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Dirac electron in a chiral space-time crystal created by counterpropagating circularly

polarized plane electromagnetic waves

G. N. Borzdov∗

Department of Theoretical Physics and Astrophysics,
Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk, Belarus

The family of solutions to the Dirac equation for an electron moving in an electromagnetic lattice
with the chiral structure created by counterpropagating circularly polarized plane electromagnetic
waves is obtained. At any nonzero quasimomentum, the dispersion equation has two solutions
which specify bispinor wave functions describing electron states with different energies and mean
values of momentum and spin operators. The inversion of the quasimomentum results in two
other linearly independent solutions. These four basic wave functions are uniquely defined by eight
complex scalar functions (structural functions), which serve as convenient building blocks of the
relations describing the electron properties. These properties are illustrated in graphical form over
a wide range of quasimomenta. The superpositions of two basic wave functions describing different
spin states and corresponding to (i) the same quasimomentum (unidirectional electron states with
the spin precession) and (ii) the two equal-in-magnitude but oppositely directed quasimomenta
(bidirectional electron states) are also treated.

PACS numbers: 03.65.Pm, 03.30.+p, 02.30.Nw, 02.30.Tb

I. INTRODUCTION

The motion of electrons in natural crystals is described
by the Schrödinger equation with a periodic electrostatic
scalar potential. Electromagnetic fields with periodic de-
pendence on space-time coordinates can be treated by
analogy with the crystals of solid-state physics, so it is
natural to refer to these field lattices as electromagnetic
space-time crystals (ESTCs) [1–6]. In this context, the
idea of a space-time crystal was first presented in [1] and
the electron wave functions for the ESTC, created by two
linearly polarized plane waves, were calculated by using
the first-order perturbation theory for the Schrödinger-
Stueckelberg equation. The terms “time crystal” and
“space-time crystal” have been used previously in other
contexts, in particular, in the recent discussion around
the question of whether time-translation symmetry might
be spontaneously broken in a time-independent, conser-
vative classical system [7] and a closed quantum mechan-
ical system [8], such as ions confined in a ring-shaped
trapping potential with a static magnetic field [9, 10] or
a one-dimensional chain of ytterbium ions [11].
An electron in an electromagnetic field with the four-

dimensional potential A = (A, iϕ) is described by the
Dirac equation

[

γk

(

∂

∂xk
− iAk

e

c~

)

+ κe

]

Ψ = 0, (1)

where κe = mec/~, c is the speed of light in vacuum, ~ is
the Planck constant, e is the electron charge, me is the
electron rest mass, γk are the Dirac matrices, Ψ is the
bispinor, x1, x2, and x3 are the Cartesian coordinates,
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x4 = ict, and summation over repeated indices is carried
out from 1 to 4.
In [3–6], we obtained the fundamental solution of

Eq. (1) and presented tools for its numerical analysis in
the case when A4 ≡ iϕ = 0 and

A′ ≡ e

mec2
A =

6
∑

j=1

(

Aje
iKj ·x +A∗

je
−iKj ·x

)

. (2)

This ESTC is created by six plane waves with unit wave
normals ±eα, where eα are the orthonormal basis vec-
tors, x = (r, ict), r = x1e1 + x2e2 + x3e3. All six waves
have the same frequency ω0 and

Kα = (k0eα, ik0), Kα+3 = (−k0eα, ik0), (3)

where α = 1, 2, 3, and k0 = ω0/c = 2π/λ0. They may
have any polarization, so that their complex amplitudes
are specified by dimensionless real constants ajk and bjk
as follows:

Aj =

3
∑

k=1

(ajk + ibjk) ek, j = 1, 2, ..., 6, (4)

where ajj = bjj = aj+3 j = bj+3 j = 0, j = 1, 2, 3.
In the general case, Eqs. (2)–(4) describe a four-

dimensional ESTC (4D-ESTC), i.e., with periodic de-
pendence on all four space-time coordinates. The con-
dition A3 = A6 = 0 reduces it to a 3D-ESTC with pe-
riodic dependence on x1, x2, x4, whereas the condition
A2 = A3 = A5 = A6 = 0 results in a 2D-ESTC peri-
odic in x1, x4. In the simplest case, when A1 is the only
nonzero amplitude, Eq. (1) has the well-known Volkov so-
lution [12]. There exist different representations of this
solution [6, 13, 14].
The new technique presented in [2–6] is applied in [5]

to the 4D-ESTCs created by the linearly polarized waves
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with the amplitudes

A1 = −A4 = Ame2,

A2 = −A5 = Ame3,

A3 = −A6 = Ame1, (5)

and the circularly polarized waves with the amplitudes

A1 = A4 = Am(e2 + ie3)/
√
2,

A2 = A5 = Am(e3 + ie1)/
√
2,

A3 = A6 = Am(e1 + ie2)/
√
2, (6)

respectively, where Am is a real scalar amplitude. It
is shown that the second one possesses the spin bire-
fringence. In [6], this technique is illustrated by the
analysis of the ground state and the spin precession of
the Dirac electron in the field of two counterpropagating
plane waves with left and right circular polarizations, i.e.,
in the 2D-ESTC with the nonzero amplitudes

A1 = A4 = Am(e2 + ie3)/
√
2. (7)

In the present paper, we treat the electron motion in
the chiral 2D-ESTC defined by the amplitudes A1 =
A∗

4 = Am(e2 + ie3), so that

A′ = 4Am cosϕ4eA(ϕ1), (8)

where

eA(ϕ1) = e2 cosϕ1 − e3 sinϕ1, (9)

and ϕj = 2πXj , j = 1, 2, 3, 4;Xk = xk/λ0, k =
1, 2, 3, X4 = ct/λ0. The interplay between the fundamen-
tal solution of Eq. (1) and particular solutions, specified
by given initial amplitudes, for the general 4D-ESTC and
the chiral ESTC is discussed in Sec. II. The four basic
solutions which describe two different spin states of the
Dirac electron moving in the 2D-ESTC along the X1 axis
in the positive and negative directions are presented in
Sec. III. In Sec. IV, we treat superpositions of two basic
wave functions describing different spin states and corre-
sponding to (i) the same quasimomentum (unidirectional
electron states) and (ii) the two equal-in-magnitude but
oppositely directed quasimomenta (bidirectional electron
states). In the general 4D-ESTC, the Dirac equation re-
duces to an infinite system of matrix equations, where the
interconnections between equations are defined [5, 6] by
12 matrix functions and 56 scalar coefficients. The Ap-
pendix gives the expressions for them in an explicit form.
In the chiral 2D-ESTC, the number of these interconnec-
tions decreases drastically, resulting in specific interrela-
tions between the basic solutions discussed in Sec. III A.

