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Abstract A general theoretical description of a magnetic
resonance is presented. This description is necessary for a
detailed analysis of spin dynamics in electric-dipole-moment
experiments in storage rings. General formulas describing
a behavior of all components of the polarization vector at
the magnetic resonance are obtained for an arbitrary initial
polarization. These formulas are exact on condition that the
nonresonance rotating field is neglected. The spin dynam-
ics is also calculated at frequencies far from resonance
with allowance for both rotating fields. A general quantum-
mechanical analysis of the spin evolution at the magnetic
resonance is fulfilled and the full agreement between the clas-
sical and quantum-mechanical approaches is shown. Quasi-
magnetic resonances for particles and nuclei moving in non-
continuous perturbing fields of accelerators and storage rings
are considered. Distinguishing features of quasimagnetic res-
onances in storage ring electric-dipole-moment experiments
are investigated in detail. The exact formulas for the effect
caused by the electric dipole moment are derived. The dif-
ference between the resonance effects conditioned by the rf
electric-field flipper and the rf Wien filter is found and is cal-
culated for the first time. The existence of this difference is
crucial for the establishment of a consent between analytical
derivations and computer simulations and for checking spin
tracking programs. The main systematical errors are consid-
ered.

1 Introduction

The magnetic resonance (MR) is a powerful tool of investiga-
tion of basic properties of particles and nuclei. The MR is also
successfully used for studies of atoms in condensed matters.
The theory of the MR is presented in many books (see, e.g.,

a e-mail: alsilenko@mail.ru

Refs. [1,2]) and research articles. As a rule, the MR is a spin
resonance and its classical and quantum-mechanical descrip-
tions are equivalent. In the present work, we rigorously prove
the equivalence of these descriptions in the general case and
apply the general theory for an analysis of resonance effects
in electric-dipole-moment experiments with polarized beams
in storage rings.

The use of the MR in nuclear, particle, atomic, and con-
densed matter physics consists in a determination of a spin
deflection from the initial vertical direction. To find the mag-
netic moment, one measures the dynamics of the vertical
polarization. An exhaustive analysis of the spin evolution
in storage ring electric-dipole-moment (EDM) experiments
needs an advanced description of magnetic and quasimag-
netic resonances. In this case, spin interactions of moving par-
ticles and nuclei with magnetic and electric fields are defined
by the Thomas–Bargmann–Mishel–Telegdi (T-BMT) equa-
tion [3–5] or by its extension taking into account the EDM
[6–9]. An investigation of quasimagnetic resonances caused
by the EDM is important for planned experiments with a rf
electric-field flipper and a rf Wien filter (see Refs. [10–12]).
A change of the spin (pseudo-)vector is orthogonal to the spin
direction. One needs therefore to measure minor (horizontal)
polarization components when a resonance is stimulated by
a comparatively weak interaction. In particular, this situation
takes place for a search for EDMs. In storage ring experi-
ments, it can be convenient to use an initial horizontal beam
polarization and to measure an evolution of the vertical spin
component. A needed experimental precision is very high.
In addition, the resonance fields of the rf electric-field flipper
and the rf Wien filter are noncontinuous. For these reasons,
general formulas describing spin dynamics at the magnetic
and quasimagnetic resonances and their specific application
are necessary.
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In Sect. 2, we give the general description of the MR in
the framework of classical spin physics and electrodynamics.
The problem of the spin evolution at frequencies far from res-
onance is solved in Sect. 3. The general quantum-mechanical
description of spin dynamics at the MR is presented in Sect.
4. Section 5 is devoted to a discussion of the magnetic and
quasimagnetic resonances for moving particles and nuclei.
Quasimagnetic resonances for particles and nuclei moving
in noncontinuous perturbing fields of accelerators and stor-
age rings are considered in Sect. 6. Distinguishing features
of quasimagnetic resonances in storage ring electric-dipole-
moment experiments are investigated in Sect. 7. Finally, we
summarize the obtained results in Sect. 8.

The system of units h̄ = 1, c = 1 is used. We include h̄
and c into some equations when this inclusion clarifies the
problem.

2 General classical description of nuclear magnetic
resonance

In this section, we consider a usual design of the MR and
obtain general equations describing the spin dynamics. While
the results obtained are mostly known, the presented study
allows us to apply a common approach for a consideration
of classical and quantum-mechanical effects.

Let a spinning nucleus be placed into the magnetic field
B0 = B0ez and the angular frequency of the spin rotation is
equal to ω0. In this case, a rotating or oscillating horizontal
magnetic field with a closed angular frequency ω ≈ ω0 can
significantly deflect the nucleus spin from the initial verti-
cal direction. In particular, this effect allows one to measure
magnetic moments of nuclei/particles with a high precision.

As a rule, one applies the main vertical magnetic field B0

and the oscillating horizontal magnetic field B cos (ωt + χ).
In this case, the spin-dependent part of the classical Hamil-
tonian is given by

H = ω0 · ζ + 2E · ζ cos (ωt + χ), ω0 = −gNμN

h̄
B0,

E = −gNμN

2h̄
B, (1)

where ω0 is the angular velocity of the spin precession at
the absence of the horizontal magnetic field, ζ is the spin
(pseudo-)vector, gN is the nuclear g-factor, and μN is the
nuclear magneton. For particles, gNμN should be replaced
with egh̄/(2m), where g = 2mcμ/(es).

The direction of the (pseudo-)vector ω0 defines the orien-
tation of the so-called stable spin axis. In the absence of oscil-
lating fields, the spin remains stable if it is initially aligned
along this direction. If the initial spin orientation is different,
the spin describes a cone around the direction of ω0. The

stable spin axis is a static quantity defined before activating
the rf.

It is preferable to decompose the oscillating horizontal
magnetic field into two magnetic fields rotating in opposite
directions. The amplitudes of the rotating magnetic fields are
equal to B/2. We suppose that ω is close to ω0. In this case,
one rotating field is resonant and an effect of another rotating
field can be neglected. Let us direct E along the x axis:

E = Eex . (2)

This direction is not important in the considered case. The
turn of the direction of E by the angle ϕ is equivalent to the
change of phase of the rotating resonant field by the same
angle.

To calculate the spin dynamics, it is convenient to use the
frame rotating about the z axis with the angular velocity ω.
We suppose that the direction of the frame rotation coincides
with the direction of the spin rotation, ω0. The horizontal
magnetic field rotating in the lab frame becomes constant in
the rotating frame. In this frame, the spin rotates about the z
axis with the angular frequency ω0 −ω and the total angular
velocity of the spin rotation is equal to

� = ω0 − ω + E, � =
√

(ω0 − ω)2 + E2. (3)

We disregard the rotating field which rotation direction is
opposite to that of the spin. The vectors ω0 and ω are parallel
and E is the vector with the constant module E rotating in
the horizontal plane.

