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Dirac electron in a chiral space-time crystal created by counterpropagating circularly

polarized plane electromagnetic waves

G. N. BorzdovB
Department of Theoretical Physics and Astrophysics,
Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk, Belarus

The family of solutions to the Dirac equation for an electron moving in an electromagnetic lattice
with the chiral structure created by counterpropagating circularly polarized plane electromagnetic
waves is obtained. At any nonzero quasimomentum, the dispersion equation has two solutions
which specify bispinor wave functions describing electron states with different energies and mean
values of momentum and spin operators. The inversion of the quasimomentum results in two
other linearly independent solutions. These four basic wave functions are uniquely defined by eight
complex scalar functions (structural functions), which serve as convenient building blocks of the
relations describing the electron properties. These properties are illustrated in graphical form over
a wide range of quasimomenta. The superpositions of two basic wave functions describing different
spin states and corresponding to (i) the same quasimomentum (unidirectional electron states with
the spin precession) and (ii) the two equal-in-magnitude but oppositely directed quasimomenta

(bidirectional electron states) are also treated.

PACS numbers: 03.65.Pm, 03.30.+p, 02.30.Nw, 02.30.Tb

I. INTRODUCTION

The motion of electrons in natural crystals is described
by the Schrodinger equation with a periodic electrostatic
scalar potential. Electromagnetic fields with periodic de-
pendence on space-time coordinates can be treated by
analogy with the crystals of solid-state physics, so it is
natural to refer to these field lattices as electromagnetic
space-time crystals (ESTCs) [1H6]. In this context, the
idea of a space-time crystal was first presented in [1] and
the electron wave functions for the ESTC, created by two
linearly polarized plane waves, were calculated by using
the first-order perturbation theory for the Schrodinger-
Stueckelberg equation. The terms “time crystal” and
“space-time crystal” have been used previously in other
contexts, in particular, in the recent discussion around
the question of whether time-translation symmetry might
be spontaneously broken in a time-independent, conser-
vative classical system [7] and a closed quantum mechan-
ical system [&], such as ions confined in a ring-shaped
trapping potential with a static magnetic field [9, [10] or
a one-dimensional chain of ytterbium ions [11].

An electron in an electromagnetic field with the four-
dimensional potential A = (A,ip) is described by the
Dirac equation

0 e
|:’}/k; <6—:Ek — ZA]CE:L) + :“f/e:| \I] = 0, (1)

where k. = mc.c/h, ¢ is the speed of light in vacuum, 7 is
the Planck constant, e is the electron charge, m. is the
electron rest mass, 75 are the Dirac matrices, ¥ is the
bispinor, x1, x2, and x3 are the Cartesian coordinates,
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x4 = ict, and summation over repeated indices is carried
out from 1 to 4.

In [346], we obtained the fundamental solution of
Eq. () and presented tools for its numerical analysis in
the case when Ay =ip =0 and

6
A= (AeOm p Aje ) (2)

j=1

This ESTC is created by six plane waves with unit wave
normals +e,, where e, are the orthonormal basis vec-
tors, & = (r,ict), r = x1€1 + T2€2 + x3€3. All Six waves
have the same frequency wp and

Ka = (koea,iko), Ka+3 = (—koea, iko), (3)

where o = 1,2,3, and kg = wo/c = 27/Ag. They may
have any polarization, so that their complex amplitudes
are specified by dimensionless real constants a;x and bj
as follows:

3
AJ :Z(ajk+lbﬂk)ek’ j: 1;27765 (4)
k=1

where Qi = bjj = Q435 = bj+3j = 0,] = 1, 2, 3.

In the general case, Eqs. [@)-@) describe a four-
dimensional ESTC (4D-ESTC), i.e., with periodic de-
pendence on all four space-time coordinates. The con-
dition A3 = Ag = 0 reduces it to a 3D-ESTC with pe-
riodic dependence on x1,x2,r4, whereas the condition
As = A3 = A5 = Ag = 0 results in a 2D-ESTC peri-
odic in x1,x4. In the simplest case, when A; is the only
nonzero amplitude, Eq. () has the well-known Volkov so-
lution |12]. There exist different representations of this
solution [6, [13, [14].

The new technique presented in [2-6] is applied in [5]
to the 4D-ESTCs created by the linearly polarized waves


http://arxiv.org/abs/1707.01140v2
mailto:BorzdovG@bsu.by

with the amplitudes

A =—-Ay= A e,
Ay = —A5 = Aes,
A3 = _Aﬁ = Amel, (5)

and the circularly polarized waves with the amplitudes

A=Ay = Ay (er +ie3)/V2,
Ay = A5 = Ay (es +ie1)/V?2,
A;=Ag = Am(el + 7;92)/\/5, (6)

respectively, where A,, is a real scalar amplitude. It
is shown that the second one possesses the spin bire-
fringence. In [6], this technique is illustrated by the
analysis of the ground state and the spin precession of
the Dirac electron in the field of two counterpropagating
plane waves with left and right circular polarizations, i.e.,
in the 2D-ESTC with the nonzero amplitudes

Al = A4 = Am(eg + ie3)/\/§. (7)

In the present paper, we treat the electron motion in
the chiral 2D-ESTC defined by the amplitudes A; =
A} = A, (e2 + ie3), so that

A’ =44, cospsea(pr), (8)

where
es(p1) = excosp; — ezsin gy, (9)
and ¢; = 271X;,7 = 1,2,3,4 X, = xi/hok =

1,2,3, X4 = ct/Xg. The interplay between the fundamen-
tal solution of Eq. ([l) and particular solutions, specified
by given initial amplitudes, for the general 4D-ESTC and
the chiral ESTC is discussed in Sec. [[Il The four basic
solutions which describe two different spin states of the
Dirac electron moving in the 2D-ESTC along the X axis
in the positive and negative directions are presented in
Sec. [Tl In Sec. [Vl we treat superpositions of two basic
wave functions describing different spin states and corre-
sponding to (i) the same quasimomentum (unidirectional
electron states) and (ii) the two equal-in-magnitude but
oppositely directed quasimomenta (bidirectional electron
states). In the general 4D-ESTC, the Dirac equation re-
duces to an infinite system of matrix equations, where the
interconnections between equations are defined |4, 6] by
12 matrix functions and 56 scalar coefficients. The Ap-
pendix gives the expressions for them in an explicit form.
In the chiral 2D-ESTC, the number of these interconnec-
tions decreases drastically, resulting in specific interrela-
tions between the basic solutions discussed in Sec. [TTAl

II. BASIC RELATIONS

A. Fundamental solution

The electron wave function in the 4D-ESTC can be
written as follows [3, 16]:

U=V, Wy =Y )™, (10)
neLl

where K = (k, iw/c) is the four-dimensional wave vector,
k= k1e1 +I€2€2 +I€3€3, G(n) = (kon, ik0n4), n=nyej+
noes + nges, points n = (ny,ne2,ng,ng) of the integer
lattice £ have even values of the sum nq + ns + nz + ng,
and
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are the Fourier amplitudes (bispinors). The function ¥
is periodic in X3, Xs, X3, and X4 with the unit period.
At a given K, the set of functions ¥ (I0) is the Hilbert
space with the scalar product