II. BASIC RELATIONS

A. Fundamental solution

The electron wave function in the 4D-ESTC can be
written as follows [3, 6]:

Ψ = Ψ0e
ix·K , Ψ0 =

∑

n∈L

c(n)eix·G(n), (10)

whereK = (k, iω/c) is the four-dimensional wave vector,
k = k1e1+k2e2+k3e3, G(n) = (k0n, ik0n4),n = n1e1+
n2e2 + n3e3, points n = (n1, n2, n3, n4) of the integer
lattice L have even values of the sum n1 + n2 + n3 + n4,
and

c(n) =







c1(n)
c2(n)
c3(n)
c4(n)






≡







c1

c2

c3

c4







n

(11)

are the Fourier amplitudes (bispinors). The function Ψ0

is periodic in X1, X2, X3, and X4 with the unit period.
At a given K, the set of functions Ψ (10) is the Hilbert
space with the scalar product

(Ψa,Ψb) =

∫ 1

0

dX1

∫ 1

0

dX2

∫ 1

0

dX3

∫ 1

0

dX4Ψ
†
aΨb

=
∑

n∈L

a†(n)b(n) (12)

and the norm

‖Ψ‖ = (Ψ,Ψ)1/2 =

(

∑

n∈L

c†(n)c(n)

)1/2

, (13)

where

Ψa = Ψ0ae
ix·K , Ψ0a =

∑

n∈L

a(n)eix·G(n), (14)

Ψb = Ψ0be
ix·K , Ψ0b =

∑

n∈L

b(n)eix·G(n). (15)

Let us treat the infinite set C = {c(n), n ∈ L} of the
Fourier amplitudes c(n) of the wave function Ψ (10) as an
element of an infinite-dimensional complex linear space
VC . Since for any given n ∈ L, c(n) is the bispinor,
C ∈ VC will be called the multispinor. The basis ej(n)

in VC and the dual basis θj(n) = e†j(n) in the space of
one-forms V ∗

C are specified as follows:

e1(n) =







1
0
0
0







n

, e2(n) =







0
1
0
0







n

,

e3(n) =







0
0
1
0







n

, e4(n) =







0
0
0
1







n

, (16)
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θ1(n) =
(

1 0 0 0
)

n
, θ2(n) =

(

0 1 0 0
)

n
,

θ3(n) =
(

0 0 1 0
)

n
, θ4(n) =

(

0 0 0 1
)

n
,(17)

that is,

〈

θi(m), ej(n)
〉

= 1 for m = n and i = j

= 0 for m 6= n and/or i 6= j (18)

for any m,n ∈ L and i, j = 1, 2, 3, 4. The unit operator
U in VC can be written as

U =
∑

n∈L

I(n), I(n) = ej(n)⊗ θj(n), tr[I(n)] = 4.

(19)
Substitution of A (2) and Ψ (10) in Eq. (1) results in

the infinite system of matrix equations [3, 6],

∑

s∈S13

V (n, s)c(n+ s) = 0, n ∈ L, (20)

where s = (s1, s2, s3, s4) satisfies the condition g4d(s) =
0, 1, g4d(s1, s2, s3, s4) = max{|s1|+ |s2|+ |s3|, |s4|}, i.e.,

s ∈ S13 ={sh(i), i = 0, 1, ..., 12}
={(0, 0, 0, 0),
(0, 0,−1,−1), (0,−1, 0,−1), (−1, 0, 0,−1),

(1, 0, 0,−1), (0, 1, 0,−1), (0, 0, 1,−1),

(0, 0,−1, 1), (0,−1, 0, 1), (−1, 0, 0, 1),

(1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1)} . (21)

At i = 1, ..., 12, the function sh specifies the shifts s =
sh(i) of multi-indices n, defined by the Fourier spectrum
of the field A (2), which satisfy the condition g4d(s) = 1.
Because of this, they are called the shifts of the first
generation. The sequential numbering i = 0, 1, 2, ... of
points n = (n1, n2, n3, n4) = sh(i) ∈ L, based on the use
of g4d(n), takes into account the specific Fourier spec-
tra of the electromagnetic lattice A (2) and the electron
wave function Ψ (10) and thus drastically simplifies both
numerical implementation of the presented approach and
analysis of solutions [4].
We also use another useful numeration, namely, a spe-

cific numeration of 16 Dirac matrices Γk, k = 0, ..., 15,
which form a basis in the space of 4 × 4 matrices [3].

Any 4× 4 matrix V =
∑15

k=0 VkΓk is uniquely defined by
the set Ds(V ) = {Vk} [Dirac set of matrix V (D set of
V )]. The advantages of direct calculations with D sets
without matrix form retrieval are discussed in detail and
illustrated in [3, 5, 6]. Let us introduce the dimensionless
parameters

Q = (q, iq4) = K/κe, Ω =
~ω0

mec2
, (22)

q = q1e1 + q2e2 + q3e3 =
~ k

mec
, q4 =

~ω

mec2
. (23)

In this notation, the matrix coefficients V [n, sh(i)] (20),
in order of increasing i = 0, 1, ..., 12, have the following
D sets:

Ds{V [n, (0, 0, 0, 0)]} = {1, 0, 0, 0,−w4, 0, 0, 0, 0, 0, 0, 0, 0, iw3, iw1, iw2},
Ds{V [n, (0, 0,−1,−1)]} = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−ia31+ b31,−ia32 + b32},
Ds{V [n, (0,−1, 0,−1)]} = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−ia23+ b23,−ia21 + b21, 0},
Ds{V [n, (−1, 0, 0,−1)]} = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−ia13+ b13, 0,−ia12 + b12},
Ds{V [n, (1, 0, 0,−1)]} = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−ia43+ b43, 0,−ia42 + b42},
Ds{V [n, (0, 1, 0,−1)]} = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−ia53+ b53,−ia51 + b51, 0},
Ds{V [n, (0, 0, 1,−1)]} = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−ia61+ b61,−ia62 + b62},
Ds{V [n, (0, 0,−1, 1)]} = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−ia61− b61,−ia62 − b62},
Ds{V [n, (0,−1, 0, 1)]} = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−ia53− b53,−ia51 − b51, 0},
Ds{V [n, (−1, 0, 0, 1)]} = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−ia43− b43, 0,−ia42 − b42},
Ds{V [n, (1, 0, 0, 1)]} = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−ia13− b13, 0,−ia12 − b12},
Ds{V [n, (0, 1, 0, 1)]} = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−ia23− b23,−ia21 − b21, 0},
Ds{V [n, (0, 0, 1, 1)]} = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−ia31− b31,−ia32 − b32}, (24)

where n = (n1, n2, n3, n4), wk = qk + nkΩ, k = 1, 2, 3, 4.

