for those as functions of Eγ

T . As an example, the effect on the measured cross section as 

a function of pjet1
T is below ±6% for pjet1

T < 600 GeV and grows to ≈±15% for pjet1
T ∼ 1 TeV. 

The JER contributes an uncertainty in the measured cross sections which is smaller than ±1%
for the photon plus one-jet observables; for the photon plus two-jet and photon plus three-jet 
observables it is below ±4%.

7.3. Parton-shower and hadronisation model dependence

The difference between the signal purities and the correction factors estimated in SHERPA

and PYTHIA is taken as an estimate of the systematic uncertainty due to the parton-shower and 
hadronisation models. The resulting uncertainty in the measured cross sections is below ±3%
for the photon plus one-jet measurements, except for pjet1 (for which the uncertainty increases to 
T
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±9% for pjet1
T ∼ 1 TeV), below ±6% for the photon plus two-jet measurements, except for pjet2

T

(for which the uncertainty increases to ±13% for pjet2
T ∼ 1 TeV), and below ±7% for the photon 

plus three-jet measurements.

7.4. Photon identification efficiency

Scale factors are applied to the MC events to match the “tight” identification efficiency be-
tween data and simulation [30]. The uncertainty in the photon identification is estimated by 
propagating the uncertainty in these scale factors through the analysis. These effects result in an 
uncertainty in the measured cross sections which is smaller than ±0.4% for all observables.

7.5. Choice of background control regions

The estimation of the background contamination in the signal region is affected by the choice 
of background control regions. The latter are defined by the lower limit on Eiso

T,det in regions B
and D and the choice of inverted photon identification variables used in the selection of non-tight 
photons. To study the dependence on the specific choices these definitions are varied over a wide 
range. The lower limit on Eiso

T,det in regions B and D is varied by ±1 GeV, which is larger 
than any difference between data and simulations and still provides enough events to perform the 
data-driven subtraction. Likewise, the choice of inverted photon identification variables is varied. 
The analysis is repeated using different sets of variables: tighter (looser) identification criteria are 
defined by applying tight requirements to an extended (restricted) set of shower-shape variables 
in the first calorimeter layer [9]. The effects of these variations on the measured cross sections 
are typically smaller than ±1% for all observables.

7.6. Signal modelling

The simulation of the signal from the PYTHIA MC samples is used to estimate the system-
atic uncertainties arising from the modelling of the hard and bremsstrahlung components, which 
affect the signal leakage fractions in the two-dimensional sideband method for background sub-
traction and the bin-by-bin correction factors.

To estimate the effect of the signal modelling on the signal leakage fractions, the PYTHIA

components are first mixed according to the default value given by the MC cross section to 
determine the signal yield. The uncertainty related to the simulation of the hard and brem com-
ponents in the signal leakage fractions is estimated by performing the background subtraction 
using the admixture derived from the fit. For this estimation, the bin-by-bin correction factors are 
computed using Eq. (5).

To estimate the effect of the signal modelling on the bin-by-bin correction factors, the compo-
nents in PYTHIA are mixed according to Eq. (5) but using α ± �α, where �α is the error from 
the fit (see Section 5.2).

These effects result in an uncertainty in the measured cross sections which is typically smaller 
than ±1% for all observables.

7.7. Identification and isolation correlation in the background

The isolation and identification photon variables used to define the plane in the two-
dimensional sideband method to subtract the background (see Section 5.1) are assumed to 
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be uncorrelated for background events (Rbg = 1). Any correlation between these variables 
would affect the estimation of the purity of the signal and lead to systematic uncertainties in 
the background-subtraction procedure. It was shown that Rbg is consistent with unity within 
±10% [9]. Therefore, ±10% is taken as the uncertainty in Rbg related to the identification and 
isolation correlation in the background. These effects result in an uncertainty in the measured 
cross sections which is typically smaller than ±1% for all observables.

7.8. Total systematic uncertainty

The total systematic uncertainty is computed by adding in quadrature the sources of uncer-
tainty listed in the previous sections and the statistical uncertainty of the MC samples. The 
uncertainty in the integrated luminosity is ±1.9% [29]; this uncertainty is fully correlated in 
all bins of all the measured cross sections and is added in quadrature to the other uncertainties.

8. Fixed-order QCD calculations

The measurements are compared to the highest fixed-order pQCD prediction available for 
each final state. The details of the calculations are given below.

