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A compact binary star that moves in a strong external gravitational field of a Schwarzschild black hole is con-
sidered. Decomposition of the redshift into a series with respect to the size of the binary system is obtained. This
expression is used to calculate the redshift for a model binary system. Possible application of the results is discussed.
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1. Introduction

Recent observations of the Galactic centre
(Sgr A*) give evidences for existence of a super-
massive black hole in this region with a mass of
~4-10° M, [EI, E]. Also they have provided an evi-
dence for a large number of binary pulsars and
stars in this region [H, E]. In a volume of 1 p¢?
around Sgr A* there are ~10* compact objects
of about one stellar mass [E]. Presumably, about
a half of these objects are bound in binary systems
(NS-NS, NS—BH and BH-BH).

Studying the arrival time of the pulses that
are emitted by a pulsar in a binary system gives
possibility to test theories of gravity [ ]. Also
this data can be used to detect the gravitational
radiation by its influence on the pulsar motion
and on the propagation of the radiation to the ob-
server (see, e.g. EE]). Electromagnetic radiation
of a compact source in a gravitational field has
been modelled in many papers (see, e.g. []).
However, most of these approaches assume that
the gravitational field is weak or that the radia-
tion source is moving at a non-relativistic speed.

In [@] equations of motion of a compact binary
system in a strong gravitational field have been
obtained, and a method of calculation of the red-
shift of the light emitted by the binary system has
been proposed.

In the present paper the approach described
in [] is used to calculate the next terms of the se-
ries expansion of the redshift, namely the terms
that are quadratic in the size of the binary star p.
The resulting expression is written in a covariant
form. This expression contains quantities that are
determined by the law of motion, and the func-
tion z (7) that can be interpreted as the redshift of
the source that is located at the center of mass of
the binary star.

2. Arrival time of the pulses

Consider pulses that are emitted by a pulsar and
are received by an observer. For pulsar moving in
the neighbourhood of a supermassive black hole we
describe the radiation in the geometrical optics ap-
proximation (see, e.g. []) (A typical wavelength
of radiation used for observations A < 10°m is much
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less than the scale of gravitational inhomogeneities
M~10°m). The observation time of a pulse can be
calculated using the following expression:

for = troa’ +T,(z +1) =135,

' 1)

+T, (k,- INCHN
(k7)o (),

Here T is the pulsar rotation period in the refer-
ence frame of the pulsar, z is the redshift of the re-
ceived light, (1) and (u) are the 4-velocity of
the source and the observer, respectively; (k) and
(k') are the 4-wave vectors at the point of emission
and observation, respectively. #{3) is the time of ar-
rival of the Nth pulse and #{}." is the time of arrival
of the (N-1)th pulse.

In this paper we consider the observer that is at
rest at the spatial infinity. Generalizing the results
to the case of a moving observer is not difficult (see,
e.g (L)),

Consider the vector field k(x) which is defined
at each point x’ of the spacetime as the wave vector
of the ray that is emitted at the point x' and is later
received by the observer. k' is isotropic and satisfies
the equation of geodesic:

Kk =0, Kk, =0. 2)

(In our notations a semicolon is the covariant de-
rivative, a comma is the partial derivative.) Let (' be
a Killing vector ({,, + ¢, = 0). Equations (2) imply
that

K((k), = 0, (3)

which means that (’k, is constant along the ray. If
the spacetime is static, then 9/0¢ is the Killing vec-
tor and consequently k, = A = const. In an appro-
priate parametrization of the geodesic A = -1 and
therefore k, = 1 in the whole spacetime. It can be
shown (see [@]) that for a static spherically-sym-
metric spacetime the vector field k' satisfies the fol-
lowing equation:

k -k_=0. (4)

o
The arrival time can be expressed as

fN
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Using this expression, the arrival time of pulses can
be calculated given the redshift z and the rotation
period of the pulsar.