1 1 1 1
_ T
(U, Ty) _/O Xm/O dX2/0 ng/O dX, 0w,
=Y al(n)b(n) (12)

neLl

and the norm

1/2
W] = (W, ¥)"/? = (Z cT(ﬂ)C(ﬂ)) ; (13)

neLl
where

\Ija - \IJanim'Kv \IIOa = Z a(n)eim»G(n)7 (14)
neLl

Uy = Uppe® K g, = Z b(n)e™EM  (15)
neLl

Let us treat the infinite set C' = {c(n),n € L} of the
Fourier amplitudes ¢(n) of the wave function ¥ (0] as an
element of an infinite-dimensional complex linear space
Ve. Since for any given n € L, ¢(n) is the bispinor,
C € Ve will be called the multispinor. The basis e;(n)
in V¢ and the dual basis 67 (n) = e;(n) in the space of
one-forms V3 are specified as follows:

ei(n) = , ea(n)=

es(n) =

O OO OO0 o+
3

HO OO OO O
3



0'n)=(1000) ,
¢*(n)=(0010) ,

0°(n)=(0100) ,
6*(n)=(000 1) ,(17)

that is,

(6'(m),ej(n)) =1form=mnandi=j
=0form#nand/ori#j (18)

for any m,n € £ and i,5 = 1,2,3,4. The unit operator

U in Vo can be written as

U:ZIn =e;(n) ® 07 (n),

nel

tr[I(n)] = 4.

(19)
Substitution of A @) and ¥ ([I0) in Eq. () results in
the infinite system of matrix equations [3, l6],

Z V(n,s)e(n+s)=0, neCL, (20)

s€ES13

where s = (s1, 82, $3, 84) satisfies the condition g44(s) =

At i = 1,...,12, the function s; specifies the shifts s =

sp (i) of rnultl 1nd1ces n, defined by the Fourier spectrum
of the field A (@), wh1ch satisfy the condition gsq(s) = 1.
Because of this, they are called the shifts of the first
generation. The sequential numbering ¢ = 0,1,2,... of
points n = (n1, na2,n3,n4) = sp(i) € L, based on the use
of gsqa(n), takes into account the spec1ﬁc Fourier spec-
tra of the electromagnetic lattice A (2)) and the electron
wave function ¥ ([I{) and thus drastically simplifies both
numerical implementation of the presented approach and
analysis of solutions [4].

We also use another useful numeration, namely, a spe-
cific numeration of 16 Dirac matrices I'y,k = 0, ..., 15,
which form a basis in the space of 4 x 4 matrices [3].
Any 4 x 4 matrix V = 21195:0 Vi) is uniquely defined by
the set Dg(V) = {V4} [Dirac set of matrix V' (D set of
V)]. The advantages of direct calculations with D sets
without matrix form retrieval are discussed in detail and
illustrated in [3, 5, 6]. Let us introduce the dimensionless
parameters

0,1, gaa(s1, s2, 83, 84) = max{|s1| + |s2| + |s3],|s4]}, i-e., Q=(q,iqs) = K/ke, Q= %, (22)
s€ 81y ={sn(i),i =0,1,..,12}
FO 000, Z1),(0, 1,0, —1), (=1,0,0, —1), q = qie1 + qzez + gzez = Zekc Uu=r5 (23)
(1 0,0,-1),(0,1,0,-1),(0,0,1, 1), In this notation, the matrix coefficients V[n, s5(¢)] 20),
o, ,1),(0,-1,0,1), (=1,0,0,1), in order of increasing ¢ = 0,1, ...,12, have the following
(1,0,0, 1), (0, 1,0, 1),( ,0,1,1)}. (21) D sets:
|
D {Vin, (O 0 O7 0)]} ={1,0,0,0, —w,4,0,0,0,0,0,0,0,0, iws, 4wy, iws },

Ds{VIn, (0,0 -1)]} ={0,0,0,0,0,0,0,0,0,0,0,0,0,0, —ias; + b1, —tazs + b2},

Ds{V]n, (0, -]} =1{0,0,0,0,0,0,0,0,0,0,0,0,0, —iass + bos, —iaz1 + ba1,0},

D{Vn, (-1, 0 0 -]} =1{0,0,0,0,0,0,0,0,0,0,0,0,0, —iay3 + b13,0, —ia12 + bi2},
D:{VIn,(1,0,0,—-1)]} = {0,0,0,0,0,0,0,0,0,0,0,0,0, —iays + bs3, 0, —iass + bas},
D:{VIn,(0,1,0,—-1)]} = {0,0,0,0,0,0,0,0,0,0,0,0,0, —iass + bss3, —iasi + bs1,0},

Ds{Vin, (0, O7 1,-1)]} = {0,0,0,0,0,0,0,0,0,0,0,0,0,0, —ias; + bs1, —iasz + bez},

Ds{V[n, (0, 1,1)]} ={0,0,0,0,0,0,0,0,0,0,0,0,0,0, —ias1 — bg1, —iasz — be2},

Dy {Vn, (0, 1 0,1)]} ={0,0,0,0,0,0,0,0,0,0,0,0,0, —iass — bss, —tas1 — bs1,0},

Ds{V[n,(-1,0,0,1)]} = {0,0,0,0,0,0,0,0,0,0,0,0,0, —iaygs — bs3,0, —iaso — bsa},
Ds{VIn,(1,0,0,1)]} = {0,0,0,0,0,0,0,0,0,0,0,0,0, —ia3 — b13,0, —ia1a — b12},
Ds{VIn,(0,1,0,1)]} = {0,0,0,0,0,0,0,0,0,0,0,0,0, —ias3 — bag, —iaz; — ba1,0},
Dy{V]n,(0,0,1,1)]} = {0,0,0,0,0,0,0,0,0,0,0,0,0,0, —ias; — bs1, —iass — bs2}, (24)

where n = (n1,ne,n3, n4), wr = @ + e k=1,2,3,4.

By taking into account Eqs. (1) and (I6)-(S), the
system of equations (20)) with matrix coefficients V'(n, s)

can be written in terms of scalar equations

Z Vig(n,s)c*(n+s) =0,
5E€S13
j=1,2,3,4; neL, (25)



where
i)=Y Vikn,s)6"n+s) €V,
s€S13
(f/(n),en(n+s)) = V7i(n,s). (26)
Finally, by combining the four equations related with

each point n, one can rearrange Eqs. (28) to the basic
system of equations [3, I6]

Pn)C=0, necL, (27)

where
P(n) = [f*(n)]' ® a®5(n)f7 (n) (28)
is the Hermitian projection operator in Vo with trace
tr[P(n)] = 4. The Hermitian 4 x 4 matrices a(n) are

given in a explicit form in [3, l6].