By taking into account Eqs. (11) and (16)–(18), the
system of equations (20) with matrix coefficients V (n, s)

can be written in terms of scalar equations

〈f j(n), C〉 ≡
∑

s∈S13

V j
k(n, s)c

k(n+ s) = 0,

j = 1, 2, 3, 4; n ∈ L, (25)
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where

f j(n) =
∑

s∈S13

V j
k(n, s)θ

k(n+ s) ∈ V ∗
C ,

〈f j(n), ek(n+ s)〉 = V j
k(n, s). (26)

Finally, by combining the four equations related with
each point n, one can rearrange Eqs. (25) to the basic
system of equations [3, 6]

P (n)C = 0, n ∈ L, (27)

where

P (n) = [fα(n)]† ⊗ aαβ(n)f
β(n) (28)

is the Hermitian projection operator in VC with trace
tr[P (n)] = 4. The Hermitian 4 × 4 matrices a(n) are
given in a explicit form in [3, 6].
Each amplitude c(n) enters in 13 different matrix equa-

tions of the infinite system (20). This relatively sim-
ple structure of equations has made it possible to obtain
the fundamental solution of the system (27) by a recur-
rent process [3, 4, 6] based on a fractal approach [4].
It is expressed in terms of an infinite series of projec-
tion operators. This process begins with the selection
of an infinite subsystem consisting of independent equa-
tions and the calculation of the projection operators
ρ0(n) = P (n), n ∈ F0 ⊂ L, which uniquely define the
fundamental solutions of these equations [3, 6]. At each
new kth step of the recurrent process, we add another
infinite set P (n)C = 0, n ∈ Fk of mutually independent
equations (MIE) which, however, are related with some
of the equations introduced in the previous steps. Con-
sequently, we obtain an infinite set of independent finite
systems of interrelated equations [fractal clusters of equa-
tions (FCE)]. It can be described as a 4D lattice of such
clusters. Each step of the recurrent procedure expands
FCE for which it provides the exact fundamental solu-
tions. The fractal algorithm of this expansion presented
in [4] is devised to minimize volumes of computations and
data files. Some MIE (aggregative MIE, or MIE1) just
add one equation to each cluster of the previous FCE lat-
tice so that these enlarged clusters remain independent.
Other MIE (connective MIE, or MIE2), by adding each
equation, interrelate a pair of neighboring clusters into
a joint cluster, and a quite different FCE lattice arises.
Each fractal period includes connections in directions of
n4, n1, n2, and n3 axes, respectively. The smaller the
FCE, the smaller are the volumes of the computations
and data files, which are necessary to find and to write
the fundamental solution for this FCE. To simplify cal-
culations, we add a maximal possible number of MIE1
before adding the next MIE2.
The fundamental solution S of the system (27) is the

Hermitian operator of projection onto the solution sub-
space of the multispinor space VC . It is defined as fol-
lows [3, 6]:

S = U − P , P =

+∞
∑

k=0

∑

n∈Fk

ρk(n), (29)

+∞
⋃

k=0

Fk = L, Fj

⋂

Fk = ∅, j 6= k, (30)

where ρk(n) are Hermitian projection operators with
trace tr[ρk(n)] = 4. There exist various ways [4] to split
the lattice L into sublattices Fk to fulfill conditions (30)
and

ρ†k(n) = ρ2k(n) = ρk(n), n ∈ L,
ρk(m)ρl(n) = 0 if k 6= l or (and) m 6= n,

ρ0(n) = P (n), n ∈ F0, (31)

which result in the relations P† = P2 = P , P (n)P =
PP (n) = P (n), and, finally, P (n)S ≡ 0, n ∈ L. Hence,
for any C0 ∈ VC , C = SC0 is the exact particular so-
lution of Eq. (27), specified by the multispinor C0, i.e.,
the function Ψ (10) with the set of Fourier amplitudes
{c(n), n ∈ L} = SC0 satisfies the Dirac equation (1) for
the problem under consideration. Due to these proper-
ties, P is called the projection operator of the system
of equations (27). As shown in [3], this concept can be
applied to any system of homogeneous linear equations.
It follows from Eq. (28) that

P (m)P (n) =
[

f i(m)
]† ⊗ [a(m)N(m,n)a(n)]i jf

j(n),
(32)

where

N i
j(m,n) =

〈

f i(m),
[

f j(n)
]†
〉

, i, j = 1, 2, 3, 4, (33)

a(n) = [L(n)]−1, L(n) ≡ N(n, n), and N(m,n) ≡ 0 at
g4d(n−m) > 2. Substitution of fα(n) in (33) at n = m+s
gives [3, 6]

N †(n,m) = N(m,n) = L(m) for n = m,

= N1(m, s) for g4d(s) = 1,

= N2(s)U for g4d(s) = 2, (34)

where U ≡ Γ0 is the 4 × 4 unit matrix. The D sets
of 12 matrices N1(m, s) and the table of 56 scaler co-
efficients N2(s) for the general 4D-ESTC are presented
in the Appendix. These major structural parameters of
the ESTC specify interrelations in the system of equa-
tions (27). They are presented as functions of the dimen-
sionless parameters Ajk = ajk+ibjk, wk = qk+mkΩ, and
Ω± = ±Ω+2w4, where Ω and qk are defined in Eqs. (22)
and (23), k = 1, 2, 3, 4, m = (m1,m2,m3,m4) ∈ L.
The nonzero amplitudes for A′ (8) are specified by

a12 = b13 = a42 = −b43 = Am. In this case, most of
the structural parameters in Eq. (34) are vanishing, only
N1(m, s) with D sets,

Ds{N1[m, (∓1, 0, 0,−1)]} =
Am{2(−w2 ∓ iw3),∓iΩ, 0,−Ω, 0, 0, 0, 0,

0,∓iΩ−, 0,−Ω−, 0, 0, 0, 0} , (35)

Ds{N1[m, (∓1, 0, 0, 1)]} =
Am{2(−w2 ∓ iw3),∓iΩ, 0,−Ω, 0, 0, 0, 0,

0,∓iΩ+, 0,−Ω+, 0, 0, 0, 0} , (36)
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and N2(s) = 4A2
m with s ∈ {(0, 0, 0,−2), (0, 0, 0, 2)} are

not zero.