It is convenient to use the rotating coordinate system which
axis e′

z coincides with the axis ez of the lab frame. The axis
e′
x is supposed to be parallel to the direction of the rotating

field. The connection between the coordinate axes of the two
frames is given by

ex = cos (ωt + χ)e′
x − sin (ωt + χ)e′

y,

ey = sin (ωt + χ)e′
x + cos (ωt + χ)e′

y,

ez = e′
z . (4)

It is also convenient to introduce another rotating coordi-
nate system and to direct its vertical axis, e′′

z , along the vector
�. Since this vector lies in the plane x ′z′,

e′′
x = ω0 − ω

�
e′
x − E

�
e′
z, e′′

y = e′
y,

e′′
z = E

�
e′
x + ω0 − ω

�
e′
z . (5)

The spin rotates about the axis e′′
z with the angular fre-

quency �. As a result, the component P ′′
z of the unit polar-

ization vector is constant. Other components are given by

P ′′
x (t) = P ′′

x (0) cos �t − P ′′
y (0) sin �t,

P ′′
y (t) = P ′′

x (t) sin �t + P ′′
y (t) cos �t . (6)
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Equations (5) and (6) allow us to find dynamics of the
polarization vector in the primed coordinate system:

P ′
x (t) =

[
1 − (ω0 − ω)2

�2 (1 − cos �t)

]

× P ′
x (0) − ω0 − ω

�
sin �t P ′

y(0)

+ (ω0 − ω)E

�2 (1 − cos �t)P ′
z(0),

P ′
y(t) =

[
ω0 − ω

�
P ′
x (0) − E

�
P ′
z(0)

]
sin �t + cos �t P ′

y(0),

P ′
z(t) = (ω0 − ω)E

�2 (1 − cos �t)P ′
x (0) + E

�
sin �t P ′

y(0)

+
[

1 − E2

�2 (1 − cos �t)

]
P ′
z(0). (7)

We can use now Eq. (4) and express components of the
polarization vector in the primed coordinate system in terms
of Pi (t), Pi (0) (i = x, y, z). When the initial spin direction
is defined by the spherical angles θ and ψ ,

Px (0)=sin θ cos ψ, Py(0)=sin θ sin ψ, Pz(0)=cos θ,

(8)

the final result is given by

Px (t) = cos �t sin θ cos (ωt + ψ)

+ E2

�2 (1 − cos �t) sin θ cos (ψ − χ) cos (ωt + χ)

− ω0 − ω

�
sin �t sin θ sin (ωt + ψ)

+ E

�

[
ω0 − ω

�
(1 − cos �t) cos (ωt + χ)

+ sin �t sin (ωt + χ)

]
cos θ,

Py(t) = ω0 − ω

�
sin �t sin θ cos (ωt + ψ)

+ cos �t sin θ sin (ωt + ψ)

+E2

�2 (1 − cos �t) sin θ cos (ψ − χ) sin (ωt + χ)

+ E

�

[
ω0 − ω

�
(1 − cos �t) sin (ωt + χ)

− sin �t cos (ωt + χ)

]
cos θ,

Pz(t) = (ω0 − ω)E

�2 (1 − cos �t) sin θ cos (ψ − χ)

+ E

�
sin �t sin θ sin (ψ − χ)

+
[

1 − E2

�2 (1 − cos �t)

]
cos θ. (9)

Equation (9) presents the general classical description of
spin dynamics at magnetic and quasimagnetic resonances
and allows us to conclude that one can use both vertical and

horizontal initial polarizations. When the terms proportional
to E2 are neglected, Eq. (9) takes the form

Px (t) = sin θ cos (ω0t + ψ)

+ E

ω0 − ω

{
cos (ωt + χ) [1 − cos (ω0 − ω)t]

+ sin (ωt + χ) sin (ω0 − ω)t

}
cos θ,

Py(t) = sin θ sin (ω0t + ψ)

+ E

ω0 − ω

{
sin (ωt + χ) [1 − cos (ω0 − ω)t]

− cos (ωt + χ) sin (ω0 − ω)t

}
cos θ,

Pz(t) = cos θ

+ E

ω0 − ω

{
[1 − cos (ω0 − ω)t] cos (ψ − χ)

+ sin (ω0 − ω)t sin (ψ − χ)

}
sin θ. (10)

3 Spin evolution at frequencies far from resonance

It is instructive to consider the spin evolution at frequencies
far from resonance. This is especially important for the stor-
age ring electric-dipole-moment experiments, because some
periodical perturbations may imitate the presence of an EDM.

In the considered case, effects of two magnetic fields rotat-
ing in opposite directions are comparable. Therefore, it is not
appropriate to decompose B in Eq. (1) into the two rotating
fields.

It is significant that the results presented in this section
are also applicable to a horizontal perturbation caused by a
constant field. In this case, ω = 0.

Let us direct the x axis along the vectors B and E. When
the perturbation is negligible, the spin rotates with the angular
velocity ω0. Therefore, it is convenient to use the primed
coordinate system rotating with this angular velocity:

e′
x = cos (ω0t)ex + sin (ω0t)ey,

e′
y = − sin (ω0t)ex + cos (ω0t)ey, e′

z = ez . (11)

If we denoteK = 2E cos (ωt + χ) = 2E cos (ωt + χ)ex ,
the spin dynamics in the primed frame is defined by

dζ ′

dt
= K′ × ζ ′, K′

x = 2E cos (ωt + χ) cos (ω0t),

K′
y = −2E cos (ωt + χ) sin (ω0t). (12)

It is convenient to present the unit spin vector as a sum
of two parts, ζ (t) = S(t) + η(t), where S rotates with the
angular velocity ω0. In this case, S ′ is constant, S ′ = ζ ′(0),
and η(0) = 0. In the approximation used,
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dζ ′

dt
= dη′

dt
= K′ × S ′. (13)

In the general case, the initial spin direction is defined by
the spherical angles θ and ψ [see Eq. (8)]. An integration
on time results in the following evolution of the polarization
vector P = ζ/s:

Px (t) = sin θ cos (ω0t + ψ)

+
(

E

ω0 + ω

{
cos (ωt + χ) [1 − cos (ω0 + ω)t]

− sin (ωt + χ) sin (ω0 + ω)t

}

+ E

ω0 − ω

{
cos (ωt + χ) [1 − cos (ω0 − ω)t]

+ sin (ωt + χ) sin (ω0 − ω)t

})
cos θ,

Py(t) = sin θ sin (ω0t + ψ)