8.1. Calculations for photon plus one-jet final state

The LO and NLO QCD calculations used in the photon plus one-jet analysis presented here 
are performed using the program JETPHOX 1.3.2 [23,24]. This program includes a full NLO 
calculation of both the direct and fragmentation QCD contributions to the cross section for the 
pp → γ + jet + X reaction.

The calculation assumes five massless quark flavours. The renormalisation (μR), factorisation 
(μF) and fragmentation (μf) scales are chosen to be μR = μF = μf = E

γ
T . The calculations 

are performed using the CT10 parameterisations of the proton PDF and the NLO BFG set II 
photon fragmentation function [49]. The strong coupling constant is calculated at two loops with 
αs(mZ) = 0.118.

The calculations are performed using a parton-level isolation criterion which requires the total 
transverse energy from the partons inside a cone of �R = 0.4 around the photon direction, called 
cone isolation henceforth, to be below 10 GeV. The anti-kt algorithm with radius parameter R =
0.6 is applied to the partons in the events generated by this program to compute the cross-section 
predictions.

8.2. Calculations for photon plus two-jet and photon plus three-jet final states

NLO QCD calculations are performed separately for photon plus two-jet and photon plus 
three-jet final states using the program BLACKHAT + SHERPA [25,26]. This program includes 
a full NLO QCD calculation of only the direct contribution to the cross section for the pp →
γ + 2 jets + X and pp → γ + 3 jets + X reactions. Therefore, the highest-order calculation used 
in this paper corresponds to that of photon plus three-jet production and it is up to O(αemα4

s ). 
The μR and μF scales are chosen to be μR = μF = E

γ
T . The settings for the number of flavours, 

αs(mZ) and proton PDF are the same as for JETPHOX. The calculations are performed using a 
parton-level isolation on the photon based on the Frixione method [50], called Frixione isolation 
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henceforth. As with JETPHOX, the anti-kt algorithm with radius parameter R = 0.6 is applied to 
the final-state partons.

8.3. Hadronisation and underlying-event corrections to the NLO QCD calculations

Since the measurements refer to jets of hadrons and include underlying-event (UE) effects, 
whereas the NLO QCD calculations refer to jets of partons without such effects, the cross-section 
predictions are corrected to include UE effects at particle level using the MC models. The correc-
tion factor, CNLO, is defined as the ratio of the cross section for jets of hadrons with UE to that for 
jets of partons. The correction factors for the photon plus one-jet predictions are estimated using 
the PYTHIA samples (using cone isolation) and those for the photon plus two/three-jet predictions 
are estimated using the SHERPA samples; in the latter case, the cone (Frixione) isolation is used at 
the particle (parton) level to match the measurements (predictions). The MC samples of PYTHIA

(SHERPA) are suited for estimating the correction factors for JETPHOX (BLACKHAT) since these 
NLO QCD calculations include (do not include) the fragmentation contribution. These factors 
are close to unity for the photon plus one-jet observables, except for pjet1

T � 500 GeV, where they 
can differ by up to 30% from unity due to the dominance of the bremsstrahlung component in 
that region. For photon plus two-jet (three-jet) observables the average correction factor is 1.10
(1.14).

8.4. Theoretical uncertainties

The following sources of uncertainty in the theoretical predictions are considered:

• The uncertainty due to the scales is estimated by repeating the calculations using values of 
μR and μF scaled by factors 0.5 and 2. The two scales are varied individually. In the case of 
photon plus one-jet calculations, the μf scale is also varied.

• The uncertainty due to the proton PDF is estimated by repeating the calculations using the 
52 additional sets from the CT10 error analysis and taking the sum in quadrature of all 
the uncertainty components. The scaling factor of 1/1.645 is applied to convert the 90%
confidence-level (CL) interval as provided in Ref. [43] to a 68% CL interval.

• The uncertainty due to the value of αs(mZ) is estimated by repeating the calculations using 
two additional sets of proton PDFs, for which different values of αs(mZ) are assumed in 
the fits, namely αs(mZ) = 0.116 and 0.120. In addition, the same scaling factor mentioned 
above is also applied to obtain the uncertainty for the 68% CL interval.

• The uncertainty on the hadronisation and underlying-event corrections is negligible com-
pared to the other uncertainties on the theoretical predictions [3].

The dominant theoretical uncertainty is that arising from the scale variations. The total theo-
retical uncertainty is obtained by adding in quadrature the individual uncertainties listed above.

9. Results

9.1. Fiducial regions and integrated cross sections

The measurements presented here refer to isolated prompt photons with Eiso
T,part < 10 GeV

(see Section 4) and jets of hadrons (see Section 3.2). The details of the phase-space regions are 
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Table 5
Measured and predicted integrated cross sections.