B. Approximate particular solutions

Numerical implementation of the obtained solution im-
plies the replacement of the projection operator P (29)
of the infinite system of equations (27) by the projection
operator

P ′ =
∑

k∈kL

∑

n∈nL(k)

ρk(n) (37)

of its finite subsystem

P (n)C = 0, n ∈ L′ =
⋃

k∈kL

nL(k) ⊂ L, (38)

where kL is an ordered finite list of integers, and nL(k) is
a finite list of points n ∈ Fk, taken into account. These
lists define a finite model of the electron wave function
in the ESTC, i.e., its approximation by a bispinor func-
tion with a finite discrete Fourier spectrum. Some such
models are presented in [4–6]. The projection operator

S ′ = U − P ′ (39)

gives the exact fundamental solution of the system (38),
which is an approximate solution of the system (27).
Let D be a differential operator in a space VΨ of scalar,

vector, spinor, or bispinor functions, and ‖Ψ‖ be the
norm of Ψ on VΨ. The functional

R : Ψ 7→ R[Ψ] =
‖ΨD‖
‖Ψ‖ (40)

where ΨD = DΨ, evaluates the relative residual at the
substitution of Ψ into the differential equation DΨ = 0.
It provides a convenient fitness criterion to accurately
compare various approximate solutions of this equa-
tion [4–6]. For an exact solution Ψ, the residual ΨD

vanishes, i.e., R[Ψ] = 0. If ΨD 6= 0, but R[Ψ] ≪ 1,
the function Ψ may be treated as a reasonable approx-
imation to the exact solution, and the smaller is R[Ψ],
the more accurate is the approximation. In terms of dis-
tances d = ‖Ψ‖ and dD = ‖ΨD‖ of Ψ and ΨD to the
origin of VΨ (the zero function), one can graphically de-
scribe R[Ψ] as shrinkage in distance R[Ψ] = dD/d. The
functional R, as applied to a family of functions Ψ(x, ξ)
with members specified by a parameter ξ, results in func-
tion R[Ψ(x, ξ)] of ξ, denoted R(ξ) for short.
In the present paper, VΨ = VC , the norm ‖Ψ‖ is given

by Eq. (13), and ΨD = DΨ is calculated for the dimen-
sionless operator

D =

3
∑

k=1

αk

(

− i~

mec

∂

∂xk
−A′

k

)

− i~

mec2
∂

∂t
+ α4 (41)

of the equation DΨ = 0 equivalent to Eq. (1). We re-
strict our consideration to the case when the amplitude
C0 specifying a particular solution is given by

C0 = aj0ej(no), (42)

where no = (0, 0, 0, 0), and q2 = q3 = 0, i.e., the electron
moves along the axis X1. The fitness parameter R(ξ)
plays a leading role in search for the best approximate
particular solution {c(n), n ∈ L} = S ′C0, available in
the frame of the selected finite model, as follows.

The analytical fundamental solution S (29) is obtained
without recourse to any dispersion relation, i.e., for any
vector Q (22). However, since the system of equa-
tions (27) is homogeneous, the dispersion relation man-
ifests itself in the spectral distribution of Fourier am-
plitudes c(n) for each exact particular solution Ψ (10).
This is illustrated in [6] by the example of the exact
Volkov solution. Since the amplitude Ψ0 (10) is periodic
in X1, X2, X3, and X4, the wave function Ψ describes a
nonlocalized solution of the Dirac equation. In the gen-
eral case, its Fourier spectrum is also nonlocalized in the
space of the four-dimensional wave vectors. However, in
numerical calculations for a finite model, instead of an ex-
act particular solution, we obtain its approximation with
a localized Fourier spectrum bounded by the truncation
condition g4d(n) ≤ gmax for all n ∈ L′. Consequently, the
dispersion interrelation of q and q4 is defined by the min-
imum of the fitness function R = R1(ξ) with graphical
representation in the form of a spectral curve of approx-
imate solutions [5, 6], where

ξ = q4 −
√

1 + q2 =
~ω

mec2
−
√

1 +

(

~k

mec

)2

. (43)

Here, Rj =
√

λj is specified by a generalized eigenvalue
λj which is a root of the quartic equation det(UD −
λUE) = 0, with the Hermitian 4 × 4 matrices UE and
UD, defined in [4–6]. It has real coefficients and posi-
tive roots λj indexed below in increasing order of mag-
nitude, R1 < R2 < R3 < R4. At sufficiently large value
of gmax, the condition R1 ≪ 1 is satisfied within nar-
row limits of ξ values, whereas R2,3,4 ≫ R1 and they
do not satisfy the similar condition at any value of ξ;
see numerical and graphic illustrations in [5, 6]. The
minimum {ξ0,R0 = R1(ξ0)} of the curve R = R1(ξ)
specifies the most accurate approximate solution pro-
vided by the selected finite model. The corresponding
amplitude a0 = a01 (42) for this solution is specified by
the generalized eigenvector a01 defined by the equation
UDa01 = λ1UEa01. It follows from the results of the
computer simulations [5, 6] that ξ0 converges to a pos-
itive limit and R0 tends to zero with increasing gmax;
in other words, this approximate particular solution con-
verges to the exact solution with the dispersion relation

q4 −
√

1 + q2 = ξ0.
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III. ELECTRON WAVE FUNCTIONS IN THE

CHIRAL 2D-ESTC

A. Structure of wave functions

For the problem under study the technique presented
in [3–6] and Eqs. (35) and (36) at q = q± ≡ ±|q1|e1
result in the four partial solutions

Ψj(q±) = Ψj±e
iΦj± , (44)

where j = 1, 2 and

Φj± = x ·Kj± = (±|q1|ϕ1 − q4jϕ4)/Ω, (45)

Ψ1± =
∑

n∈S1±

a±(n)e
iϕn , Ψ2± =

∑

n∈S2±

b±(n)e
iϕn ,

ϕn = n1ϕ1 − n4ϕ4, ϕ1 = 2πX1, ϕ4 = n4X4. (46)

The points n = (n1, n2, n3, n4) ∈ L with nonzero bispinor
Fourier amplitudes a±(n) and b±(n), comprising the
solution domains S1± and S2±, satisfy the conditions
|n1| = 0, 1;n2 = n3 = 0. These amplitudes, calculated by
the recurrent algorithm [3], have specific symmetry prop-
erties which make it possible to express Ψ1± and Ψ2± in
terms of eight complex scalar functions zjk = zjk(ϕ4) as
follows:

Ψ1+ = u2z12 + u4z14 + ieiϕ1(u1z11 + u3z13),

Ψ1− = −u1z12 − u3z14 + ie−iϕ1(u2z11 + u4z13),

Ψ2+ = u1z21 + u3z23 + ie−iϕ1(u2z22 + u4z24),

Ψ2− = −u2z21 − u4z23 + ieiϕ1(u1z22 + u3z24), (47)

where

u1 =
1√
2







1
1
0
0






, u2 =

1√
2







1
−1
0
0






,

u3 =
1√
2







0
0
1
1






, u4 =

1√
2







0
0
1
−1






. (48)

The interrelations between the complex scalar func-
tions zjk and the bispinor amplitudes a±(n), b±(n) are
described by the Fourier expansions

Zj =
+∞
∑

l=−∞

Zj,le
ilϕ4 , (49)

where j = 1, 2,

Z1 =







z12
z14
z11
z13






,Z2 =







z21
z23
z22
z24






, (50)