Each amplitude ¢(n) enters in 13 different matrix equa-
tions of the infinite system (20). This relatively sim-
ple structure of equations has made it possible to obtain
the fundamental solution of the system ([27)) by a recur-
rent process |3, 4, 6] based on a fractal approach [4].
It is expressed in terms of an infinite series of projec-
tion operators. This process begins with the selection
of an infinite subsystem consisting of independent equa-
tions and the calculation of the projection operators
po(n) = P(n), n € Fy C L, which uniquely define the
fundamental solutions of these equations |3, 6]. At each
new kth step of the recurrent process, we add another
infinite set P(n)C = 0,n € Fj of mutually independent
equations (MIE) which, however, are related with some
of the equations introduced in the previous steps. Con-
sequently, we obtain an infinite set of independent finite
systems of interrelated equations [fractal clusters of equa-
tions (FCE)]. It can be described as a 4D lattice of such
clusters. Each step of the recurrent procedure expands
FCE for which it provides the exact fundamental solu-
tions. The fractal algorithm of this expansion presented
in [4] is devised to minimize volumes of computations and
data files. Some MIE (aggregative MIE, or MIE1) just
add one equation to each cluster of the previous FCE lat-
tice so that these enlarged clusters remain independent.
Other MIE (connective MIE, or MIE2), by adding each
equation, interrelate a pair of neighboring clusters into
a joint cluster, and a quite different FCE lattice arises.
Each fractal period includes connections in directions of
n4,n1,n2, and ng axes, respectively. The smaller the
FCE, the smaller are the volumes of the computations
and data files, which are necessary to find and to write
the fundamental solution for this FCE. To simplify cal-
culations, we add a maximal possible number of MIE1
before adding the next MIE2.

The fundamental solution S of the system (27 is the
Hermitian operator of projection onto the solution sub-
space of the multispinor space V. It is defined as fol-
lows [3, 16]:

+oo
S=u-r, P=>3" mn), (29)

k=0neFi

4

—+oo
UF=2, FF=0, j#k  (30)
k=0

where pp(n) are Hermitian projection operators with
trace tr[pi(n)] = 4. There exist various ways [4] to split
the lattice £ into sublattices Fy, to fulfill conditions (B30)
and

ph0) = p2(0) = pu(n), e L,
pr(m)pi(n) =0if k #1 or (and) m # n,
po(n) = P(n), n € Fo, (31)

which result in the relations PT = P2 = P, P(n)P =
PP(n) = P(n), and, finally, P(n)S = 0,n € L. Hence,
for any Cy € Vg, C = SCj is the exact particular so-
lution of Eq. 7)), specified by the multispinor Cy, i.e.,
the function ¥ ([I0) with the set of Fourier amplitudes
{e(n),n € L} = SC satisfies the Dirac equation () for
the problem under consideration. Due to these proper-
ties, P is called the projection operator of the system
of equations (7). As shown in [3], this concept can be
applied to any system of homogeneous linear equations.
It follows from Eq. (28) that

P(m)P(n) = [fi(m)]" ® [a(m)N(m,n)a(n)] ; 7 (n),
(32)

where
N'jmn) = (1), [F)]'), 5 =1,2,3.4, (33)

a(n) = [L(n)]~!, L(n) = N(n,n), and N(m,n) = 0 at
gag(n—m) > 2. Substitution of f*(n) in B3) at n = m+s
gives [3, 6]
NT(n,m) = N(m,n) = L(m) for n = m,
= Ni(m, s) for gsq(s) =1,
= Na(s)U for gsq(s) =2, (34)

where U = I'g is the 4 x 4 unit matrix. The D sets
of 12 matrices Ni(m,s) and the table of 56 scaler co-
efficients Na(s) for the general 4D-ESTC are presented
in the Appendix. These major structural parameters of
the ESTC specify interrelations in the system of equa-
tions (27). They are presented as functions of the dimen-
sionless parameters A = a;i+1ibji, wr = g +mipQ, and
Oy = £04 2wy, where Q and g, are defined in Eqgs. (22)
and 23), k= 1,2,3,4, m = (my1,ma, m3,my) € L.

The nonzero amplitudes for A’ (8) are specified by
a12 = b1z = age = —byg = A,,. In this case, most of
the structural parameters in Eq. [84) are vanishing, only
Ni(m,s) with D sets,

Dy{Ny[m,(¥1,0,0,-1)]} =
Am{2(_w2 + iw3)7 :FZQa 07 _Qv Oa 07 Oa 07
O,:FiQ,,O,—Q,,0,0,0,0}, (35)

Ds{Ni[m,(¥1,0,0,1)]} =
Am{2(_w2 + iw?))a :FZQ, 07 _Qa 07 07 07 07
quin-hOa _Q+70707070}7 (36)



and No(s) = 4A2, with s € {(0,0,0,—2),(0,0,0,2)} are

not zero.

B. Approximate particular solutions

Numerical implementation of the obtained solution im-
plies the replacement of the projection operator P (29)
of the infinite system of equations (21) by the projection
operator

P Y aln) 37)

k€kr neng (k)

of its finite subsystem

P(n)C=0, nel' = Jnu(k)ycL, (39
kekr

where k7, is an ordered finite list of integers, and nr, (k) is
a finite list of points n € Fj, taken into account. These
lists define a finite model of the electron wave function
in the ESTC, i.e., its approximation by a bispinor func-
tion with a finite discrete Fourier spectrum. Some such
models are presented in [4-6]. The projection operator

S=uU-7 (39)

gives the exact fundamental solution of the system (3§]),
which is an approximate solution of the system (271)).

Let D be a differential operator in a space Vy of scalar,
vector, spinor, or bispinor functions, and ||¥| be the
norm of ¥ on Vy. The functional

R:U s RV = ||‘I’\IJD”| (40)

where Wp = DU, evaluates the relative residual at the
substitution of ¥ into the differential equation DV = 0.
It provides a convenient fitness criterion to accurately
compare various approximate solutions of this equa-
tion [4-6]. For an exact solution ¥, the residual ¥p
vanishes, i.e., R[¥] = 0. If ¥p # 0, but R[¥] < 1,
the function ¥ may be treated as a reasonable approx-
imation to the exact solution, and the smaller is R[¥],
the more accurate is the approximation. In terms of dis-
tances d = ||¥|| and dp = ||¥p]| of ¥ and ¥Up to the
origin of Vg (the zero function), one can graphically de-
scribe R[¥] as shrinkage in distance R[¥] = dp/d. The
functional R, as applied to a family of functions ¥(x, &)
with members specified by a parameter &, results in func-
tion R[¥(x, £)] of £, denoted R(&) for short.

In the present paper, Vg = Vi, the norm ||¥|| is given
by Eq. ([3)), and ¥ = DV is calculated for the dimen-
sionless operator

3 . .
B ih 0 , ith 0
D=) o (‘meca—xk ‘Ak> “ o T (D)

of the equation DU = 0 equivalent to Eq. (). We re-
strict our consideration to the case when the amplitude
Cy specifying a particular solution is given by

Co = aéej(no), (42)

where n, = (0,0,0,0), and g = g3 = 0, i.e., the electron
moves along the axis X;. The fitness parameter R(§)
plays a leading role in search for the best approximate
particular solution {c(n),n € L} = S§'Cp, available in
the frame of the selected finite model, as follows.