Final state Measured cross 
section [pb]

NLO QCD prediction 
JETPHOX/BLACKHAT [pb]

PYTHIA prediction 
[pb]

SHERPA prediction 
[pb]

Photon plus one-jet 134 ± 4 128+11
−9 (J) 120 132

Photon plus two-jet 30.4 ± 1.8 29.2+2.8
−2.7 (B) 26.4 27.4

Photon plus three-jet 8.7 ± 0.8 9.5+0.9
−1.2 (B) 8.2 7.9

given in Table 1. The integrated cross sections for the photon plus one-jet, photon plus two-jet 
and photon plus three-jet final states are shown in Table 5. The measured and predicted integrated 
cross sections are consistent within the experimental and theoretical uncertainties.

9.2. Cross sections for isolated-photon plus one-jet production

The measured cross-section dσ/dE
γ
T , shown in Fig. 3(a), decreases by five orders of magni-

tude as Eγ
T increases over the measured range. Values of Eγ

T up to 1.1 TeV are measured. The 
experimental uncertainty is below 5% for Eγ

T � 650 GeV, dominated by the photon energy scale 
uncertainty, and grows to 15% at Eγ

T ∼ 1 TeV, dominated by the statistical uncertainty in this re-
gion. The NLO QCD prediction from JETPHOX is compared with the measurement in Fig. 3(a). 
The NLO QCD prediction gives a good description of the data within the experimental and theo-
retical uncertainties. The theoretical uncertainty varies from ≈ 7% for Eγ

T ∼ 130 GeV to ≈ 10%
for Eγ

T ∼ 1 TeV; it is dominated by the contribution arising from scale uncertainties, in particular 
from the variation of μR (7% (5%) at low (high) Eγ

T ), although for Eγ
T � 750 GeV the uncer-

tainty from the PDF grows to be of the same order and dominates for higher Eγ
T values (≈ 8% for 

E
γ
T ∼ 1 TeV). The predictions from SHERPA and PYTHIA are compared with the measurements 

in Fig. 4(a). Both predictions give an adequate description of the shape of the data distribution 
within the experimental and theoretical uncertainties; the theoretical uncertainties are necessarily 
at least as large as for the NLO QCD calculations.

The measured cross-section dσ/dp
jet1
T , shown in Fig. 3(b), decreases by five orders of mag-

nitude from pjet1
T ∼ 120 GeV to the highest transverse momentum available, pjet1

T ≈ 1.2 TeV; 

for pjet1
T < 120 GeV the cross section decreases due to the kinematic analysis requirements. 

The total experimental uncertainty is below 6% for pjet1
T < 500 GeV and grows to ≈ 25% for 

p
jet1
T ∼ 1.1 TeV. It is dominated by the uncertainty in the jet energy scale. The NLO QCD pre-

diction gives a good description of the data except for pjet1
T < 120 GeV, where in the calculation 

of A · αemαs + B · αemα2
s [23,24] the Born term is zero, i.e. A = 0. The theoretical uncertainty 

grows from <5% at pjet1
T ∼ 135 GeV to ≈ 25% for pjet1

T ∼ 1.1 TeV and is dominated by the 
variation of μR in the whole measured range. The predictions from SHERPA and PYTHIA give 
an adequate description of the data (see Fig. 4(b)).

Fig. 3(c) shows dσ/dmγ−jet1; the measured cross section decreases by four orders of mag-
nitude as mγ−jet1 increases from about 0.5 TeV to the highest measured value, ≈ 2.45 TeV. 
The experimental uncertainty ranges from ≈ 3% to ≈ 22% and is dominated by the jet energy 
scale uncertainty in most of the measured range; for mγ−jet1 > 1.5 TeV the statistical uncertainty 
dominates. The NLO QCD calculation gives a good description of the data and no significant de-
viation from the prediction from pQCD is observed. The theoretical uncertainty is ≈ 10% (15%)

at mγ−jet1 ≈ 490 (2450) GeV; it is dominated by the contribution arising from scale uncer-
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Fig. 3. Measured cross sections for isolated-photon plus one-jet production (dots) as functions of (a) Eγ
T , (b) pjet1