Z1,l =







a−l2

a−l4

0
0






,Z2,l =







b−l1

b−l3

0
0






, (51)

a+[(0, 0, 0, l)] = al2u2 + al4u4,

b+[(0, 0, 0, l)] = bl1u1 + bl3u3 (52)

for even l, and

Z1,l =







0
0

a−l1

a−l3






,Z2,l =







0
0

b−l2

b−l4






, (53)

a+[(1, 0, 0, l)] = i(al1u1 + al3u3),

b+[(−1, 0, 0, l)] = i(bl2u2 + bl4u4) (54)

for odd l. All scalar coefficients alk and blk are real.
In accordance with the above definitions, the functions
zjk are given by a+(n), b+(n). However, they also specify
Ψ1− and Ψ2− through the relations between a−(n), b−(n)
and a+(n), b+(n), taken into account in Eq. (47).
The bispinor functions Ψj(q±) are uniquely defined

by eight complex scalar functions (structural functions)
zjk(j = 1, 2; k = 1, 2, 3, 4), which serve as convenient
building blocks of the relations describing the electron
properties. For the chiral 2D-ESTC under study, the
finite model [see Eq. (38)] is given by L′ = {n =
(n1, 0, 0, n4), 0 ≤ g4d(n) ≤ gmax}, i.e., the infinite se-
ries in Eq. (49) are truncated so that the real xjk and
imaginary yjk parts of zjk = xjk + iyjk can be written as

xjk = xjk0 +

pm
∑

p=1

xjk(2p) cos(2pϕ4),

yjk =

pm
∑

p=1

yjk(2p) sin(2pϕ4) (55)

for jk ∈ {12, 14, 21, 23}, and

xjk =

pm
∑

p=0

xjk(2p+1) cos[(2p+ 1)ϕ4],

yjk =

pm
∑

p=0

yjk(2p+1) sin[(2p+ 1)ϕ4] (56)

for jk ∈ {11, 13, 22, 24}, where
x1k0 = a0k, x2k0 = b0k,

x1kl = a−lk + alk, x2kl = b−lk + blk,

y1kl = a−lk − alk, y2kl = b−lk − blk. (57)

By selecting a sufficiently large value of gmax, one can
easily obtain approximate solutions with any desired ac-
curacy. To illustrate this, we fix Ω = 0.01, Am =

√
2/200

and set gmax = 12 for which pm = 6. This results in
the approximate particular solutions satisfying the fit-
ness condition R0 < 10−17, presented below, whose de-
viations from the corresponding exact solutions are neg-
ligibly small.
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FIG. 1. Plot of ξ1 against log10 q1.
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FIG. 2. Plot of ∆ξ against log10 q1.

B. Dispersion relations

For a given q1 6= 0, the dispersion equation has two
closely spaced solutions q4j = q40 + ξj , where j =

1, 2, ξ1 < ξ2 and q40 =
√

1 + q21 . They are invariant
under inversion q1 7→ −q1. The electron wave func-
tions Ψj(q+) and Ψj(q−) describe the motion in the
positive and negative X1 directions, respectively. The
dependence of ξ1 and ∆ξ = ξ2 − ξ1 on q1 is shown in
Figs. 1 and 2, where the dots represent calculations at
q1 = 2mΩ,m ∈ [−10, 15], while the curves are obtained
by the linear interpolation.

C. Properties of functions zjk

Substitution of Ψj(q+) in the Dirac equation DΨ = 0
with D (41) result in two evolution equations,

d

dϕ4
Zj =

i

Ω
MjZj , j = 1, 2, (58)

where

Mj = Nj − (−1)j4Am cosϕ4α1, (59)

Nj =







q4j − 1 −q1j 0 0
−q1j q4j + 1 0 0
0 0 q41 − 1 q1j − Ω
0 0 q1j − Ω q4j + 1






, (60)

α1 =







0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0






, q1j = (−1)jq1. (61)

Since M1 and M2 are real symmetrical matrices, it

follows from Eqs. (58) that d(Z†
jZj)/dϕ4 = 0. Therefore,

we impose the normalization condition

Z†
jZj ≡ Ψ†

j±Ψj± ≡
4
∑

k=1

|zjk|2 = 1, j = 1, 2. (62)

The functions Ψ1± and Ψ2± also satisfy the following
orthonormality relations:

Ψ†
j±Ψj∓ = 0, j = 1, 2,

Ψ†
1±Ψ2± = 0, lim

q1→0
(Ψ†

1±Ψ2∓) = 1. (63)

In our numerical calculations with gmax = 12, variations
from these relations are negligibly small, at less than
10−16.
Substitution of Z1 and Z2 into Eqs. (58) results in

two independent systems of matrix equations in Fourier
amplitudes Z1,l and Z2,l, respectively,

(Nj − lΩU)Zj,l = (−1)j2Amα1(Zj,l−1 + Zj,l+1), (64)

where j = 1, 2. These amplitudes are connected by the
recurrent relations

Zj,l+1 = −Zj,l−1 +
(−1)j

2Am
α1(Nj − lΩU)Zj,l (65)

with l = 1, 2, ..., and

Zj,l−1 = −Zj,l+1 +
(−1)j

2Am
α1(Nj − lΩU)Zj,l (66)

with l = −1,−2, ..., where

NjZj,0 = (−1)j2Amα1(Zj,−1 + Zj,1). (67)

Therefore, by taking into account Eqs. (51), (53), and
(57), coefficients xjkl, yjkl can be calculated starting
with x120, x140, y111, y131 and x210, x230, y221, y241. These
starting coefficients depend on q1, as illustrated in
Figs. 3–6.
In the state defined by the quasimomentum p =

~k = mecq = 0, the equation (UD − λ1UE)a0 = 0
has the twofold generalized eigenvalue λ1 and the two-
dimensional subspace of the corresponding generalized
eigenvectors a0. Any basis of this subspace specifies two
linearly independent solutions of the Dirac equation, for
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FIG. 3. Plot of (A) x210 and (B) x230 against log10 q1.
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x210+x120, x230-x140

FIG. 4. Plot of (A) x210 + x120 and (B) x230 − x140 against
log10 q1.

which ξ1 = ξ2 = 0.000199970011. In particular, the lim-
iting cases of Ψj(q±) (44) at q1 → 0 can be conveniently
treated as the basis wave functions. At q1 = 0, the func-
tions zjk satisfy the identities

z11 = z22, z12 + z21 = 0, z13 = z24, z14 + z23 = 0 (68)

and hence

lim
q1→0

Ψ1± = lim
q1→0

Ψ2∓,

lim
q1→0

Ψ1(q±) = lim
q1→0

Ψ2(q∓). (69)

A

B

-5 -4 -3 -2 -1 1
log10 q1
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0.004
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0.008

0.010

0.012

0.014

y111, y131

FIG. 5. Plot of (A) y111 and (B) y131 against log10 q1.

B

A

-5 -4 -3 -2 -1 1
log10 q1

0.00005

0.0001

y221-y111, y241 +y131

FIG. 6. Plot of (A) y221 − y111 and (B) y241 + y131 against
log10 q1.