3. Representation of the redshift of the source in
the binary system

The motion of a compact binary star in the external
gravitational field can be described by the equa-
tions that are derived in []. These equations are
obtained in a comoving reference frame by ex-
panding the tidal forces into a series with respect
to p/r, where p is a characteristic size of the binary
star, r is a characteristic scale of the gravitational
field (for example, the distance to the black hole).
In the given paper a similar expansion of the red-
shift z is obtained. Terms of the order O(p*/r?) and
O(v/c) are kept in the series, where v is a relative
velocity of stars in the binary system.

Consider a radiation source moving along
the world line x/(7,), and the world line {'(7), which
is the world line of the center of mass. Here 7, and
7 are the proper time of the radiation source and
the center of mass, respectively. Let the source be
at the point P at some moment of the time 7,. Con-
sider the geodesic x'(0) that starts at the point P
and crosses the world line of the center of mass
orthogonally: x'(0) = & (), x(0,) = xi(7,), where
o is the geodesic distance. The intersection point
will be denoted as C, x| = &(7) (see Fig.). X, can
be expressed as a Taylor series

Xp=xb+ ,23+0(G);' (6)

dx’(0 d*x' (0
x()ap+l xg)a
do 2

Observer

T Zo(T+T,et)

Z(7)

Fig. 1. To the derivation of the formula for the red-
shift.
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Here o, is the geodesic distance from the point P to
C. Using the equation of geodesic and the orthogo-
nality condition

dx’ Codx/ dx*
+I =0, 7a
do? " do do (72)
d&' dx/(0)
) = 2=, 7b
Ei dr do (75)

series (6) can be transformed into

Xp=Xc+N'0, —%Fﬁk(x"c)n-"n"oi +0 (09). (8)

Here I, are the Christoffel symbols, ' = dx'(0)/
do. Also we will write dx/ as the differential of
the coordinates in the direction of world line &(7)
in the point C. dx/ is the differential of coordinates
in the direction of the world line of the source in
the point P.

In order to find the series expansion of the 4-ve-
locity (), and the 4-wave vector (k), consider
the vector fields k/(0) and u(0) that are covariantly
constant along the geodesic x'(0) and are equal to
(u), and (k) at the point P:

k(o,) = (k) u(o,) = (u), 9)

dki(0) — I ki(o) dxk, (10a)
do g

duF(G)__r: ( ) dx"' (10b)
do

Expanding the right-hand side of Egs. (10) into se-
ries with respect to g, yields

dki(jp)——F",kkén =T k'’

—F’ I K- l“;kklful“"lmr] n"o,+0(a), (11)
T gy

+I0.L, ko + DTS i’ + O(ay). (12)

All quantities on the right-hand side of Eqgs. (11)
and (12) are calculated at the point 0 = 0, x' = x.
k;(0) can be written as a Taylor series:

KO =ki(0,) - SO0,
(13)
2
L1 Ok (oP) 0.
2
Since (k') = k'(x;) = ki(0,), it is also given by
ki(o,) = ki(x) + k}, (x)ra,
(14)

1, .
+5k',l,m (xon'n"o; +0©3).

Substituting Eqgs. (11), (12) and (14) into Eq. (13)
yields

K (0)=k"(xé)+§5k’ (xi)oP

(15)
1> D?
+— 2 D5 2 k ( C)O-P
Here —_ denotes the covariant derivative in the di-

. Dé' .
rection of 7.
Using Eq. (8) the following expression for
the 4-velocity can be obtained:
dx, dr

i

W), =up(P)= [uc

dr, dr,

d i j
" Gr o3 Thinn'e; o
-1, 200y 106 ,0,m),
dt
dre

where uc = —4, s the 4-velocity of the centre of
mass. Expanding u, into a series analogically to
Eq. (13) results in the following expression:

u; (0)=

T D
dTP[uC +DT moy)
(17)

1 i Maq S
+5Rmv]u1(,n n O-[ZJ]_'_O(G;,O-PV)'