T , 
(c) mγ−jet1 and (d) | cos θ∗|. The NLO QCD predictions from JETPHOX corrected for hadronisation and underlying-event 
effects and using the CT10 PDF set (solid lines) are also shown. These predictions include direct and fragmentation 
contributions (D+F). The bottom part of each figure shows the ratio of the NLO QCD prediction to the measured cross 
section. The inner (outer) error bars represent the statistical uncertainties (the statistical and systematic uncertainties 
added in quadrature) and the shaded band represents the theoretical uncertainty. For most of the points, the inner error bars 
are smaller than the marker size and, thus, not visible. The cross sections in (c) and (d) include additional requirements 
on |ηγ + yjet1|, | cos θ∗| and mγ−jet1 (see Table 1).

tainties, in particular from the variation of μR (≈ 10%), although for mγ−jet1 � 2.15 TeV the 
uncertainty from the PDF grows to be of the same order and dominates for higher mγ−jet1 values. 
The predictions from PYTHIA and SHERPA give a good description of the data (see Fig. 4(c)), 
except for mγ−jet1 > 1.8 TeV where, nevertheless, the differences are covered by the theoretical 
uncertainties.
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Fig. 4. Measured cross sections for isolated-photon plus one-jet production (dots) as functions of (a) Eγ
T , (b) pjet1

T , 
(c) mγ−jet1 and (d) | cos θ∗|, presented in Fig. 3. For comparison, the predictions from SHERPA (solid lines) and PYTHIA

(dashed lines) normalised to the integrated measured cross sections (using the factors indicated in parentheses) are also 
shown. The bottom part of each figure shows the ratios of the MC predictions to the measured cross section. The inner 
(outer) error bars represent the statistical uncertainties (the statistical and systematic uncertainties added in quadrature). 
For most of the points, the inner error bars are smaller than the marker size and, thus, not visible. The cross sections in 
(c) and (d) include additional requirements on |ηγ + yjet1|, | cos θ∗| and mγ−jet1 (see Table 1).

The measured cross-section dσ/d| cosθ∗|, shown in Fig. 3(d), increases as | cos θ∗| increases. 
The experimental uncertainty is ≈ 3%; the only significant contributions arise from the photon 
and jet energy scale uncertainties and the model dependence. The NLO QCD prediction gives a 
good description of the data. The theoretical uncertainty is ≈ 10%, dominated by the contribution 
arising from scale uncertainties, in particular from the variation of μR. The predictions from
PYTHIA and SHERPA give a good description of the data (see Fig. 4(d)).
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Fig. 5. Measured cross sections for isolated-photon plus one-jet production (dots) as functions of | cos θ∗| in different 
regions of mγ−jet1. The NLO QCD predictions from JETPHOX corrected for hadronisation and underlying-event effects 
and using the CT10 PDF set (solid lines) are also shown. These predictions include direct and fragmentation contributions 
(D+F). The inner (outer) error bars represent the statistical uncertainties (the statistical and systematic uncertainties added 
in quadrature) and the shaded band represents the theoretical uncertainty. For most of the points, the inner error bars are 
smaller than the marker size and, thus, not visible. For visibility, the measured and predicted cross sections are scaled by 
the factors indicated in parentheses.

To gain further insight into the dynamics of the photon–jet system, cross sections are measured 
as functions of | cos θ∗| in different regions of mγ−jet1. Fig. 5 shows the measured cross sections 
and NLO QCD predictions in nine regions of mγ−jet1. The NLO QCD predictions describe well 
the scale evolution of the measured cross sections. The LO QCD predictions of the direct and 
fragmentation contributions to the cross section are compared with the measurements in Fig. 6. 
Even though at NLO the two components are no longer distinguishable, the LO calculations are 
useful in illustrating the basic differences in the dynamics of the two processes. The contribution 
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Fig. 6. Measured cross sections for isolated-photon plus one-jet production (dots) as functions of | cos θ∗| in different 
regions of mγ−jet1, presented in Fig. 5. For visibility, the measured cross sections are scaled by the factors indicated in 
parentheses. For comparison, the LO QCD predictions from JETPHOX corrected for hadronisation and underlying-event 
effects and using the CT10 PDF set for direct (solid lines) and fragmentation (dashed lines) processes are shown sepa-
rately. In each region of mγ−jet1, the predictions are normalised to the integrated measured cross section by the factors 
shown in parentheses, which include the visibility factor. The inner (outer) error bars represent the statistical uncertainties 
(the statistical and systematic uncertainties added in quadrature). For most of the points, the inner error bars are smaller 
than the marker size and, thus, not visible.