The coefficients, illustrated in Figs. 3–6, at this state have
the following values:

x120 = −x210 = 0.999875,

x140 = −x230 = −4.99594× 10−7,

y111 = y221 = 0.0141368,

y131 = y241 = 0.0000706745. (70)

D. Energy level splitting

Let us now compare the wave functions Ψj(q±), j =
1, 2 in terms of the corresponding mean values of Hamil-
tonian

H = c

3
∑

k=1

αkpk +mec
2α4, (71)

operators of kinetic momentum

pk = −i~
∂

∂xk
− e

c
Ak, (72)

probability current density (velocity) jk = cαk, and spin

Sk = ~

2Σk, k = 1, 2, 3. Since Ψ†
j(q±)Ψj(q±) = 1,

the mean value 〈L〉 of a linear operator L with re-
spect to the wave function Ψj(q±) reduces to the mean
value of the corresponding Hermitian form: 〈L〉 =

〈Ψ†
j(q±)LΨj(q±)〉. The mean values 〈jk〉, 〈pk〉, and 〈Sk〉

are zero at k = 2, 3 for all these functions. For both
Ψ1(q±) and Ψ2(q±), the inversion q± 7→ q∓ changes the
signs of 〈j1〉, 〈p1〉, and 〈S1〉, but leaves invariant 〈H〉. It
also follows from the results of our calculations that

Ψ†
j(q±)Σ1Ψj(q±) ≡ Ψ†

j±Σ1Ψj± = ±(−1)jΣ10, (73)

where Σ10 can be expressed in terms of the functions zjk
as

Σ10 = (−1)j(|zj1|2+|zj3|2−|zj2|2−|zj4|2), j = 1, 2. (74)

It is independent of q1 and for the chiral ESTC under
consideration takes the value Σ10 = 0.99960023984.
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FIG. 7. Difference of the normalized energy E = E±(q1) and
E0 against q1: (A) E = E+(q1) and (B) E = E−(q1).

The functions Ψ1(q−) and Ψ2(q+) provide the same

positive mean value 〈S1〉 = S+ = ~

2Σ10, whereas Ψ1(q+)
and Ψ2(q−) provide the same negative mean value 〈S1〉 =
S− = −~

2Σ10. Hence, Ψ1(q∓) together with Ψ2(q±)
specify two wave functions (S± solutions) describing two
different spin states and defined into the whole united q1
domain containing both q1 < 0 and q1 ≥ 0 values.

Let J1±(q1) = 〈j1〉/c, P1±(q1) = 〈p1〉/(mec), and
E±(q1) = 〈H〉/(mec

2) be the normalized mean val-
ues of the operators j1, p1, and H with respect to
S± solutions at a given q1. At q1 = 0, these solu-
tions provide the same value of the normalized energy
E0 = E±(0) = 1.000199970009, and equal in mag-
nitude but opposite in sign the normalized mean val-
ues of the velocity J1±(0) = ±v10 and the momentum
P1±(0) = ∓p10, where v10 = 1.99820142893× 10−10 and
p10 = 1.99880079944× 10−6.

The mean values of momentum for S± solutions lin-
early depend on the quasimomentum: P1±(q1) = q1∓p10.
The dependence of E± on q1 in the vicinity of the ori-
gin is shown in Fig. 7. In this domain, J1±(q1) can
be closely approximated by the linear functions with
J1±(q1) = 0 at q1 = ∓q10, respectively, where q10 =
1.99860096936 × 10−10. At |q1| < q10, the mean val-
ues J1±(q1) and P1±(q1) are opposite in sign for both
of the solutions. Figures 8–11 illustrate the properties
of functions J1±(q1) and E±(q1) over a wide range of
q1 > 0. At any q1 6= 0, there are two different states
with the opposite in sign spins S± and different energy
levels E±(q1). This energy level splitting satisfies the re-
lations E−(q1) − E+(q1) = E+(−q1) − E−(−q1) ≥ 0 for
q1 ≥ 0. The functions E±(q1) take the same minimal
value Emin = E±(±p10) = 1.000199970007 at the points
q1 = ±p10, where P1±(±p10) = 0. The wave functions
Ψ2(q±) specify these two ground states with oppositely
directed spins.
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0.8

1.0

J1-

FIG. 8. Plot of J1− against log10 q1.
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FIG. 9. Plot of J1+ − J1− against log10 q1.

IV. UNIDIRECTIONAL AND BIDIRECTIONAL

STATES OF THE ELECTRON

At q1 6= 0, the wave functions Ψj(q±), j = 1, 2 are lin-
early independent and form a basis for a four-dimensional
subspace of partial solutions to the Dirac equation. At
q1 = 0, as a consequence of Eq. (69), this subspace de-
generates to the two-dimensional one. In this section, we
treat two families of partial solutions which describe uni-
directional and bidirectional states of the Dirac electron.

-5 -4 -3 -2 -1 1 2
log10 q1

5

10

15

20

E-

FIG. 10. Normalized energy E− against log10 q1.
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FIG. 11. Normalized energy difference E− − E+ against
log10 q1.

They are specified by the wave functions

Ψ± = Ψ1(q±)e
iδ cosα+Ψ2(q±) sinα,

Ψj = Ψj(q+)e
iδ cosα+Ψj(q−) sinα, j = 1, 2, (75)

where α ∈ [0, π/2] and δ ∈ [0, 2π]. To study these states,
we use the structural functions zjk described in Sec. III A
and the following designations:

Rikjl = 2Re(z∗ikzjl), Iikjl = 2Im(z∗ikzjl),

Rj = Rj1j4 +Rj2j3, Ij = Ij1j2 + Ij3j4 ,

v1j = Rj1j3 −Rj2j4, (76)

where i, j = 1, 2 and k, l = 1, 2, 3, 4.

A. Unidirectional states: precession

The wave functions Ψ+ and Ψ− describe various elec-
tron states specified by the parameters α and δ at the
positive quasimomentum q1 and the negative one, respec-
tively. For any linear operator A, the Hermitian forms

Ψ†
±AΨ± are periodic in X1 with the unit period. They

are not periodic in X4 because of the phase difference,

ϕ = Φ1± − Φ2± + δ =
2π

Ω
∆ξX4 + δ. (77)

However, ∆ξ/Ω ≪ 1, so that variations of ϕ at any unit
interval of the X4 axis are negligibly small in the calcu-
lation of norms and mean values. In this approximation,
one can obtain the relations

P1± = I∆X(Ψ†
±p1Ψ±)/(mec) = ±(|q1|+ p10 cos 2α),

E = I∆X(Ψ†
±HΨ±)/(mec

2) = E1 cos
2 α+ E2 sin

2 α,

Ψ†
±Ψ± = 1, (78)

where

p10 =
Ω

2
(1− Σ10), Ej =

∫ 1

0

HjdX4, j = 1, 2, (79)

Hj = ΩRjjjj+2 + |q1|v1j + |zj1|2 + |zj2|2

− |zj3|2 − |zj4|2 + (−1)j4AmRj cosϕ4, (80)