+
(

− E

ω0 + ω

{
sin (ωt + χ) [1 − cos (ω0 + ω)t]

+ cos (ωt + χ) sin (ω0 + ω)t

}

+ E

ω0 − ω

{
sin (ωt + χ) [1 − cos (ω0 − ω)t]

− cos (ωt + χ) sin (ω0 − ω)t

})
cos θ,

Pz(t) = cos θ

+
(

E

ω0 + ω

{
[1 − cos (ω0 + ω)t] cos (ψ + χ)

+ sin (ω0 + ω)t sin (ψ + χ)

}

+ E

ω0 − ω

{
[1 − cos (ω0 − ω)t] cos (ψ − χ)

+ sin (ω0 − ω)t sin (ψ − χ)

})
sin θ. (14)

Evidently, this equation is compatible with Eq. (10). Equa-
tion (14) can be reduced to the form

Px (t) = sin θ cos (ω0t + ψ)

+
{

E

ω0 + ω

[
cos (ωt + χ) − cos (ω0t − χ)

]

+ E

ω0 − ω

[
cos (ωt + χ) − cos (ω0t + χ)

]}
cos θ,

Py(t) = sin θ sin (ω0t + ψ)

+
{
− E

ω0 + ω

[
sin (ωt + χ) + sin (ω0t − χ)

]

+ E

ω0 − ω

[
sin (ωt + χ) − sin (ω0t + χ)

]}
cos θ,

Pz(t) = cos θ +
(

E

ω0 + ω

{
cos (ψ + χ)

− cos [(ω0 + ω)t + ψ + χ ]
}

+ E

ω0 − ω

×
{

cos (ψ − χ) − cos [(ω0 − ω)t + ψ − χ ]
})

sin θ.

(15)

The result obtained can be useful when a background is
known. In this case, measurements at frequencies far from
resonance can be applied in a statistical analysis. Otherwise,
Eqs. (14) and (15) make it possible to take into account some
periodical perturbations imitating the presence of the EDM.
The beam rotates in a storage ring with the cyclotron fre-
quency ωc. In this case, any local radial or longitudinal mag-
netic field becomes a perturbation oscillating with the fre-
quency ωc or with a multiple frequency in the presence of an
appropriate symmetry. Such perturbations are clearly mani-
fested by spin tracking [13].

An analysis of Eqs. (7), (9), and (15) displays an important
property of magnetic and quasimagnetic resonances. When
the perturbing field is rather weak (|E| � �) and it needs to
be determined, it is preferable to measureminor spin compo-
nents. Specifically, the use of the initial vertical polarization
requires a measurement of a horizontal polarization. It is of
the order of |E|/�, while a change of the vertical spin com-
ponent is of the order of E2/�2. Both of the horizontal spin
components oscillate but only the component collinear to E

is nonzero on average. In practice, a detection of the oscilla-
tory spin motion is easier than that of the small constant part
of the horizontal spin component collinear to E.

When the initial polarization is horizontal, it is preferable
to measure the vertical polarization which is of the order
of |E|/�. In the equations for the horizontal spin compo-
nents, terms proportional to E/� vanish when the initial ver-
tical polarization is equal to zero. Thus, monitoring of these
components is not useful. This approach has been applied
for a search for a muon EDM [14] in the framework of the
muon g−2 experiment at Brookhaven National Laboratory
(see Ref. [15]). The search has been carried out for the initial
longitudinal polarization of muons and the constant radial
perturbing field caused by the EDM. The vertical spin com-
ponent has been detected. This experiment has allowed one
to obtain an upper bound on the muon EDM [14].

4 Quantum-mechanical description of magnetic
resonance

The detailed classical description of the MR given in the pre-
vious sections exhaustively defines the spin motion caused
by interactions linear in the spin. This description is well sub-
stantiated because it is based on manifestly covariant initial
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equations. However, spin-dependent parts of Hamiltonians
contain also terms quadratic in the spin for deuteron and other
nuclei with the spin s ≥ 1. A resonance experiment for the
deuteron (s = 1) is a part of the EDM program [16,17]. The
presence of the terms quadratic in the spin leads to system-
atical effects mimicking the EDM under the MR [18–26].
While the classical description of these effects is possible
[18–22], a more general theory which has been developed in
Refs. [23–25] is based on relativistic quantum-mechanical
Hamiltonians in the Foldy–Wouthuysen representation (see
Ref. [27–29] and the references therein). In the present study,
we do not consider the effects nonlinear in the spin. Nev-
ertheless, a need for future investigations stipulates for an
advanced quantum-mechanical description of the standard
MR conditioned by spin interactions linear in the spin. To
solve this problem, we may use the Pauli spin matrices even
for nuclei with the spin s ≥ 1. This possibility is based on
universal commutation relations for spin components which
are satisfied for any spins. The identity of the spin motion
of particles with spins 1/2 and 1 near a resonance has been
demonstrated in Ref. [30].

It is convenient to use the matrix Hamiltonian method for
a quantum-mechanical description of the MR. When spin-
tensor interactions are not taken into account, the spin rota-
tion of nuclei/particles with spin 1/2 and with higher spins is
very similar. Therefore, spin rotation of nuclei/particles with
spin s ≥ 1 can also be described with the Dirac matrices act-
ing on the two-component spin wave function. We consider
the same field configuration as in Sect. 2.

Any Foldy–Wouthuysen Hamiltonian [27–29] of a rela-
tivistic spin-1/2 particle can be presented in the form

HFW = H0 + 1

2
� · �1 + 1

2
� · �2, (16)

where H0 is the sum of spin-independent terms. The lower
spinors of the corresponding Foldy–Wouthuysen wave func-
tions are zero. The classical limit of the sum � = �1 + �2

defines the angular velocity of the spin precession. As a rule,
its division into two parts mirrors contributions of spin inter-
actions with the electric and magnetic fields.

Averaging the spin-dependent terms with the four-compo-

nent spin wave functions ζ+ =

⎛

⎜⎜
⎝

1
0
0
0

⎞

⎟⎟
⎠ and ζ− =

⎛

⎜⎜
⎝

0
1
0
0

⎞

⎟⎟
⎠ cor-

responding to the spin-up and spin-down states, respectively,
results in

〈i |� · �1 + � · �2| j〉 = (σ · �)i j , � = �1 + �2, (17)

where � is the operator of the spin precession which classical
limit is defined by Eq. (3) and σ is the Pauli matrix. Certainly,
averaging is fulfilled with both the spin and the coordinate
wave functions.

As a result, the matrix Hamiltonian takes the form

H = E0 + 1

2
σ · �. (18)

It acts on the two-component wave function 	(t) =(
	+(t)
	−(t)

)
.