from fragmentation shows a steeper increase as | cosθ∗| → 1 than that from direct processes. 
This different behaviour is due to the different spin of the exchanged particle dominating each 
of the processes: a quark in the case of direct processes and a gluon in the case of fragmentation 
processes. The shape of the measured cross-section dσ/d| cos θ∗| is much closer to that of the 
direct-photon processes than that of fragmentation in all mγ−jet1 regions. This is consistent with 
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Fig. 7. Measured cross sections for isolated-photon plus one-jet production (dots) as functions of | cos θ∗| in different 
regions of mγ−jet1, presented in Fig. 5. For comparison, the predictions from SHERPA (solid lines) and PYTHIA (dashed 
lines) are also shown; the predictions are normalised to the data by a global factor, which is shown as the second factor in 
parentheses. In addition, for visibility, the measured and predicted cross sections are scaled by the first factor indicated in 
parentheses. The inner (outer) error bars represent the statistical uncertainties (the statistical and systematic uncertainties 
added in quadrature). For most of the points, the inner error bars are smaller than the marker size and, thus, not visible.

the dominance of processes in which the exchanged particle is a quark. The predictions4 from
PYTHIA and SHERPA are compared with the data in Fig. 7 and also give an adequate description 
of the measurements.

4 The MC predictions for every region in mγ−jet1 are normalised using the same factors as for dσ/dmγ−jet1.
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Fig. 8. Measured cross sections for isolated-photon plus two-jet production (dots) as functions of (a) Eγ
T , (b) pjet2

T , 
(c) �φγ−jet2 and (d) �φjet1–jet2. The NLO QCD predictions from BLACKHAT corrected for hadronisation and 
underlying-event effects and using the CT10 PDF set (solid lines) are also shown. These predictions include only the 
direct contribution (D). The bottom part of each figure shows the ratio of the NLO QCD prediction to the measured cross 
section. The inner (outer) error bars represent the statistical uncertainties (the statistical and systematic uncertainties 
added in quadrature) and the shaded band represents the theoretical uncertainty. For most of the points, the inner error 
bars are smaller than the marker size and, thus, not visible.

9.3. Cross sections for isolated-photon plus two-jet production

The measured cross-section dσ/dE
γ
T (Fig. 8(a)) decreases by almost five orders of magni-

tude as Eγ
T increases over the measured range. Values of Eγ

T up to 1.1 TeV are measured. The 
experimental uncertainty ranges from 7% to 23%, dominated at low Eγ

T by the jet energy scale 
uncertainty and at high Eγ

T by the statistical uncertainty. The NLO QCD prediction from BLACK-
HAT is compared with the measurement in Fig. 8(a). The NLO QCD prediction gives a good 
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description of the data within the experimental and theoretical uncertainties for Eγ
T < 750 GeV. 

The theoretical uncertainty amounts to ≈ 10%; it is dominated by the contribution arising from 
scale uncertainties, in particular from the variation of μR for Eγ

T � 500 GeV, and by the uncer-
tainty from the PDF for higher Eγ

T values.

The measured cross-section dσ/dp
jet2
T (Fig. 8(b)) decreases by almost five orders of magni-

tude within the measured range. The experimental uncertainty varies from 6% to 46% and is 
dominated by the jet energy scale uncertainty at low pjet2

T and by the statistical uncertainty at 

high pjet2
T . The NLO QCD prediction gives a good description of the data. No significant de-

viation from the prediction from NLO QCD is observed up to the highest value measured of 
p

jet2
T ≈ 1 TeV. The theoretical uncertainty grows from 10% at pjet2

T ∼ 70 GeV to ≈ 26% for 

p
jet2
T ∼ 1 TeV and is dominated by the variation of μR for pjet2

T � 250 GeV and by the uncer-
tainty from the PDF for higher Eγ

T values.
The dσ/d�φγ−jet2 and dσ/d�φjet1–jet2 cross sections are shown in Figs. 8(c) and 8(d), re-

spectively. The measured cross sections display a maximum at 2–2.5 radians. The NLO QCD 
predictions give a good description of the data.

The prediction from PYTHIA gives a good description of the measured cross-section dσ/dE
γ
T

up to Eγ
T ∼ 750 GeV (see Fig. 9(a)), whereas the prediction from SHERPA describes well the 

measured cross-section dσ/dp
jet2
T (see Fig. 9(b)). The predictions from SHERPA give a good de-

scription of the measured cross-section dσ/d�φγ−jet2 and dσ/d�φjet1–jet2, while the predictions 
from PYTHIA do not. In the predictions from PYTHIA a second jet can arise only from the parton 
shower, whereas in SHERPA, 2 → n (with n ≥ 3) matrix-element contributions are included as 
well, with a higher probability of producing a second hard jet.