The analytical fundamental solution S ([29)) is obtained
without recourse to any dispersion relation, i.e., for any
vector Q ([22). However, since the system of equa-
tions (1) is homogeneous, the dispersion relation man-
ifests itself in the spectral distribution of Fourier am-
plitudes ¢(n) for each exact particular solution ¥ ([I0I).
This is illustrated in [6] by the example of the exact
Volkov solution. Since the amplitude ¥, ([I0) is periodic
in X3, X5, X3, and X4, the wave function ¥ describes a
nonlocalized solution of the Dirac equation. In the gen-
eral case, its Fourier spectrum is also nonlocalized in the
space of the four-dimensional wave vectors. However, in
numerical calculations for a finite model, instead of an ex-
act particular solution, we obtain its approximation with
a localized Fourier spectrum bounded by the truncation
condition g44(n) < gmas for alln € £’. Consequently, the
dispersion interrelation of q and g4 is defined by the min-
imum of the fitness function R = R4(§) with graphical
representation in the form of a spectral curve of approx-
imate solutions [5, 6], where

€= - VTG -

hw
mec?

— /14 ( hk)Q. (43)

MeC

Here, R; = \/E is specified by a generalized eigenvalue
A; which is a root of the quartic equation det(Up —
AUg) = 0, with the Hermitian 4 x 4 matrices Ug and
Up, defined in [4-6]. It has real coefficients and posi-
tive roots A; indexed below in increasing order of mag-
nitude, R; < Ry < R3 < Ry. At sufficiently large value
of gmaz, the condition Ry < 1 is satisfied within nar-
row limits of £ values, whereas Ro34 > Ri and they
do not satisfy the similar condition at any value of &;
see numerical and graphic illustrations in [3, [6]. The
minimum {&,Ro = R1(&o)} of the curve R = R4(§)
specifies the most accurate approximate solution pro-
vided by the selected finite model. The corresponding
amplitude ag = ap1 [@2) for this solution is specified by
the generalized eigenvector ag; defined by the equation
Upaogr = MUgagi. It follows from the results of the
computer simulations [5, 6] that & converges to a pos-
itive limit and R¢ tends to zero with increasing gmqz;
in other words, this approximate particular solution con-
verges to the exact solution with the dispersion relation

g —V1+q?=¢.



III. ELECTRON WAVE FUNCTIONS IN THE
CHIRAL 2D-ESTC

A. Structure of wave functions

For the problem under study the technique presented
in [3-6] and Eqgs. (B3) and @B6) at q = qL = *|q]es
result in the four partial solutions

Uj(ag) = Uype™®, (44)
where j = 1,2 and

Qjr = Kjx = (£[q1]p1 — qujpa) /2, (45)

Uiy = Z ai(n)ei“"", Wy = Z bi(n)ew",

neS1+ nESa+

On =n1p1 —napy, p1 =21X1, 04 = n4 Xy (46)

The points n = (n1,n2,n3,n4) € L with nonzero bispinor
Fourier amplitudes a4 (n) and by(n), comprising the
solution domains Si4+ and S, satisfy the conditions
[n1| = 0,1; ne = ng = 0. These amplitudes, calculated by
the recurrent algorithm [3], have specific symmetry prop-
erties which make it possible to express U1+ and ¥op in
terms of eight complex scalar functions z;, = z;j,(p4) as
follows:

Uiy = ugzig + ugzig + e (w1211 + uzz13),
Ui = —u1z12 — u3zz14 + ieiikpl (UQle + U4213),
Uo, = uypzo1 + usgzes + ie~ e (u2222 + Uaz24),
\112_ = —U2Z221 — U4Z23 + ieiwl (U1Z22 + u3224)7 (47)
where
1 1
1 1 1 -1
el W el W
0 0
0 0
1 0 1 0
Uy = —— ,Ug = —= 48
3 \/5 1 4 \/§ 1 ( )
1 -1

The interrelations between the complex scalar func-
tions zj; and the bispinor amplitudes a+(n),bs(n) are
described by the Fourier expansions

+oo
ZJ = Z ijlell“’“, (49)
l=—0o0
where j = 1,2,
212 Z21
_ | =14 _ | ze3
2= 211 22 = z22 |’ (50)

213 224

a+1(0,0,0,0)] = ajpug + aiaua,
b+1(0,0,0,1)] = binur + bizus (52)
for even [, and
0 0
0 | o
a—_p1 ’ bz |’
a3 b4

Zy =

a+[(1,0,0,0)] = i(anur + azus),
b4+[(—1,0,0,0)] = i(bizua + biaua) (54)

for odd I. All scalar coefficients a;;, and b, are real.
In accordance with the above definitions, the functions
zji, are given by a4 (n), by (n). However, they also specify
U, and PUs_ through the relations between a_(n), b_(n)
and a4 (n),by(n), taken into account in Eq. ([@X).

The bispinor functions ¥;(q.) are uniquely defined
by eight complex scalar functions (structural functions)
zik(j = 1,2,k = 1,2,3,4), which serve as convenient
building blocks of the relations describing the electron
properties. For the chiral 2D-ESTC under study, the
finite model [see Eq. B8)] is given by L' = {n =
(n1,0,0,14),0 < g4a(n) < gmaz}, i-e., the infinite se-
ries in Eq. (@9)) are truncated so that the real z;; and
imaginary y;i parts of z;; = x;x + iy, can be written as

Pm
Tjk = Tjko + Z T jk(2p) COS(2ppa),
p=1
Pm
Yjk = Z Yjk(2p) SIN(2pp4) (55)
p=1

for jk € {12,14, 21,23}, and
Pm

T = chjk(zpﬂ) cos[(2p + 1)pa],
p=0
P
ik = > Ysk(zp+1) Sin[(2p + 1)) (56)

p=0

for jk € {11,13,22,24}, where

T1ko = Gk, T2k0 = Doks
Tkl = G—ik + Ak, To2p = b_ig + by,
Ykl = A1k — Ak, Y2kl = b1 — by, (57)

By selecting a sufficiently large value of g4, one can
easily obtain approximate solutions with any desired ac-
curacy. To illustrate this, we fix Q = 0.01, A,, = v/2/200
and set gmaer = 12 for which p,, = 6. This results in
the approximate particular solutions satisfying the fit-
ness condition Ry < 10717, presented below, whose de-
viations from the corresponding exact solutions are neg-
ligibly small.
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B. Dispersion relations

For a given ¢; # 0, the dispersion equation has two
closely spaced solutions gq4; = quo + &, where j =
1,2,& < & and qq = y/1+¢?. They are invariant
under inversion ¢ — —gqi. The electron wave func-
tions V;(q,) and ¥;(q_) describe the motion in the
positive and negative X; directions, respectively. The
dependence of & and A = & — & on ¢ is shown in
Figs. 0l and 2] where the dots represent calculations at
g1 = 2™mQ,m € [—10,15], while the curves are obtained
by the linear interpolation.