The components of the polarization vector are defined by

Pi = 〈Si 〉
s

, i = x, y, z, (19)

where the Si are corresponding spin matrices and s is the spin
quantum number. Averages of the spin operators σi = 2Si
are expressed by their convolutions with the wave function
	(t).

The corresponding relations for the polarization vector
have the form

Px = C+C∗− + C−C∗+, Py = i(C+C∗− − C−C∗+),

Pz = C+C∗+ − C−C∗−. (20)

The quantity E is defined by Eq. (2). Since

B cos (ωt+χ)=(B/2){exp [i(ωt+χ)]+exp [−i(ωt+χ)]},
the Hamiltonian (18) reads

H = E0 + 1

2

(
ω0 G

G −ω0

)
,

G = E{exp [i(ωt + χ)] + exp [−i(ωt + χ)]}. (21)

It is convenient to make the following transformation of the
wave function:

	(t) =
(

exp [−i(ωt + χ)/2] 0
0 exp [i(ωt + χ)/2]

)

exp (−i E0t)C(t), (22)

It can easily be shown with the use of Eq. (20) that this
transformation is equivalent to the transition to the frame
rotating with the angular frequency ω. Since

	+	∗− + 	−	∗+ = cos (ωt + χ)(C+C∗− + C−C∗+)

− sin (ωt + χ)i(C+C∗− − C−C∗+),

i(	+	∗− − 	−	∗+) = sin (ωt + χ)(C+C∗− + C−C∗+)

+ cos (ωt + χ)i(C+C∗− − C−C∗+),

	+	∗+ − 	−	∗− = C+C∗+ − C−C∗−,

the connection between components of the polarization vec-
tor P calculated with the wave functions 	(t) and C(t),
respectively, has the form

Px = cos (ωt + χ)P ′
x − sin (ωt + χ)P ′

y,

Py = sin (ωt + χ)P ′
x + cos (ωt + χ)P ′

y,

Pz = P ′
z . (23)
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The primed components P ′
i (i = x, y, z) correspond to the

wave function C(t).
Evidently, Eqs. (4) and (23) fully agree.
The transformation (22) brings the equation for the matrix

Hamiltonian into the form

i
dC(t)

dt
= 1

2

(
ω0 − ω G exp [i(ωt + χ)]

G exp [−i(ωt + χ)] −ω0 + ω

)
C(t).

(24)

The terms in Eq. (24) oscillating with the angular fre-
quency 2ω can be neglected and this equation takes the form

i
dC(t)

dt
= 1

2

(
ω0 − ω E

E −ω0 + ω

)
C(t). (25)

The solution of Eq. (25) is given by

C+(t) =
(

cos
�t

2
− i

ω0 − ω

�
sin

�t

2

)
C+(0)

− i
E

�
sin

�t

2
C−(0),

C−(t) = −i
E

�
sin

�t

2
C+(0)

+
(

cos
�t

2
+ i

ω0 − ω

�
sin

�t

2

)
C−(0), (26)

where � is defined by Eq. (3).
If we use Eq. (26) for a derivation of P ′

i (t) in terms of
P ′
i (0) (i = x, y, z), we arrive at Eq. (7). This fact clearly

demonstrates the full agreement of results obtained by the
classical and quantum-mechanical approaches. Similarly to
the precedent section, we can use Eqs. (7), (8), and (23) for a
derivation of the general equation (9). Thus, this equation is
valid not only in classical spin physics but also in quantum
mechanics.

The quantum-mechanical description of the spin evolu-
tion at the MR is often used in textbooks (see Ref. [2]) and
research articles. In the present study, the general case has
been considered and the full agreement between the classical
and quantum-mechanical approaches has been demonstrated.
This agreement seems to be very natural. However, its proof
is not redundant, because we should take into account the
existence of the difference between classical and quantum-
mechanical descriptions of some spin effects (see Ref. [31]).
In future investigations of resonance phenomena for nuclei
with the spin s ≥ 1, taking into account spin interactions
quadratic in the spin will be necessary. Such interactions are
caused by the tensor electric and magnetic polarizabilities
and the electric quadrupole moment. In this case, a transition
to the spin-1 matrices can be necessary.

5 Magnetic and quasimagnetic resonances for moving
particles and nuclei

Magnetic and quasimagnetic resonances for moving parti-
cles and nuclei have some distinguishing features. The main
difference from the MR for nuclei at rest is the use of the T-
BMT equation [3–5] or its extension taking into account the
EDM [6–9] for a description of spin coupling with external
fields. The general equation extended on the EDM defines
the angular velocity of spin precession in external electric
and magnetic fields in the Cartesian coordinates and has the
form [6–9]

dζ

dt
= (�T-BMT + �EDM) × ζ ,

�T-BMT = e

m

[(
G + 1

γ + 1

)
β × E

−
(
G + 1

γ

)
B + Gγ

γ + 1
(β · B)β

]
,

�EDM = − eη

2m

[
E − γ

γ + 1
(β · E)β + β × B

]
,

β = v
c
, (27)

where G = (g − 2)/2, η = 2mcd/(es), and d is the EDM.
Equation (27) is useful when the fields have definite direc-

tions relative to the Cartesian coordinates. As a rule, it is not
the case for particles and nuclei in accelerators and storage
rings. Their motion is cyclic and the fields are usually orthog-
onal to the beam trajectory. Therefore, it is natural to define
the fields and the spin motion relative to the radial and lon-
gitudinal coordinates. The use of the cylindrical coordinate
system [32] decreases the angular frequency of the spin rota-
tion about the vertical axis by the cyclotron frequency ωc. It
is important that the angular frequencies of the spin rotation
about the two horizontal axes remain the same. The result-
ing angular velocity of the spin rotation in the cylindrical
coordinate system is equal to [32]

�(cyl) = − e

m

{
GB − Gγ

γ + 1
β(β · B)

+
(

1

γ 2 − 1
− G

)
(β × E) + 1

γ

[
B‖ − 1

β2 (β × E)‖
]

+η

2

(
E − γ

γ + 1
β(β · E) + β×B

)}
. (28)

The symbol ‖ means a horizontal projection for any vector.
As a rule, the vertical and horizontal components of the

magnetic and quasimagnetic fields, B and β × E, enter into
the expressions for ω0 and E with different factors. In partic-
ular, this situation takes place for a beam in a purely magnetic
storage ring:

ω0 = −eG

m
B0, E = − e

2m

(
1

γ
+ G

)
B. (29)
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Here B is the amplitude of the perturbing oscillatory mag-
netic field. In the purely magnetic storage ring, the average
radial magnetic field is equal to zero. In a storage ring with
electric focusing, it should be counterbalanced by a focusing
vertical electric field. In this case, the horizontal components
of the average Lorentz force vanish:

〈FL‖〉 = e[〈E‖〉 + 〈(β × B)‖〉] = 0.