I∆X(f) ≡
∫

∆X

fdX1dX4, (81)

and the domain ∆X is given by the unit intervals
[Xk, Xk + 1], k = 1, 4. The dependence of the normal-
ized energies E1 = E−(|q1|) and E2 = E+(|q1|) on q1 is
illustrated in Figs. 7, 10, and 11.
In the comparative analysis of electron states, it is ad-

vantageous to calculate both mean values and Hermi-
tian forms of various operators with respect to the cor-
responding wave functions. In particular, the Hermitian
forms for the velocity operator and the spin operator with
respect to Ψ± result in the following vector fields:

j(q±) = cv±, S(q±) =
~

2
s±, (82)

where

v± =

3
∑

k=1

ek(Ψ
†
±αkΨ±) = e1

{

±(v11 cos
2 α+ v12 sin

2 α)

+ sin 2α [ImC1 cos(ϕ± ϕ1)− ReC1 sin(ϕ± ϕ1)]}
+ (R1 cos

2 α−R2 sin
2 α)eA(ϕ1)

+ sin 2α [±ImC2eA(∓ϕ) + ReC2eB(∓ϕ)

± ImC3eA(2ϕ1 ± ϕ) + ReC3eB(2ϕ1 ± ϕ)] , (83)

s± =

3
∑

k=1

ek(Ψ
†
±ΣkΨ±) = e1 {∓Σ10 cos 2α

+ sin 2α [ImD1 cos(ϕ± ϕ1)− ReD1 sin(ϕ± ϕ1)]}
± (I1 cos

2 α− I2 sin
2 α)eB(ϕ1)

+ sin 2α [±ImD2eA(∓ϕ) + ReD2eB(∓ϕ)

± ImD3eA(2ϕ1 ± ϕ) + ReD3eB(2ϕ1 ± ϕ)] , (84)

C1 = z∗11z23 + z∗12z24 + z∗13z21 + z∗14z22,

C2 = z∗12z23 + z∗14z21, C3 = z∗22z13 + z∗24z11,

D1 = z∗11z21 + z∗12z22 + z∗13z23 + z∗14z24,

D2 = z∗12z21 + z∗14z23, D3 = z∗22z11 + z∗24z13. (85)

The vector eA(ϕ1) is given by Eq. (9) and

eB(ϕ1) = e1 × eA(ϕ1) = e2 sinϕ1 + e3 cosϕ1. (86)

Since ∆ξ/Ω ≪ 1, we obtain the mean values

〈v±〉 = I∆X(v±)

= ±e1 [J−(|q1|) cos 2α+ J+(|q1|) sin 2α]
− Rv sin 2αeB(∓ϕ), (87)

〈s±〉 = I∆X(s±)

= ∓e1Σ10 cos 2α−Rs sin 2αeB(∓ϕ), (88)
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FIG. 13. Precession parameter Rs against log10 q1.

where ϕ = δ + 2πνprt, δ specifies the initial precession
phase, and νpr = ∆ξmec

2/h is the precession frequency.
The transverse components of the precessing vectors of
the velocity (probability current density) and the spin
are specified by α and the coefficients

Rv = −
∫ 1

0

C2dX4, Rs = −
∫ 1

0

D2dX4, (89)

which depend on q1, as shown in Figs. 12 and 13. The
inversion of the quasimomentum q 7→ −q is described
by the replacements v± 7→ v∓ and s± 7→ s∓. It inverts
the signs of longitudinal components and reverses the
precession directions.

B. Bidirectional states

The bidirectional wave functions Ψ1 and Ψ2 (75) sat-

isfy the normalization condition Ψ†
jΨj = 1. The Hermi-

tian forms Ψ†
jp1Ψj and Ψ†

jHΨj are both periodic in X4

with the unit period and periodic in X1 with the periods

∆X1j =
∣

∣1− (−1)jqm
∣

∣

−1
, qm = 2|q1|/Ω, j = 1, 2. (90)

The normalized momentums for the bidirectional states
depend on α as follows:

P1j =
1

mec
I∆X1j

(Ψ†
jp1Ψj) =

[

|q1| − (−1)jp10
]

cos 2α,

(91)
where p10 is given by Eq. (79) and

I∆X1j
(f) ≡ 1

∆X1j

∫ 1

0

dX4

∫ ∆X1j

0

fdX1, j = 1, 2. (92)

The normalized energies

1

mec2
I∆X1j

(Ψ†
jHΨj) = Ej (93)

are independent of α and δ; they are given by Eq. (79).
The Hermitian forms for the operators of velocity and

spin are defined by the relations

jj = cvj = c

3
∑

k=1

ek(Ψ
†
jαkΨj),

Sj =
~

2
sj =

~

2

3
∑

k=1

ek(Ψ
†
jΣkΨj), (94)

where j = 1, 2, and

v1 = R1eA(ϕ1)−R1214g0− +R1113g2+,

v2 = −R2eA(ϕ1) +R2123g0+ −R2224g2−,

s1 = −1

2
(1 + Σ10)g0− − I1g1+ +

1

2
(1− Σ10)g2+,

s2 =
1

2
(1 + Σ10)g0+ − I2g1− − 1

2
(1− Σ10)g2−,

g0± = cos 2αe1 ∓ sin 2αeB[±(qmϕ1 + δ)],

g1± = sin 2α cos[(1± qm)ϕ1 ± δ]e1 ∓ cos 2αeB(ϕ1),

g2± = cos 2αe1 ± sin 2αeB[(2 ± qm)ϕ1 ± δ]. (95)

At given qm, α, and δ, the scalar coefficients Rj , Ij , Rj1j3,
and Rj2j4, where j = 1, 2, are periodic in X4 with
the unit period. The vectors eA,gk± are independent
of X4, but they all have different dependencies on X1.
Therefore, the vector functions vj = vj(X1, X4) and
sj = sj(X1, X4) are periodic in X4 but, in the gen-
eral case, they are not periodic in X1. However, they
become periodic in X1 at some specific values of qm.
In particular, the period is equal to ∆X1 = 2n for
qm = 2−n, n = 1, 2, ..., and ∆X1 = 1 for any integer
qm.
The relations (95) define the parametric surfaces v =

vj(X1, X4) and s = sj(X1, X4) which can be treated as
specific graphic markers of the bispinor wave functions
Ψ1 and Ψ2 at given qm, α, and δ. By way of example, let
us consider a particular case with qm = 1, α = π/4, and
δ = 0, when P1j = 0 and e1 · vj ≡ 0, j = 1, 2. In this
case, the mean values of momentum with respect to both
Ψ1 and Ψ2 are vanishing and the probability streamlines
are in the phase planes X1 = const. The families of
coordinate curves illustrating the dependence of velocity
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FIG. 14. Parametric plot of coordinate curves for v = v2e2 +
v3e3 = v1(X1, X4) at qm = 1, α = π/4, and δ = 0: X1

curves a, b, c, d, e for X4 = 0, 1/8, 1/4, 3/8, 1/2, respectively,
X1 ∈ [0, 1]; X4 curves with X4 ∈ [0, 1/2] begin at points
numbered k = 0, 1, ..., 7, where X1 = k/8.

fields v1 and v2 on the spatial coordinate X1 and the
time X4 diverge considerably; see Figs. 14–16. Unlike
v1(X1, X4), the parametric surface v2(X1, X4) has the
hole in its center, namely, |v2| ≥ 0.005 at all values of X1

andX4; see Fig. 16. AllX1 curves in Fig. 16 are similar in
appearance and X1 increases in the clockwise direction,
whereas X1 curves in Figs. 14 and 15 modify the form
with time and reverse their direction at X4 = 1/4.