The scale evolution of photon plus two-jet production is tested by measuring the azimuthal 
angle between jet2 and the photon or between jet2 and jet1 for Eγ

T below/above 300 GeV. 
Fig. 10 shows the cross sections as functions of �φγ−jet2 and �φjet1–jet2 for the two Eγ

T
ranges: both cross-section distributions have different shapes for Eγ

T below/above 300 GeV. The 
dσ/d�φγ−jet2 cross section is more peaked towards large values of �φγ−jet2 for Eγ

T > 300 GeV
than that for Eγ

T < 300 GeV; the dσ/d�φjet1–jet2 cross section peaks at �φjet1–jet2 ∼ 0.8 rad 
(2.2 rad) for Eγ

T > 300 GeV (Eγ
T < 300 GeV). The NLO QCD predictions give a good descrip-

tion of the data and, in particular, reproduce the scale evolution of the measured cross sections. 
Fig. 11 shows the comparison of the data and the predictions from PYTHIA and SHERPA. The 
predictions from PYTHIA fail to describe the data whereas those from SHERPA describe well the 
shape of the measured cross-section distributions and their evolution with the scale.

9.4. Comparison of jet production around the photon and jet1

Fig. 12(a) shows the cross sections for photon plus two-jet production as functions of 
β jet1 and βγ . The two measured cross sections have different shapes: the measured cross-
section dσ/dβ jet1 increases monotonically as β jet1 increases, whereas the measured cross-section 
dσ/dβγ increases up to βγ ≈ 1.8 rad and then remains approximately constant. The predictions 
from SHERPA give a good description of the measured cross sections. To quantify the differ-
ences in the patterns of jet production around the photon and jet1, the ratio of the measured 
cross-sections dσ/dβ jet1 and dσ/dβγ is made. In the estimation of the systematic uncertainties 
of the ratio of the cross sections, the correlations between numerator and denominator are fully 
taken into account leading to complete or partial cancellations depending on the source of un-
certainty. The ratio (dσ/dβ jet1)/(dσ/dβγ ), shown in Fig. 12(b), is enhanced at β = 0 and π rad 
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Fig. 9. Measured cross sections for isolated-photon plus two-jet production (dots) as functions of (a) Eγ
T , (b) p

jet2
T , 

(c) �φγ−jet2 and (d) �φjet1–jet2. For comparison, the predictions from PYTHIA (dashed lines) and SHERPA (solid lines) 
normalised to the integrated measured cross sections (using the factors indicated in parentheses) are also shown. The 
bottom part of each figure shows the ratios of the MC predictions to the measured cross section. The inner (outer) error 
bars represent the statistical uncertainties (the statistical and systematic uncertainties added in quadrature). For most of 
the points, the inner error bars are smaller than the marker size and, thus, not visible.

with respect to the value of the ratio at β = π/2 rad. The measured ratio is tested against the 
hypothesis of being independent of β and the resulting p-value is 1.3%. Thus, it is observed, for 
the first time, that the patterns of QCD radiation around the photon and jet1 are different.

9.5. Cross sections for isolated-photon plus three-jet production

The measured cross-section dσ/dE
γ
T (dσ/dp

jet3
T ), shown in Fig. 13(a) (Fig. 13(b)), decreases 

by approximately five (three) orders of magnitude within the measured range. The measured 
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Fig. 10. Measured cross sections for isolated-photon plus two-jet production (dots) as functions of (a, b) �φγ−jet2 and 
(c, d) �φjet1–jet2 for (a, c) Eγ

T < 300 GeV and (b, d) Eγ
T > 300 GeV. The NLO QCD predictions from BLACKHAT

corrected for hadronisation and underlying-event effects and using the CT10 PDF set are also shown as solid lines. These 
predictions include only the direct contribution (D). The inner (outer) error bars represent the statistical uncertainties (the 
statistical and systematic uncertainties added in quadrature) and the shaded band represents the theoretical uncertainty. 
For most of the points, the inner error bars are smaller than the marker size and, thus, not visible.

cross-section dσ/d�φγ−jet3 (Fig. 13(c)) increases as �φγ−jet3 increases whereas the measured 
cross sections as functions of �φjet1–jet3 (Fig. 13(d)) and �φjet2–jet3 (Fig. 13(e)) are approxi-
mately constant for �φjet1–jet3, �φjet2–jet3 > 1 rad. The NLO QCD predictions from BLACKHAT

give an adequate description of the data within the experimental and theoretical uncertainties; 
the predictions have a tendency to be systematically above the data.