To describe spin dynamics in accelerators and storage
rings, one often uses the Frenet–Serret (FS) coordinate sys-
tem. The axes of the FS coordinate system depend on the
particle trajectory. Three axes of this coordinate system are
directed parallel to the velocity and momentum, parallel to
the acceleration vector, and along the binormal orthogonal to
these two axes. Relative to the Cartesian coordinate system,
the FS one rotates about all three axes, not only around the
vertical axis as the cylindrical coordinate system.

To find the angular velocity of the spin motion in the
FS coordinate system, it is necessary to subtract an angu-
lar velocity of rotation of the vector N = p/p = v/v from
�T-BMT + �EDM. The angular velocity of the spin motion is
equal to [8]

�(FS) = − e

m

[
GB − Gγ

γ + 1
β(β · B)

+
(

1

γ 2 − 1
− G

)
(β × E)

+ η

2

(
E − γ

γ + 1
β(β · E) + β × B

)]
. (30)

A comparison of the cylindrical and FS coordinate sys-
tems has been made in Ref. [33]. Of course, Eq. (30) is more
compact. However, this compactness is achieved owing to
the fact that the directions of the FS coordinate axes change
with time, while the directions of the axes of the cylindrical
coordinate system are fixed. Therefore, Eq. (30) can create
the illusion that the effect of vertical and radial magnetic
fields on the spin is the same. However, when E = 0 and the
EDM is neglected, the ratios �

(cyl)
ρ /Bρ and �

(cyl)
z /Bz differ

by the factor (Gγ + 1)/(Gγ ). For leptons (the electron and
the muon) this ratio can be rather large. The reason is that, to
determine an observable effect, the motion of the axes of the
FS coordinate system should be added to the spin motion in
this coordinate system. Once this circumstance is taken into
account, the cylindrical and FS coordinate systems give an
equivalent description of the spin motion [33].

In storage ring EDM experiments, the perturbing field
should act on the EDM. For this purpose, one can use a reso-
nance radial electric field (a rf electric-field flipper). One can
also add a vertical magnetic field oscillating with the same
resonance frequency. When the Lorentz force created by this
device is equal to zero, one obtains a rf Wien filter [10]. The
very weak perturbing field is caused by the interaction of the

EDM with the main magnetic or electric field. This perturb-
ing field is constant and rotates the spin about the radial axis.
This case has been discussed at the end of Sect. 3.

We can mention that a constant perturbation rotating the
spin about the radial axis is also conditioned by the Earth’s
gravity [34–36]. This perturbation is very weak.

A detailed consideration of evolution of all spin compo-
nents is necessary because an interaction stimulating a res-
onance can be very weak. Evidently, dζ/(dt)⊥ζ . When the
initial beam polarization is vertical, one needs to measure
horizontal spin components. When the initial beam polar-
ization is horizontal, it is convenient to monitor the vertical
spin component (see Sect. 3). These two possibilities may be
realized in storage ring experiments on a search for EDMs
[16,25,37,38]. In these cases, the action of oscillating fields
on the EDM stimulates a resonance, while their action on the
magnetic moment does not bring about any resonance effects.
This takes place because the quantities �T-BMT and �EDM

in Eq. (27) are usually orthogonal. Corresponding quanti-
ties in Eqs. (28) and (30) possess the same property. In any
case, spin resonances originating from the EDM are quasi-
magnetic and are not magnetic. We can also mention that the
case when the x and z components of the angular velocity of
spin precession are constant [see Eq. (7)] corresponds to the
conditions of the EDM experiment based on the frozen spin
method [39] (cf. Eq. (22) in Ref. [25]).

It has been proven in Ref. [38] that the use of the initial
vertical polarization cancels some systematical errors. The
use of the initial horizontal polarization does not lead to such
a cancellation. However, the initial vertical polarization can
meet other problems [38].

We can conclude that specific conditions of the magnetic
and quasimagnetic resonances for particles and nuclei mov-
ing in accelerators and storage rings influence only param-
eters ω0 and E but do not change the general equations (9)
and (15) defining the spin dynamics. A calculation of small
corrections appearing in exact solutions needs a modification
of initial equations. This problem will be considered in the
next section.

It can be added that an extremely high precision of stor-
age ring EDM experiments needs taking into account tensor
electric and magnetic polarizabilities for nuclei with spin
s ≥ 1 (e.g., deuteron) [18–21]. The tensor magnetic polariz-
ability, βT , produces the spin rotation with two frequencies
instead of one, beating with a frequency proportional to βT ,
and causes transitions between vector and tensor polariza-
tions [18–22,24]. A beam with an initial tensor polariza-
tion acquires a final vector polarization [23–25]. Resonance
effects caused by the tensor polarizabilities have been cal-
culated in Refs. [18–23]. A comparison of spin dynamics
conditioned by the tensor polarizabilities and the EDM has
been carried out in Refs. [23,25,26]. The corresponding spin

123



341 Page 8 of 14 Eur. Phys. J. C (2017) 77 :341

motion without taking into account spin-tensor effects is pre-
sented by the formulas of Sect. 3 provided that ω = 0.

6 Quasimagnetic resonance in a noncontinuous
perturbing field

The next problem which should be taken into considera-
tion in connection with the storage ring EDM experiments
is a discontinuity of perturbing fields. In the planned EDM
experiments with protons, deuterons, and 3He ions at COSY
[16,17], one will use resonance stimulations with a rf electric-
field flipper and a rf Wien filter. The two devices create oscil-
latory fields. The frequencies of the perturbing fields are syn-
chronized with that of the spin frequency. The both devices
provide for standard conditions of the MR. Semertzidis
[40] and Nikolaev [41] have compared the actions of the rf
electric-field flipper and the rf Wien filter on the spin. Orlov
has shown [42] that a part of the longitudinal spin component
is frozen (constant in time) in the oscillatory radial electric
field. A more advanced theoretical analysis has been ful-
filled in Ref. [10]. The theoretical calculations agree with
spin tracking [10,40].

The rf Wien filter unlike the rf electric-field flipper does
not affect the motion of particles and nuclei. This is a great
advantage of the former device. The latter device can be used
only if it does not destroy the beam stability.

JEDI collaboration plans to perform main experiments
with the rf Wien filter [11,12,17]. The static version of this
filter is frequently used to turn the spin without an effect on
beam dynamics. The rf electric-field flipper may be applied
in precursor experiments [16]. The initial beam polarization
is planned to be vertical. The initial horizontal beam polar-
ization can also be used.