C. Properties of functions z;;

Substitution of ¥;(q, ) in the Dirac equation D¥ = 0
with D (1)) result in two evolution equations,

d i
—ijﬁ

M;Z;
depy I

J=12, (58)

where

M; = N; — (—1)j4Am COS P41, (59)

qaj — 1 —qu 0 0
o —q1; qu; +1 0 0
Ni= 0 0 g1 —1 qj—Q |’ (60)
0 0 q; —9Q qa+1
0001
0010 :
a1 = 0100 ’ qij = (_1)Jq1 (61)
1000

Since M; and My are real symmetrical matrices, it
follows from Eqgs. (B8] that d(Z; Z;)/dps = 0. Therefore,

we impose the normalization condition
4
212 =0 0y =) ulf=1,j=12 (62
k=1

The functions W14 and Wop also satisfy the following
orthonormality relations:

Ui v =0, j=12
Ul Woy =0, lim (U], 0yp) =1 (63)
q1—>0

In our numerical calculations with g4, = 12, variations
from these relations are negligibly small, at less than
10716,

Substitution of Z; and Z; into Egs. (58)) results in
two independent systems of matrix equations in Fourier
amplitudes Z;; and Z,, respectively,

(N; —1QU)Z;j, = (=1)724,,01(Zj1-1 + Zj141), (64)

where j = 1,2. These amplitudes are connected by the
recurrent relations

—1)7
_Zj,l—l + ( ) al(Nj — lQU)ZjJ (65)

Zid1 = 24,
with [ =1,2,..., and
Zii1=—Z2; (=1) - ;
jl-1= G141 + O[l(NJ ZQU)ZJJ (66)

24,
with [ = —1, -2, ..., where
Nijﬁo = (—1)j2AmOZ1(Zj171 + Zjﬁl). (67)

Therefore, by taking into account Egs. (BIJ), (53)), and
(ED), coefficients @, yk can be calculated starting

with 120, %140, Y111, Y131 and T210, T230, Y221, Y241 These
starting coefficients depend on ¢, as illustrated in

Figs. BHA

In the state defined by the quasimomentum p =
hk = mecq = 0, the equation (Up — \MUg)ag = 0
has the twofold generalized eigenvalue A1 and the two-
dimensional subspace of the corresponding generalized
eigenvectors ag. Any basis of this subspace specifies two
linearly independent solutions of the Dirac equation, for
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FIG. 4. Plot of (A) z210 + 120 and (B) w230 — Z140 against
logy q1-

which & = & = 0.000199970011. In particular, the lim-
iting cases of ¥;(q, ) (@) at ¢1 — 0 can be conveniently
treated as the basis wave functions. At ¢; = 0, the func-
tions z; satisfy the identities

211 = 292,212 + 221 = 0,213 = 224, 214 + 223 = 0 (68)

and hence
qlllgo Vi = q111§0 Yoz,
Jim W1 (qy) = lim Ta(q). (69)
Y111, Y131
A
B
logy g
5 -4 -3 10

FIG. 5. Plot of (A) y111 and (B) yi31 against logq g1.

Yoo1—=Y111, Yoa1 +Yi31

FIG. 6. Plot of (A) y221 — y111 and (B) y241 + y131 against
log,o q1-

The coefficients, illustrated in Figs.BHE, at this state have
the following values:

2120 = —x210 = 0.999875,

T140 = —To30 = —4.99594 x 1077,

Y111 = Y221 = 0.0141368,

Y131 = Y241 = 0.0000706745. (70)

D. Energy level splitting

Let us now compare the wave functions ¥;(q,), j =
1,2 in terms of the corresponding mean values of Hamil-
tonian

3

H= CZ arpr + mectay, (71)
k=1

operators of kinetic momentum

0 e

= —ih— — A 72
Pk ? Oz ¢ k> (72)
probability current density (velocity) ji = cag, and spin
Sk = 8%, k = 1,2,3. Since ¥l(qy)¥;(qy) = 1,
the mean value (L) of a linear operator L with re-
spect to the wave function ¥;(q, ) reduces to the mean
value of the corresponding Hermitian form: (L) =
(\I/; (d1)L¥;(qy)). The mean values (ji), (pk), and (Sk)
are zero at k = 2,3 for all these functions. For both
Yy (qy) and Wa(qy ), the inversion g, — q changes the
signs of (j1), (p1), and (S7), but leaves invariant (H). It

also follows from the results of our calculations that

‘1’;((&)21‘1’]‘((&) = ‘I’;izl‘l’ji =+(-1)'T10, (73)

where X1¢ can be expressed in terms of the functions z;
as

S0 = (=1 (|zj1 > +lzj51* = 2521* = 1zjal?), 5 = 1,2. (74)

It is independent of ¢; and for the chiral ESTC under
consideration takes the value 19 = 0.99960023984.
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The functions ¥(q_) and ¥(q, ) provide the same
positive mean value (S;) = S; = 2%, whereas ¥;(q,)
and ¥y (q_ ) provide the same negative mean value (S7) =
S_ = —I%,. Hence, V1(qs) together with Wa(qy )
specify two wave functions (S1 solutions) describing two
different spin states and defined into the whole united ¢;
domain containing both ¢; < 0 and ¢; > 0 values.

Let Jit(q) = (1)/c, Pix(@) = (p1)/(mec), and
Ei(q1) = (H)/(mec?) be the normalized mean val-
ues of the operators ji, p1, and H with respect to
S+ solutions at a given ¢;. At ¢1 = 0, these solu-
tions provide the same value of the normalized energy
Ey = E4£(0) = 1.000199970009, and equal in mag-
nitude but opposite in sign the normalized mean val-
ues of the velocity J14(0) = +wv19 and the momentum
P1+(0) = Fpio, where vig = 1.99820142893 x 1010 and
p1o = 1.99880079944 x 1076,

The mean values of momentum for S+ solutions lin-
early depend on the quasimomentum: Py (q1) = q1Fp1o0-
The dependence of Fy on ¢; in the vicinity of the ori-
gin is shown in Fig. [ In this domain, Ji4(q1) can
be closely approximated by the linear functions with
Ji+(q1) = 0 at g1 = Fqio, respectively, where qio =
1.99860096936 x 10719 At |¢1| < qi0, the mean val-
ues Ji4(¢q1) and P14 (q1) are opposite in sign for both
of the solutions. Figures BHIT] illustrate the properties
of functions Jy11(¢q1) and Ei(q1) over a wide range of
¢1 > 0. At any ¢1 # 0, there are two different states
with the opposite in sign spins S+ and different energy
levels E4(q1). This energy level splitting satisfies the re-
lations F_(q1) — E+(q1) = E+(—q1) — E_(—q1) > 0 for
g1 > 0. The functions F4i(q1) take the same minimal
value Epin = E4(£p10) = 1.000199970007 at the points
q1 = £p1o, where PiL(£p10) = 0. The wave functions
Ws(qy ) specify these two ground states with oppositely
directed spins.
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IV. UNIDIRECTIONAL AND BIDIRECTIONAL
STATES OF THE ELECTRON

At ¢1 # 0, the wave functions ¥;(qy),j = 1,2 are lin-
early independent and form a basis for a four-dimensional
subspace of partial solutions to the Dirac equation. At
q1 = 0, as a consequence of Eq. (69), this subspace de-
generates to the two-dimensional one. In this section, we
treat two families of partial solutions which describe uni-
directional and bidirectional states of the Dirac electron.
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FIG. 10. Normalized energy E_ against log;, q1.
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They are specified by the wave functions

Uy = Wy(qy)e® cosa + Wy(qy)sina,

U, =V;(q,)e cosa+ W (q_)sina, j = 1,2, (75)
where o € [0,7/2] and ¢ € [0, 27]. To study these states,
we use the structural functions z;;, described in Sec. [[TTA]
and the following designations:

Rigji = 2Re(ziz1), i = 2Im(zfz)),
Ry = Rjja+ Rjzjs, Ij = Ljnje + Ijsja,
v1; = Rjij3 — Rjaja, (76)

where 7,5 = 1,2 and k,l = 1,2, 3, 4.