The prediction from PYTHIA gives a good description of the measured cross-section dσ/dE
γ
T , 

whereas the prediction from SHERPA describes well the measured cross-section dσ/dp
jet3
T (see 

Fig. 14). The predictions from SHERPA and PYTHIA give a good description of the measured 
cross sections as functions of �φγ−jet3, �φjet1–jet3 and �φjet2–jet3.

The scale evolution of the photon plus three-jet production is tested by measuring the dis-
tributions of the azimuthal angle between jet3 and the photon, jet1 or jet2 for Eγ

T below/above 
300 GeV. Fig. 15 shows the cross sections as functions of �φγ−jet3, �φjet1–jet3 and �φjet2–jet3 for 
the two Eγ

T ranges: the shape of the cross-section distributions is different for Eγ
T below/above 

300 GeV. The dσ/d�φγ−jet3 cross section is more peaked towards large values of �φγ−jet3 for 
E

γ
> 300 GeV than that for Eγ

< 300 GeV; the dσ/d�φjet1–jet3 (dσ/d�φjet2–jet3) cross section 
T T
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Fig. 11. Measured cross sections for isolated-photon plus two-jet production (dots) as functions of (a, b) �φγ−jet2 and 
(c, d) �φjet1–jet2 for (a, c) Eγ

T < 300 GeV and (b, d) Eγ
T > 300 GeV. For comparison, the predictions from PYTHIA

(dashed lines) and SHERPA (solid lines) are also shown. The predictions are normalised to the data by a global factor, 
which is indicated in parentheses. The inner (outer) error bars represent the statistical uncertainties (the statistical and 
systematic uncertainties added in quadrature). For most of the points, the inner error bars are smaller than the marker 
size and, thus, not visible.

decreases beyond the peak as �φjet1–jet3 (�φjet2–jet3) increases for Eγ
T > 300 GeV whereas it 

stays approximately constant for Eγ
T < 300 GeV. The NLO QCD predictions provide an ade-

quate description of the measured cross sections and, thereby, of the observed scale evolution of 
the angular correlations. The predictions from PYTHIA and SHERPA, shown in Fig. 16, give an 
adequate description of the shape of the measured cross sections.

10. Summary

Measurements of the cross sections for the production of an isolated photon in association 
with one, two or three jets in proton–proton collisions at 

√
s = 8 TeV, pp → γ + jet(s) + X, 

using a data set with an integrated luminosity of 20.2 fb−1 recorded by the ATLAS detector 
at the LHC are presented. The photon is required to have Eγ

T > 130 GeV and |ηγ | < 2.37, 
excluding the region 1.37 < |ηγ | < 1.56, and to be isolated with Eiso

T,part < 10 GeV. The jets are 
reconstructed using the anti-kt algorithm with radius parameter R = 0.6.
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Fig. 12. (a) Measured cross sections for isolated-photon plus two-jet production as functions of β jet1 (dots) and βγ (open 
circles). For comparison, the predictions from SHERPA (blue solid and dashed lines) and PYTHIA (pink dash-dotted and 
dotted lines) normalised to the integrated measured cross sections (using the factors indicated in parentheses) are also 
shown. The bottom parts of the figure show the ratios of the MC predictions to the measured cross sections. (b) Ratio of 
the measured cross-section dσ/dβ jet1 and dσ/dβγ (dots); the ratios for the SHERPA and PYTHIA predictions are shown 
as solid and dashed lines, respectively. The inner (outer) error bars represent the statistical uncertainties (the statistical 
and systematic uncertainties added in quadrature). For some of the points, the inner error bars are smaller than the marker 
size and, thus, not visible.

The cross sections for photon plus one-jet are measured as functions of Eγ
T and pjet1

T with 

p
jet1
T > 100 GeV; the measurements extend up to values of Eγ

T (p
jet1
T ) of 1.1 TeV (1.2 TeV). The 

dependence on mγ−jet1 and | cos θ∗| is also measured for mγ−jet1 > 467 GeV and extends up 
to mγ−jet1 of 2.45 TeV. The NLO QCD predictions from JETPHOX, corrected for hadronisation 
and underlying-event effects, give a good description of the measured cross-section distributions 
in both shape and normalisation. In particular, the measured dependence on | cosθ∗| and its scale 
dependence is consistent with the dominance of processes in which a quark is being exchanged; 
the experimental (theoretical) uncertainty in dσ/d| cosθ∗| amounts to ≈ 3% (10%).