The stimulating frequency, ω′, should either (almost) coin-
cide with that of the spin rotation, ω0, or differ by nωc (n =
±1,±2, . . . , ) where ωc is the cyclotron frequency. This
property can be properly substantiated and a rigorous quan-
titative description of the spin evolution can be given.

One usually puts devices like the electric-field flipper
and the rf Wien filter into a straight section of the storage
ring. Since lengths of the flipper and the filter are small
as compared with the ring circumference, an approximation
of the perturbing field by the delta function is permissible.
An expansion of the delta function into the Fourier series is
defined by the well-known formula

∞∑

n=−∞
δ(� − 2πn) = 1

2π
+ 1

π

∞∑

n=1

cos (n�)

= 1

2π

∞∑

n=−∞
cos (n�),

where � = ωct is the phase.

As a result, the following relations are valid (see, e.g., Ref.
[43]):

sin (ω′t + χ)

∞∑

n=−∞
δ(� − 2πn)

= 1

2π

∞∑

n=−∞
sin [(ω′ + nωc)t + χ ]

= 1

2π

∞∑

n=−∞
sin [(n + ν)� + χ ],

cos (ω′t + χ)

∞∑

n=−∞
δ(� − 2πn)

= 1

2π

∞∑

n=−∞
cos [(ω′ + nωc)t + χ ]

= 1

2π

∞∑

n=−∞
cos [(n + ν)� + χ ], (31)

where ν = ω′/ωc is the modulation tune. In this case, ω0 =
(n + ν)ωc and ω′ = (νs + K )ωc, where νs = ω0/ωc is the
spin tune.

Equation (31) shows a possibility to use resonance devices
at different frequencies. In particular, an appropriate choice
for the proton and the deuteron is K = −2,−3 and K =
+1,+2, respectively.

More adequately, the electric fields of the flipper and the
filter can be characterized as follows:

�‖ = 2E cos (ω′t + χ), E = − eη

4m
E(�),

E(�) =
{
E0 if � ∈ [−πl

C + 2πn, πl
C + 2πn

]

0 if � /∈ [−πl
C + 2πn, πl

C + 2πn
] ,

n = 0,±1,±2, . . . , (32)

where l is the length of the flipper/filter, C is the ring circum-
ference. The spin-dependent part of the classical Hamiltonian
is defined by Eq. (1) and the electric field E0 is directed radi-
ally.

In this case, an expansion into the Fourier series has the
form

E(�) = E0

∞∑

n=−∞
an cos (n�), (33)

where

a0 = l

C
, an = 1

πn
sin

πnl

C
. (34)

123



Eur. Phys. J. C (2017) 77 :341 Page 9 of 14 341

As a result,

�‖ = − eη

2m
E0

∞∑

n=−∞
an cos [(ω′ + nωc)t + χ ]

= − eη

2m
E0

∞∑

n=−∞
an cos [(n + ν)� + χ ]. (35)

Equations (34) and (35) show that the considered devices
are not effective for oscillation modes n > C/(2l). Oth-
erwise, the Fourier coefficients for the delta function and
the flipper/filter of a finite length agree on condition that
(nl/C) � 1. For a more precise Fourier expansion, one can
use real parameters of the resonator fields.

The horizontal component of the angular velocity of the
spin precession conditioned by a resonance interaction of the
EDM with the radial electric field can be presented in the
form

�‖ = 2E cos (ωt + χ), E = − eη

4m
anE0. (36)

The resonance frequency, ω, satisfies the condition

ω ≡ ω′ + nωc ≈ ω0. (37)

An expansion of a magnetic field in the rf Wien filter in
a Fourier series is very similar. Evidently, the influence as
regards resonance of continuous and noncontinuous perturb-
ing fields on the spin is practically the same.

The results presented give an exhaustive description of
storage ring resonance effects caused by the magnetic dipole
moment (MDM). For this purpose, one should simply sub-
stitute needed expressions for �‖ and E into corresponding
equations. Specifically,

�‖ = 2E cos (ωt + χ) = − e

m

(
G + 1

γ

)
anB

(r)
0 cos (ωt + χ)

(38)

for the radial magnetic field and

�‖ = 2E cos (ωt + χ) = − eg

2mγ
anB

(l)
0 cos (ωt + χ) (39)

for the longitudinal magnetic field. The resonance effect
caused by the MDM and stimulated by the rf Wien fil-
ter with the radial magnetic and vertical electric fields
[(E0 + β × B(r)

0 )‖ = 0] is defined by

�‖ = 2E cos (ωt + χ) = − eg

2mγ 2 anB
(r)
0 cos (ωt + χ).

(40)

In Sects. 2–4, the vertical direction of the stable spin
axis is considered. The presence of the EDM tilts this direc-
tion. Therefore, the results obtained in Sects. 2–4 cannot be
directly applied to describe the spin motion in storage ring
EDM experiments. This problem is solved in the next section.

7 Distinguishing features of a quasimagnetic resonance
in storage ring electric-dipole-moment experiments

Main distinguishing features of storage ring EDM experi-
ments are a simultaneous influence of external fields on the
electric and magnetic dipole moments and the existence of
a resonance effect even when the stimulating torque acting
on the EDM is equal to zero. The last situation occurs when
the resonance in a EDM experiment is stimulated by the rf
Wien filter with the vertical magnetic and radial electric fields
[(E0 + β × B(osc)

0 )r = 0]. The paradoxical property of the
existence of the resonance effect on condition that �EDM = 0
has been first discovered by Semertzidis [40] with a computer
simulation. The existence of this effect has been confirmed
and has been rigorously proven by the subsequent theoretical
analysis fulfilled in Refs. [10,41,42].

In the present work, we give a very simple explanation of
the distinguishing features of a quasimagnetic resonance in
storage ring EDM experiments. This explanation is valid for
any initial polarization of particles or nuclei.

Let us first consider the possibility of resonance stimu-
lated by the oscillating vertical magnetic field in the stor-
age ring with the main magnetic field B0. The oscillat-
ing vertical magnetic field can be presented in the form
B(�) cos (ω′t + χ), where

B(�) = B(osc)
0

∞∑

n=−∞
an cos (n�), B(osc)

0 = B(osc)
0 ez .

(41)

An expansion into the Fourier series results in

B(�) cos (ω′t+χ)= B(osc)
0

∞∑

n=−∞
an cos [(ω′+nωc)t+χ ],

(42)

where the coefficients an are defined by Eq. (34). We consider
only the resonance mode (37).