A. Unidirectional states: precession

The wave functions ¥, and ¥_ describe various elec-
tron states specified by the parameters o and § at the
positive quasimomentum ¢; and the negative one, respec-
tively. For any linear operator A, the Hermitian forms
\IJTiA\I/i are periodic in X; with the unit period. They
are not periodic in Xy because of the phase difference,

2
p=Prp— Doy +0 = £A§X4 +6. (77)

However, A{/Q) < 1, so that variations of ¢ at any unit
interval of the X, axis are negligibly small in the calcu-
lation of norms and mean values. In this approximation,
one can obtain the relations

Pt = Zax(WipiWs)/(mec) = £(|q1] + p1o cos 2a),
E = IAX(\I!TiH\I!i)/(mec2) = F; cos® a + E,sin® a,
ohw, =1, (78)

where

Q ! ,
Pio = 5(1 —¥0), Ej= / HjdXy,j=1,2, (79)
0

10

Hj = QRjjj542 + laalvij + |21] + | 252)?
— |zj3* = |zjal® + (1) 4A Rj cos ps,  (80)

Iax(f) = o fdX1dXy, (81)

and the domain AX is given by the unit intervals
[Xk, Xi + 1],k = 1,4. The dependence of the normal-
ized energies By = E_(|q1|) and F2 = FE;(]q1|) on q1 is
illustrated in Figs. [7} 00 and 0]

In the comparative analysis of electron states, it is ad-
vantageous to calculate both mean values and Hermi-
tian forms of various operators with respect to the cor-
responding wave functions. In particular, the Hermitian
forms for the velocity operator and the spin operator with
respect to ¥ result in the following vector fields:

. h
J(qi) = CVy, S(qi) = isia (82)
where
3
vy = Z ek(\I/Tiak\I/i) =e; {:I:(vll cos? a + vy sin? a)
k=1

+ sin 2« [Im Cy cos(p £ ¢1) — Re Cysin(e + ¢1)]}
+ (Ry cos? a — Rysin® a)e (1)
+ sin 2a [+Im Caea (Fp) + Re Coep(Fo)

+ Im Csea(2¢1 + @) + Re Czep(2¢1 + ¢)], (83)
3
Sy = Zek(\IJTiEk\IJi) = e1 {FX10 cos 2
k=1

+ sin2a [Im Dy cos(¢ + ¢1) — Re Dy sin(p + ¢1)]}
+ (I cos’ a — I sin® a)ep(p1)

+ sin 2« [£Im Doea (F¢) + Re Daep(Fo)

+ ImDgea (291 £ ¢) + ReDsep(2p1 £ )],  (84)

* * * *
C1 = 211223 + 2)9224 + 213221 + 214222,
* * * *
Ca = 275223 + 214221, O3 = 233213 + 234211,
* * * *
Dy = 211221 + 219%22 + 213223 + 214224,

Dy = ZT2221 + ZT4223, D3 = 2522’11 + 2542’13. (85)
The vector e4 (1) is given by Eq. ([@) and
ep(p1) =e1 xea(p1) = easinp; +egcospr.  (86)
Since A¢/Q <« 1, we obtain the mean values

(vi) = Tax(vs)
= tey [J_(|q1]) cos2a + J4(|q1]) sin 2a]
— Ry sin2cep(Fyp), (87)

(s+) = Zax(s+)
= Fe1 X109 cos2a — R, sin2aep(Fp), (88)
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where ¢ = 0 + 27y, ¢, § specifies the initial precession
phase, and v, = Aém.c?/h is the precession frequency.
The transverse components of the precessing vectors of
the velocity (probability current density) and the spin
are specified by a and the coefficients

1 1
R, = _/ CydXs, R = —/ Dod Xy, (89)
o 0

which depend on ¢;, as shown in Figs. and The
inversion of the quasimomentum q +— —q is described
by the replacements v4 +— v+ and si — st. It inverts
the signs of longitudinal components and reverses the
precession directions.

B. Bidirectional states

The bidirectional wave functions ¥y and Uy ([7H]) sat-
isfy the normalization condition \IJ;\IJJ- = 1. The Hermi-

tian forms \If;-pl ¥, and \I!;H\I!j are both periodic in Xy
with the unit period and periodic in X; with the periods

AXyj=[1= (=1 am|  am =2la]/2j =1,2. (90)

11

The normalized momentums for the bidirectional states
depend on « as follows:

1 )
IN'Y (‘I’;pl‘l/j) = [lg1] = (=1)?p1o] cos2a,

by = mMeC
(91)

where pi¢ is given by Eq. ([9) and

1 1 Ale
dX dX1,7=1,2. (92
el Al LR

IAle (f) =

The normalized energies

——Tax, (WIHY)) = E; (93)

are independent of o and ¢; they are given by Eq. (T9).
The Hermitian forms for the operators of velocity and
spin are defined by the relations

3

jj=cvj= cZek(\I/;ak\IJj),
k=1

3
h h
S; =38 = izek(quzkwj), (94)
k=1

where j = 1,2, and

vi = Riea(yp1) — Ri21480_ + Ri111382,
vy = —Roea(p1) + Ro12380, — R22248s

1 1
s1 = —5(1 +X10)80- — L1814 + 5(1 — %10)82+

1 1
Sy = 5(1 +210)8o4 — 281 — 5(1 —¥10)82_»

gy = cos2aer Fsin2aep[t(gmer + 9)],

g1 =sin2acos[(1 £ gm)p1 £ d)er F cos2aep(v1),
gy = cos2ae; £ sin2aep[(2 + gm)p1 £ 4. (95)

At given gy, @, and 9, the scalar coefficients R, I, Rj1;3,
and Rjoj4, where j = 1,2, are periodic in Xy with
the unit period. The vectors ey, g, are independent
of X4, but they all have different dependencies on Xj.
Therefore, the vector functions v; = v;(X1,X4) and
s; = s;(X1,X4) are periodic in Xy but, in the gen-
eral case, they are not periodic in X;. However, they
become periodic in X; at some specific values of ¢,,.
In particular, the period is equal to AX; = 2™ for
gm = 27",n = 1,2,..., and AX; = 1 for any integer
Gm-

The relations (95) define the parametric surfaces v =
v;(X1,X4) and s = s;(X7, X4) which can be treated as
specific graphic markers of the bispinor wave functions
Uy and Wy at given ¢, , and 4. By way of example, let
us consider a particular case with ¢, = 1, = 7/4, and
0 =0, when P;; =0and e; -v; = 0,5 = 1,2. In this
case, the mean values of momentum with respect to both
U, and Uy are vanishing and the probability streamlines
are in the phase planes X; = const. The families of
coordinate curves illustrating the dependence of velocity
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FIG. 14. Parametric plot of coordinate curves for v = vses +
vzes = vi(Xi,X4) at g = 1,a = 7/4, and § = 0: X,
curves a,b,c,d,e for X4 = 0,1/8,1/4,3/8,1/2, respectively,
X1 € [0,1]; X4 curves with X4 € [0,1/2] begin at points
numbered k =0, 1,...,7, where X1 = k/8.

fields vi and vo on the spatial coordinate X; and the
time X, diverge considerably; see Figs. [4HIG Unlike
v1(X1, X4), the parametric surface vo(X7, X4) has the
hole in its center, namely, [va| > 0.005 at all values of X
and Xy; see Fig. All X7 curves in Fig.[I6lare similar in
appearance and X increases in the clockwise direction,
whereas X curves in Figs. [[4] and modify the form
with time and reverse their direction at X4 = 1/4.