Here all quantities are calculated at the point 0 = 0,
x' = x;. Since the fields g, 1, and k] are parallelly
transported along the line x'(0), and a scalar pro-
duct of vectors does not change during the parallel
transportation,

(g,kw), = g,(x)ki(0)u4(0). (18)
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Using Egs. (5), (15), (17) and (18) we obtain

dt ; d ;
l+z=— —[ku. + —(kn'c
z dTP[ zuC dT( zn P)
(19)
+L —d(k N"Mo )]+ 00 .0,vv70).
2 dT m;s P P>~ P

Let d7 and dr, be the proper time intervals of
the centre of mass and the radiation source, respec-
tively. These quantities are given by

dr? = gij(xé) dxidud, (20a)
dr; = gij(x}l))dxl’;dx{;. (20b)
Expanding (20) into a series results in
dr P lom 2 3 2
e 1-R,,ucud] M °0p+ 00 p,0,v,v7). (21)
»

For a given moment of time the observer receives
rays with the following redshift:

1+2,(t) =—k,(C) dre 7)) (22a)
dr
14 20) =k (p) 2@ (22b)

P

Here t_ is the delay of the proper time of emission.
7 . can be calculated using the requirement that
the arrival time of the rays originating at the points
C and P is the same. Using this definition we re-
write Eq. (19):

1+ z(t) = dz [l+z,@T+7,)— —d (km'c,)
T, dr
. (23)
=5 35 w01+ 0@ 1,0, V7).

(For convenience we do not write the argument 7 of
the functions on the right-hand side.)

For the calculation of 7 we use the following
general equation that holds for an isotropic geo-

desic (see, e.g. [@]):
kdx' = const (along an isotropic geodesic). (24)

Here dx' is the coordinate distance between two
close geodesics. Applying this equation to the points
C and P yields

k-4 4o = —(ku'), dr = d. (25)
do

Consequently, we receive

o= 1

0

do

. 1 o
~kn'c, +Eki:’ nnlo;.

(26)
7, can be expressed as
Iret k i
T = Idtz+1z il o,
s zy+1
k.’ iy
+l R = L (kn')” dz, (27)

2z, +1 2(zy+1)° dz 7"

Substituting Eqs. (21) and (27) into Eq. (23) and
denoting n'=k'/ (1 + z,) we obtain

_ d 1 d i
1+Z—(l+zo)[1—E(nin GP)_E E(""‘fn nic?)

1 o, d 1 dz,
(') — &
2 T o T o

(28)

- Rlijmuéuénlﬂmaf,] +O(a3, 0,v, V),
where all quantities are calculated at the proper
time 7.

In order to find the observation time of the ray it
is necessary to calculate the following integral:

p
= j(l +z(t"))dr’. (29)
0
The redshift as a function of the observation time
can be calculated using formulas (28) and (29). An
example of a redshift as a function of the proper
time is shown in Fig. .

Equations of motion of a binary system in
the external gravitational field are considered
in [[L§]. The solution of these equations allow one
to find the Fermi coordinates of the source X“(z,)
as a function of the proper time. These quantities
are related to the notations used in the present pa-

per:

nno,=n (Q)X(“). (30)
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Fig. 2. Redshift as a function of the observation time

Consequently,
i 2 _ 7d X
= g X (31)

where n® is the unit vector of the ray in Fermi co-
ordinates: n n® = 1.

In the present paper an expression for the red-
shift of a radiation source that moves in the external
Schwarzschild field has been obtained. Expression
(28) with minor changes can be applied not only to
the Schwarzschild field but also to any gravitational
field, for example, the field of a Kerr black hole or
an external gravitational wave.

The obtained expression for the redshift and
the method of its calculation can be applied to a bi-
nary pulsar in the neighbourhood of the Galactic
centre. A more interesting problem is the recon-
struction of the motion of such binary system by
its redshift. A similar problem has been considered
for the case when extra images of the source are vis-
ible (see [@]). We are planning to leave the inverse
problem for a separate paper.
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