The angular velocity of the spin rotation in the cylindrical
coordinates is given by (β = βeφ)

�(cyl) = ω0[1 + bz cos (ωt + χ)]
× ez − eη

2m
βB0 [1 + br cos (ωt + χ)] er ,

ω0 = −eG

m
B0. (43)

We suppose that the quantities ω0 and β can be positive and
negative. In the considered case,

br = b(m)
r = bz = b(m)

z = an B
(osc)
0

B0
. (44)

It is convenient to divide the vector �(cyl) into the constant
and oscillating parts, �(0) and �(1), as follows:
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(0)
MDMΩ

(1)
MDMΩ

(0)
EDMΩ(1)

EDMΩ

(1)Ω

(0)Ω

Fig. 1 Magnetic-field “flipper”. A summation of the contributions
from the EDM and the MDM leads to the collinearity of the constant
and oscillating parts of the vector �(cyl). A resonance effect does not
exist

�(cyl) = �(0) + �(1) cos (ωt + χ).

It is also convenient to consider separately the contributions
from the electric and magnetic dipole moments. The former
contributions are proportional to η.

Figure 1 presents the angular velocity of the spin rotation.
Evidently, the constant and oscillating parts of the vector
�(cyl) are collinear. The vector �(0) defines the direction of
the stable spin axis and forms the small angle

ϑ = sin ϑ = − eη

2mω0
βB0 = ηβ

2G
(45)

with the z axis. We may consider only terms linear in η. In
this approximation,

�(cyl) = ω0[1 + bz cos (ωt + χ)]eϑ , eϑ = ez + ϑer .

(46)

Equation (46) and Fig. 1 show that any resonance effect does
not exist.

It can similarly be proven that the resonance effect does
not appear in an all-electric storage ring when the main and
oscillating electric fields are also radial.

The situation is different when the resonance is stimulated
by the rf electric-field flipper in the storage ring with the main
magnetic field. In this case,

E0 = E0er , br = b(e)
r = anE0

βB0
,

bz = b(e)
z = −βanE0

GB0

(
1

γ 2 − 1
− G

)
. (47)

All parameters can be positive and negative.

(1)Ω

(1)
EDMΩ (0)

EDMΩ

(1)Ω

(0)Ω(0)
MDMΩ

(1)
MDMΩ

Fig. 2 Electric-field flipper. The resonance effect takes place and is
defined by the vector �

(1)
ζ

It is very convenient to switch to the new axes, eζ =
er −ϑez, eφ and eϑ , to describe the resonance spin dynamics
in the general case. In this case,

�(cyl) = ω0[1 + bz cos (ωt + χ)]eϑ

+ω0ϑ(br − bz) cos (ωt + χ)eζ . (48)

As before, the vector eϑ specifies the direction of the stable
spin axis. The parameters used are defined by Eqs. (43), (45),
and (47). It can be checked that

b(e)
r − b(e)

z = anE0

βB0
· G + 1

Gγ 2 = − eganE0

2mβγ 2ω0
. (49)

This situation is illustrated by Fig. 2. The vectors �(0) and
�(1) are not collinear and the resonance effect takes place.

If |bz | � 1, the general equations obtained in the preced-
ing sections can be used. In this case,

E = 1

2
ω0ϑ(b(e)

r − b(e)
z ) = − eη

4m
· G + 1

Gγ 2 anE0. (50)

When the initial spin direction is horizontal, the vertical spin
polarization defined by Eq. (15) reads

Pz(t)=Et sin (ψ − χ)=− eη

4m
· G + 1

Gγ 2 anE0t sin (ψ−χ).

(51)

This equation agrees with the previous results [10,42]. We
can mention that the longitudinal direction is opposite to eφ

for positively charged particles. We underline that the present
study provides for the description of the beam polarization in
the general case. In particular, the horizontal spin polarization
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at the initial vertical spin direction is given by

Px (t) = Et sin (ωt + χ),

Py(t) = −Et cos (ωt + χ). (52)

Just the initial vertical beam polarization will be used in the
planned experiments at COSY [16,17].

As a rule, the condition |bz | � 1 is a satisfactory approxi-
mation because the length of the flipper is much less than the
ring circumference (l � C). In the planned deuteron EDM
precursor experiment [16], l/C = 5 × 10−3.

The precedent studies [10,40–42] have shown that the
addition of the rf magnetic-field flipper with the vertical field
to the rf electric-field flipper significantly improves beam
dynamics but does not eliminate the EDM effect. This con-
clusion first followed from the computer simulation [40]. It
is confirmed by the geometrical method.

The above-mentioned addition allows one to obtain the rf
Wien filter and leads to a very unusual spin dynamics. The
Lorentz force in this device vanishes. Evidently, the reso-
nance part of the radial component of �(cyl) is proportional
to the Lorentz force (β ·E = 0) and also vanishes. In this case,
B(osc)

0 = −E0/β. The angular velocity of the spin rotation
takes the form

�(cyl) = ω0[1 + (b(e)
z + b(m)

z ) cos (ωt + χ)]ez + ω0ϑer ,

(53)

where ϑ is given by Eq. (45). Amazingly, there is not an
effect of the resonance field on the EDM and the resonance
effect proportional to the EDM is ensured by the action of
the oscillating fields on the MDM. To determine this effect,
it is convenient to pass to the axes eϑ and eζ :

�(cyl) =ω0[1 + δ cos (ωt+χ)]eϑ −ω0ϑδ cos (ωt + χ)eζ .

(54)

It follows from Eqs. (43), (44) and the relation b(m)
r = −b(e)

r

that

δ = b(e)
z + b(m)

z = b(e)
z − b(e)

r = −anE0

βB0
· G + 1

Gγ 2 . (55)

Figure 3 shows that the vectors �(0) and �(1) are not
collinear and therefore the rf Wien filter provides for the
resonance effect.

If we neglect δ as compared with unit in the term propor-
tional to eϑ , we can use the general equations obtained in the
precedent sections. In this case,

E = −1

2
ω0ϑδ = − eη

4m
· G + 1

Gγ 2 anE0. (56)

In this approximation, the addition of the oscillating ver-
tical magnetic field does not change the resonance effect.
However, taking into account terms of the order of δ demon-
strates a difference between the EDM effects caused by the

(0)
MDMΩ

(1)
MDMΩ

(0)Ω

(0)
EDMΩ

(1)Ω
(1)Ω

Fig. 3 rf Wien filter. While the resonance action on the EDM vanishes,
the resonance effect is ensured by the action of the oscillating fields on
the MDM and is defined by the vector �

(1)
ζ

rf electric-field flipper and the rf Wien filter (containing the
same rf electric-field flipper). While the difference is small, it
is crucial for the establishment of consent between analytical
derivations and computer simulations.