The Hermitian forms s; and sy for the spin operator
also diverge considerably; see Figs. [ and[I8 At ¢, =1
and o = 7/4, they are described by the relations

1
s1 = _5(1 +Xw)en(—p1 —0) = Ly cos(2p1 + d)e

+ (1 — 210)93(3(,01 =+ 5), (96)

N =

1
So = —5(1 +X10)en(p1 +6) — Iz cosde

+ %(1 — Y10)e(p1 — 0). (97)

The longitudinal component of s; oscillates with time.
The oscillation amplitude depends on ¢; and vanishes
at points where cos(2¢1 + §) = 0. For the vector s,
the similar oscillation amplitude is independent of ;. It
is specified by 0 and vanishes at § = +7/2, but takes
maximum value at 6 = 0, as shown in Fig.

12

FIG. 15. Parametric plot of X; coordinate curves for v =
v1(X1, X4) in the neighborhood of the instant of time X4 =
1/4datp=1; X4 =1/4+ kba/2,k = —3,-2,—-1,0,1,2,3 for
curves a, b, c,d, e, f, g, respectively, §, = 0.028125.

| q.osvz

7 -0.02 i
G

FIG. 16. Parametric plot of coordinate curves for v =
va(X1, X4) at gm = 1, = /4, and § = 0: X5 curves a,b,c,d
for Xa =0,1/12,1/6,1/4, respectively, X1 € [0, 1]; X4 curves
with X4 € [0,1/2] begin at point numbered k£ = 0,1,...,7,
where X7 = k/8.

V. CONCLUSION

The properties of ESTCs vary widely; one can set po-
larizations, intensities, initial phases of the constitutive
electromagnetic plane waves, and the frequency. To con-
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FIG. 17. Parametric plot of coordinate curves for s = s1e1 +
sgez + szez = s1(X1,X4) at gm =L, a=n/4, and 6 = 0: X;
curves with X; € [0,1] for X4 =0,—1/4,—1/8,0,1/8,1/4; X4
curves with Xy € [-1/4,1/4] for X1 = k/16,k = 0,1, ..., 15;
X1 =0 and 1/2 for points 1, 2 and 3, 4, respectively; X4 =
—1/4 and 1/4 for points 1, 3 and 2, 4, respectively.

struct a specific ESTC, it is useful to evaluate first the
structural parameters presented in the Appendix because
they specify the interconnections in the infinite system of
matrix equations and, in the final analysis, prescribe the
Fourier spectrum of the electron wave function. The pre-
sented solutions provide an example of such approach.

At given quasimomenta q = q; = *|qi1]e1, the Dirac
equation in the chiral 2D-ESTC has the four solutions
U;(qy),j = 1,2, which describe two different spin states
of the electron moving along the X; axis in the pos-
itive and negative directions. The bispinor functions
U,i(qy) = ¥,(qy)(X1,X4) are uniquely defined by eight
complex scalar functions (structural functions) z;, =
zjk(X4),5 =1,2,k = 1,2, 3,4, which serve as convenient
building blocks of the relations describing the electron
properties. These functions are obtained in the form of
Fourier expansions, where coefficients can be calculated
by making use of the recurrent relations (65)—(@7) and
the starting coefficients presented in Figs. [BHAl

At any quasimomentum ¢; # 0, the dispersion equa-

FIG. 18.

Parametric plot of coordinate curves for s =
s2(X1,X4) at gm = 1, = w/4, and 6 = 0. The values of
X; and X4 are the same as in Fig. [

tion has two solutions which specify wave functions de-
scribing electron states with different energy and mean
values of momentum and spin operators. The energy
level splitting is illustrated in graphical form over a wide
range of ¢1. It is shown that at |¢1] < @10, the mean
values of velocity and momentum operators are opposite
in sign for both of the spin states.

At ¢1 # 0 the wave functions ¥;(qy),j = 1,2, form
a basis for a four-dimensional subspace of partial solu-
tions to the Dirac equation, but at ¢ = 0, as a conse-
quence of Eq. ([6Y)), this subspace degenerates to the two-
dimensional one. In this paper, two families of partial
solutions which describe unidirectional and bidirectional
states of the Dirac electron are treated. In the compar-
ative analysis of such electron states, it is advantageous
to calculate both mean values and Hermitian forms of
various operators with respect to the corresponding wave
functions, in particular the velocity operator and the spin
operator.

The unidirectional electron states are specified by su-
perpositions of two basic wave functions ¥;(qy) and
Ws(qy ) corresponding to the same quasimomentum q
but describing two different spin states. It is shown that



such superpositions describe the electron precession. The
magnitudes of transverse components of precessing veloc-
ity vectors vi and spin sy are given by coefficients R,
and R, depending on ¢, as shown in Figs. 12 and

The bidirectional electron states are specified by super-
positions of two basic wave functions ¥;(q, ) and ¥;(q_)
corresponding to the two equal-in-magnitude but oppo-
sitely directed quasimomenta and also describing two dif-
ferent spin states. In particular, such superpositions de-
scribe the relativistic electron states with the zero mean
value of the momentum operator and specific probability
current densities and Hermitian forms of the spin opera-
tor.

In this paper we present families of nonlocalized solu-
tions of the Dirac equation. They can be used as basis
wave functions to construct various localized states of
the Dirac electron by applying the general approach pro-
posed in [15], where it was illustrated for the examples
of electromagnetic and weak gravitational fields. Natural
crystals prescribe the polarization state and the refrac-
tive index of light plane waves and thus provide a means
to control the properties of light beams. Similarly, elec-
tromagnetic space-time crystals prescribe the spin state
and the energy of the Dirac electron. This makes them
promising tools to control the quantum states of elec-
trons.
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Appendix

The definitions of Ni(m,s) and Nj(s) are given in
Sec. [Tl Here, we present these major structural parame-
ters in the explicit form that is necessary in any numer-
ical implementation of the general techniques developed
in Refs. |3-6].