Photon plus two-jet production is investigated by measuring cross sections as functions of 
E

γ
T and pjet2

T and angular correlations between the final-state objects for pjet1
T > 100 GeV and 

p
jet2
T > 65 GeV. The NLO QCD predictions from BLACKHAT provide a good description of 

the measurements except for Eγ
T > 750 GeV. The predictions from SHERPA, which include 

higher-order tree-level matrix elements, are found to be superior to those from PYTHIA, based 
on 2 → 2 processes, in describing the distributions in pjet2

T and the angular correlations.
The patterns of QCD radiation around the photon and the leading jet are compared by mea-

suring the production of the subleading jet in an annular region centred on the given final-state 
object. The cross sections as functions of βγ and β jet1 are observed to be different. The ratio of 
the cross sections shows enhancements in the directions towards the beams, β = 0 and π rad.
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Fig. 13. Measured cross sections for isolated-photon plus three-jet production (dots) as functions of (a) Eγ
T , (b) pjet3

T , 
(c) �φγ−jet3, (d) �φjet1–jet3 and (e) �φjet2–jet3. The NLO QCD predictions from BLACKHAT corrected for hadroni-
sation and underlying-event effects and using the CT10 PDF set (solid lines) are also shown. These predictions include 
only the direct contribution (D). The bottom part of each figure shows the ratio of the NLO QCD prediction to the 
measured cross section. The inner (outer) error bars represent the statistical uncertainties (the statistical and systematic 
uncertainties added in quadrature) and the shaded band represents the theoretical uncertainty. For most of the points, the 
inner error bars are smaller than the marker size and, thus, not visible.
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Fig. 14. Measured cross sections for isolated-photon plus three-jet production (dots) as functions of (a) Eγ
T , (b) pjet3

T , 
(c) �φγ−jet3, (d) �φjet1–jet3 and (e) �φjet2–jet3. For comparison, the predictions from SHERPA (solid lines) and PYTHIA

(dashed lines) normalised to the integrated measured cross sections (using the factors indicated in parentheses) are also 
shown. The bottom part of each figure shows the ratios of the MC predictions to the measured cross section. The inner 
(outer) error bars represent the statistical uncertainties (the statistical and systematic uncertainties added in quadrature). 
For most of the points, the inner error bars are smaller than the marker size and, thus, not visible.
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Fig. 15. Measured cross sections for isolated-photon plus three-jet production (dots) as functions of (a, b) �φγ−jet3, 
(c, d) �φjet1–jet3 and (e, f) �φjet2–jet3 for (a, c, e) Eγ

T < 300 GeV and (b, d, f) Eγ
T > 300 GeV. The NLO QCD 

predictions from BLACKHAT corrected for hadronisation and underlying-event effects and using the CT10 PDF set 
are also shown as solid lines. These predictions include only the direct contribution (D). The inner (outer) error bars 
represent the statistical uncertainties (the statistical and systematic uncertainties added in quadrature) and the shaded 
band represents the theoretical uncertainty. For most of the points, the inner error bars are smaller than the marker size 
and, thus, not visible.
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Fig. 16. Measured cross sections for isolated-photon plus three-jet production (dots) as functions of (a, b) �φγ−jet3, 
(c, d) �φjet1–jet3 and (e, f) �φjet2–jet3 for (a, c, e) Eγ

T < 300 GeV and (b, d, f) Eγ
T > 300 GeV. For comparison, the 

predictions from PYTHIA (dashed lines) and SHERPA (solid lines) are also shown. The predictions are normalised to the 
data by a global factor, which is indicated in parentheses. The inner (outer) error bars represent the statistical uncertainties 
(the statistical and systematic uncertainties added in quadrature). For most of the points, the inner error bars are smaller 
than the marker size and, thus, not visible.
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Photon plus three-jet production is characterised by measurements of cross sections as func-
tions of Eγ

T , pjet3
T and angular correlations for pjet1

T > 100 GeV, pjet2
T > 65 GeV and pjet3

T >

50 GeV. The NLO QCD predictions from BLACKHAT provide an adequate description of the 
measurements. Whereas the prediction from SHERPA for pjet3

T is superior to that from PYTHIA, 
both give adequate descriptions of the angular correlations.

All these studies provide stringent tests of pQCD and scrutinise the description of the dynam-
ics of isolated-photon plus jets production in pp collisions up to O(αemα4

s ).
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