To simplify the derivation, we may consider the case
when χ = 0, ω = ω0 and the initial beam polarization
is azimuthal. In this case, the spin azimuth is equal to

φ = π

2
+ ω0t + δ sin ω0t

and the azimuthal beam polarization is given by

Pφ(t) = sin φ = cos (ω0t + δ sin ω0t). (57)

As a result, the change of the beam polarization along the
eϑ axis during one spin revolution reads

�Pϑ = −ω0ϑδ

∫ T/2

−T/2
cos (ω0t + δ sin ω0t) cos ω0t dt, (58)

where T = 2π/ω0. Since

cos (ω0t + δ sin ω0t) cos ω0t

= 1

2
[cos (δ sin ω0t) + cos (2ω0t + δ sin ω0t)],

we can apply properties of the Bessel functions (n is integer):

Jn(z) = 1

π

∫ π

0
cos (nx − z sin x)dx,

J−n(z) = (−1)n Jn(z).

With the use of tables of integrals [44], we obtain the follow-
ing exact formula:

�Pϑ = πϑ[J0(|δ|) + J2(|δ|)]δ. (59)
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As a result, the average build-up of the vertical spin polar-
ization is given by

Pz(t) = −ω0ϑδ

2
[J0(|δ|) + J2(|δ|)]t

= − eη

4m
· G + 1

Gγ 2 anE0[J0(|δ|) + J2(|δ|)]t. (60)

We can add that

J0(|δ|) + J2(|δ|) = 2

|δ| J1(|δ|).

When |δ| � 1, J0(|δ|) + J2(|δ|) ≈ 1 − δ2/8.
When δ → 0, we obtain the approximate equation (51)

(on condition that ψ = π/2 + χ ).
Similar equations are also valid for the rf electric-field

flipper. In this case,

�Pϑ = πϑ[J0(|b(e)
z |) + J2(|b(e)

z |)]δ,
Pz(t) = −ω0ϑδ

2
[J0(|b(e)

z |) + J2(|b(e)
z |)]t

= − eη

4m
· G + 1

Gγ 2 anE0[J0(|b(e)
z |) + J2(|b(e)

z |)]t. (61)

Thus, actions of the rf electric-field flipper and the rf Wien
filter on the spin can be distinguished while the difference is
rather small. The exact equations (60), (61) should be applied
for a comparison of analytical results with computer sim-
ulations. Moreover, the use of the difference between the
resonance effects conditioned by the rf electric-field flipper
and the rf Wien filter is necessary for checking spin tracking
programs.

One of the key problems in EDM experiments is the prob-
lem of systematical errors. Equations (28) and (30) show
that the vertical electric field and the radial and longitudi-
nal magnetic fields may create a resonance effect imitating
the presence of the EDM. This effect can occur due to mis-
alignments and imperfections of the oscillating fields in the
rf Wien filter. Similarly directed constant imperfection fields
can also exist in the storage ring. However, they do not create
any resonance effect.

To decrease systematic errors, it is necessary to avoid any
dependence of the particle motion on the fields of the rf Wien
filter. This means canceling the Lorentz force in both radial
and vertical directions [10]. With allowance for Eq. (28) and
the relation (E0 +β × B(osc)

0 ) |z = 0, we obtain the formula
(β = βeφ)

�‖ = − e

m
· G + 1

γ 2 anB(r),

E = − e

2m
· G + 1

γ 2 an B
(r)
0 . (62)

This formula agrees with the result obtained in Ref. [10]. A
nonzero value of B(r)

0 conditions a systematic error. It is rather
difficult to distinguish the EDM signal from this systematic

error. One can use the fact that these quantities differently
depend on the velocity [10].

Another systematic error is caused by the longitudinal
magnetic field. This systematic error has not been considered
in Ref. [10] but it has been mentioned later [45]. Equation
(28) shows that it causes the resonance effect defined by

�‖ = − e

m
· G + 1

γ
anB(l),

E = − e

2m
· G + 1

γ
an B

(l)
0 . (63)

One more systematical error can appear when the particle
velocity inside the rf Wien filter has a vertical component.
This component can be conditioned by field misalignments.
In this case,

�‖ = e

m

(
G + 1

γ + 1

)
βzan E0 cos (ωt + χ)eφ,

E = e

2m

(
G + 1

γ + 1

)
βzan E0. (64)

This systematical error also consists in the spin rotation
around the longitudinal direction.

In the presence of the longitudinal magnetic field or the
vertical component of the particle velocity, the spin turns
around the longitudinal direction while the EDM effect con-
sists in the spin rotation around the radial direction. As a
result, the phases of rotating horizontal spin components
appearing due to the above-mentioned sources of system-
atical errors and due to the EDM effect differ on π/2.

When the initial beam polarization is horizontal and the
rf Wien filter is well synchronized with the spin rotation,
ω = ω0 and the phase difference in Eqs. (9) and (10) is
ψ − χ = ±π/2. In this case, the systematical errors caused
by the longitudinal magnetic field and the vertical compo-
nent of the particle velocity vanish and the only important
systematical error is conditioned by the vertical electric field
and the radial magnetic one. However, the former systemat-
ical errors should be taken into account when the resonance
conditions are not exactly satisfied.

8 Summary

In the present paper, a general theoretical description of the
MR is given. We have derived the general formulas describ-
ing a behavior of all components of the polarization vector
at the MR and have considered the case of an arbitrary initial
polarization. The equations obtained are exact on condition
that the nonresonance rotating field is neglected. The spin
dynamics has also been calculated at frequencies far from
resonance without neglecting the above-mentioned field. A
quantum-mechanical analysis of the spin evolution at the MR
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has been fulfilled and the full agreement between the classical
and quantum-mechanical approaches has been proven.

Distinguishing features of magnetic and quasimagnetic
resonances for particles and nuclei moving in accelera-
tors and storage rings (including resonances caused by the
EDM) have been investigated in detail. We have considered
the quasimagnetic resonance in a noncontinuous perturbing
field. We have also fulfilled a detailed description of a quasi-
magnetic resonance in storage ring EDM experiments. We
have applied the simple geometrical method and have deter-
mined the spin dynamics in the general case. We have shown
for the first time the difference between the resonance effects
conditioned by the rf electric-field flipper and the rf Wien fil-
ter. The existence of this difference is crucial for the establish-
ment of consent between analytical derivations and computer
simulations and for checking spin tracking programs.

The results obtained define also the spin dynamics caused
by systematical errors which appear due to misalignments
and imperfections of the resonance fields in the rf Wien filter.
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