1. Dirac sets of matrices Ni(m,s)

We present Ny (m, s) and Na(s) in order of the sequen-
tial numbering ¢ = 0,1,... of points s = s,(i) € L
(see appendix in Ref. [4]). There are 12 points with
g4d(8) = 1. They are elements (from 2 to 13) of the

list
Sﬁg :{Sh(i),i = O, 1,
:{(0 0,0, 0)

(0, ~1
100—1,

.69}

)
( )(0,1,0
(0,0,-1,1), (0,
(1 0 0,1),(
(o 0,0,-2),(0,0,0,2),
)
)s

)

0,1,-1,0), (0,

~2,0
-1,0
-1,0,
2 0 0,0), (—

(0,2,0,0), (0, —
1 0,1,0),(0,1,1,0)

(O
(1,
(-1
(2,
1,1,0),
( (
©, -2),(0, - -2),
(1, ),(01—
(-1 0, -2),(1,-1,0,-2),
(200 ~2),(~1,1,0, -2
(0,2,0,-2),
10,1, ~2),(0,1,1,-2), (0
)
);

(-
0,—1,1,-2
(
(0,—1 -1,2
(
2),

0,2
»2),
2),(0,1,-1,2), (0
(1, 102

)

\_/A\_//_\\_/\_/

(
(0,0,—-2
(1,0,-1
(=1,-1,0,
(2,

(0,2,0,2), (0,

The D sets of matrices N1[m, sp(4)],

the form [5]

Dy{Ny[m,(0,0,—1,-1)]} =

( 1)7(_
) (0,0,1,-1),
-1,0,1),(-1,0,0,1),

(
,(0,—1 ~1,0), (~1,0,
(
);

)(0

(= 10
~2,0,2),
( 2,0,0,2),
2 0 0,2),(~1,1,0,2),(1,1,0,

),(0,-1,1,2),(=1,0,1,2),
(1,0,1,2),(0,1,1,2),(0,0,2,2)}.
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17 07 07 _1)7

1,0,1),(0,0,1,1),

_170)7

_25070)7
(1, -1, 0 0),(=2,0,0,0),
1713070)3(171507

0)7

(—1,0,1,0),
0,0,2,0),

(—1,0,-1,-2),
—20—)
(—2,0,0,-2),

7(171707_2)7
,(~1,0,1,-2),

-2),
~1,2),

2);

(A1)

i=1,...,12, have

{—2(Az1w1 + Az2ws),0,iA328, —1A43:9,0,0,0,0,
07 07 _A319—7 _A32Q—7 07 07 07 O} 9

Ds{Nl [mu (07 -1,0, _1)]} =

{—2(A21w1 + Azzws), 14218, —1A4239,0,0,0,0,0,
07 —A23Q,, —A21Q,, 07 07 07 03 0} )

Ds{Nl[mu (_170707 _1)]} =

{—2(1412’[1)2 + Algwg), —iA12Q, O,

iA1397 07 07 07 07

07 _A13Q*a 07 —A12Q,, 07 07 07 O} )

DS{Nl [ma (17 07 07 _1)]} =
{—2(1442’[1)2 + A43w3), iA4QQ, O,

_iA4397 07 07 07 07

07 _A43Q—7 07 _A4QQ—7 07 07 07 O} B

Dy{Ny|m,(0,1,0,-1)]} =

{—2(As1w1 + Assws), —iA4519,1A4530,0,0,0,0,0,
O; _A53Q—7 _Af)lQ—a 07 07 07 07 O} )



D {Ny1|m,(0,0,1,-1)]} =
{—2(Ag1w1 + Ag2ws2),0, —iAe212, 14619,0,0,0,0,
Oa 07 _Aﬁlgfa _AGQQ*a 07 Oa 07 O} )

DS{Nl[ma (07 Oa _15 1)]} =
{_2("4211”1 + A22w2)5 07 ZAEZQv _ZAZIQa 07 Oa 07 O;
0,0, —A% Q4 , —A5,Q4,0,0,0,0}

Dy{Ny|m,(0,—-1,0,1)]} =
{—2(A%wy + Alqws),iAL,Q, —iA%0,0,0,0,0,0,
0,—ALQ,, —A5,9Q,.0,0,0,0,0},

Dy{Ny[m, (—1,0,0,1)]} =
{—2(Akyws + Alqws), —iA%0,0,iA%59,0,0,0,0,
0,—A%Q4,0,—A%Q4,0,0,0,0},

D {Ny1|m,(1,0,0,1)]} =
{—2(Afyws + Alqws), iAT,0Q, 0, —iA%9,0,0,0,0,
0,—A%Q,,0,—A%Q,,0,0,0,0},

Dy {Ni[m, (0,1,0,1)]} =
{—2(A% w1 + Alqws), —iA%,Q,iA3540,0,0,0,0,0,
0, — A%y, —A%,94.,0,0,0,0,0}

Ds{Nl [ma (07 0,1, 1)]} =

{_2(A§1w1 + A§2’LU2), 07 _ZA§293 ZAglﬂa 07 Oa 07 Oa
0,0, —A%,Q,, —A%5Q,.,0,0,0,0} .

2. Coefficients Nz(s)

There are 56 points s = sp, (i) € £,7 = 13,...,68 with
ga4(s) = 2. They are elements (from 14 to 69) of the list
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Seg. The list of the coefficients Na(s) has the form

{Na[sp(1)],i =13,...,68} =

{2 (A12A42 + A13Au3 + As1 As1 + AzzAss
+As31A61 + Az2Ae2),

2 (A9 A%y + A Als + A5 A5y + A3 A,
+ 435146 + A3, A62)

2(As1 451 + A32A5y), 2(As1 45, + AnAgy),
2(As2A%, + A12A55), 2(AT5 Asa + Aya AG,),
2(A5 A1 + As1A81),2(Aa1 A + Axz ALs),
2(Ag3A}3 + A13A5 ), 2(A3A23 + A43A5 )s
2(A12A%, + A13A%5), 2(AT5Age + Al3 Aus),
2(A13A%3 + Aj3Asz), 2(A33A43 + Aj3As3),
2(A A51 + A23A53)7 2(A21Ag1 + A51A61)7
2(A1245, + Al Ae2), 2(A3Asz + ATy Ag2),

2(A51 451 + A31461), 2(A51 Ae1 + A3y Ae2),

(A1 +iA32)(Az1 —iA32),2A21A31,2A12 A3,
2A32A42,2A31 A51, (A1 + i A23)(A21 — iA23),
2A13A93,2A23A43, (A12 +iA13)(A12 — iA13),
(Ago +1A43)(Aso —iA43),2A13A53,2A43As3,
(As1 4 iAs3)(As1 — iAs3), 2421 A61,2A12 A6,
2A42A62,2A51 A61, (As1 + 1 As2)(As1 — 1 A62),
(A1 + 14G2)(AG1 — 1A4G2), 2A5, AGy, 2A55 Ay,
2475 Ay, 2A5 Ay, (A5 + 1A53) (A5, — iAss),
24}3A55, 2AT5 A%, (A)y + 1A43) (Al — iA]3),
(Al + A7) (Afy — iA]3), 2A33A%3, 2473 A5,
(A3 +1iA33) (A3, — 1A33), 2A5 A5y, 245, A,
247,455,245, A5y, (A5 +1iA5) (A5 —iA5)}
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