The Hermitian forms s1 and s2 for the spin operator
also diverge considerably; see Figs. 17 and 18. At qm = 1
and α = π/4, they are described by the relations

s1 = −1

2
(1 + Σ10)eB(−ϕ1 − δ)− I1 cos(2ϕ1 + δ)e1

+
1

2
(1− Σ10)eB(3ϕ1 + δ), (96)

s2 = −1

2
(1 + Σ10)eB(ϕ1 + δ)− I2 cos δe1

+
1

2
(1− Σ10)eB(ϕ1 − δ). (97)

The longitudinal component of s1 oscillates with time.
The oscillation amplitude depends on ϕ1 and vanishes
at points where cos(2ϕ1 + δ) = 0. For the vector s2,
the similar oscillation amplitude is independent of ϕ1. It
is specified by δ and vanishes at δ = ±π/2, but takes
maximum value at δ = 0, as shown in Fig. 18.

a

b
c

d
e

f
g

-0.007 0.007
v2

-0.007

0.007

v3

FIG. 15. Parametric plot of X1 coordinate curves for v =
v1(X1, X4) in the neighborhood of the instant of time X4 =
1/4 at p = 1; X4 = 1/4 + kδa/2, k = −3,−2,−1, 0, 1, 2, 3 for
curves a, b, c, d, e, f, g, respectively, δa = 0.028125.

0
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3

4

5

6

7

abc
d
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FIG. 16. Parametric plot of coordinate curves for v =
v2(X1, X4) at qm = 1, α = π/4, and δ = 0: X1 curves a, b, c, d
for X4 = 0, 1/12, 1/6, 1/4, respectively, X1 ∈ [0, 1]; X4 curves
with X4 ∈ [0, 1/2] begin at point numbered k = 0, 1, ..., 7,
where X1 = k/8.

V. CONCLUSION

The properties of ESTCs vary widely; one can set po-
larizations, intensities, initial phases of the constitutive
electromagnetic plane waves, and the frequency. To con-
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FIG. 17. Parametric plot of coordinate curves for s = s1e1 +
s2e2 + s3e3 = s1(X1, X4) at qm = 1, α = π/4, and δ = 0: X1

curves with X1 ∈ [0, 1] for X4 = 0,−1/4,−1/8, 0, 1/8, 1/4; X4

curves with X4 ∈ [−1/4, 1/4] for X1 = k/16, k = 0, 1, ..., 15;
X1 = 0 and 1/2 for points 1, 2 and 3, 4, respectively; X4 =
−1/4 and 1/4 for points 1, 3 and 2, 4, respectively.

struct a specific ESTC, it is useful to evaluate first the
structural parameters presented in the Appendix because
they specify the interconnections in the infinite system of
matrix equations and, in the final analysis, prescribe the
Fourier spectrum of the electron wave function. The pre-
sented solutions provide an example of such approach.

At given quasimomenta q = q± ≡ ±|q1|e1, the Dirac
equation in the chiral 2D-ESTC has the four solutions
Ψj(q±), j = 1, 2, which describe two different spin states
of the electron moving along the X1 axis in the pos-
itive and negative directions. The bispinor functions
Ψj(q±) = Ψj(q±)(X1, X4) are uniquely defined by eight
complex scalar functions (structural functions) zjk =
zjk(X4), j = 1, 2, k = 1, 2, 3, 4, which serve as convenient
building blocks of the relations describing the electron
properties. These functions are obtained in the form of
Fourier expansions, where coefficients can be calculated
by making use of the recurrent relations (65)–(67) and
the starting coefficients presented in Figs. 3–6.

At any quasimomentum q1 6= 0, the dispersion equa-
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FIG. 18. Parametric plot of coordinate curves for s =
s2(X1, X4) at qm = 1, α = π/4, and δ = 0. The values of
X1 and X4 are the same as in Fig. 17.

tion has two solutions which specify wave functions de-
scribing electron states with different energy and mean
values of momentum and spin operators. The energy
level splitting is illustrated in graphical form over a wide
range of q1. It is shown that at |q1| < q10, the mean
values of velocity and momentum operators are opposite
in sign for both of the spin states.
At q1 6= 0 the wave functions Ψj(q±), j = 1, 2, form

a basis for a four-dimensional subspace of partial solu-
tions to the Dirac equation, but at q1 = 0, as a conse-
quence of Eq. (69), this subspace degenerates to the two-
dimensional one. In this paper, two families of partial
solutions which describe unidirectional and bidirectional
states of the Dirac electron are treated. In the compar-
ative analysis of such electron states, it is advantageous
to calculate both mean values and Hermitian forms of
various operators with respect to the corresponding wave
functions, in particular the velocity operator and the spin
operator.
The unidirectional electron states are specified by su-

perpositions of two basic wave functions Ψ1(q±) and
Ψ2(q±) corresponding to the same quasimomentum q±

but describing two different spin states. It is shown that
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such superpositions describe the electron precession. The
magnitudes of transverse components of precessing veloc-
ity vectors v± and spin s± are given by coefficients Rv

and Rs depending on q1, as shown in Figs. 12 and 13.

The bidirectional electron states are specified by super-
positions of two basic wave functions Ψj(q+) and Ψj(q−)
corresponding to the two equal-in-magnitude but oppo-
sitely directed quasimomenta and also describing two dif-
ferent spin states. In particular, such superpositions de-
scribe the relativistic electron states with the zero mean
value of the momentum operator and specific probability
current densities and Hermitian forms of the spin opera-
tor.

In this paper we present families of nonlocalized solu-
tions of the Dirac equation. They can be used as basis
wave functions to construct various localized states of
the Dirac electron by applying the general approach pro-
posed in [15], where it was illustrated for the examples
of electromagnetic and weak gravitational fields. Natural
crystals prescribe the polarization state and the refrac-
tive index of light plane waves and thus provide a means
to control the properties of light beams. Similarly, elec-
tromagnetic space-time crystals prescribe the spin state
and the energy of the Dirac electron. This makes them
promising tools to control the quantum states of elec-
trons.
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Appendix

The definitions of N1(m, s) and N2(s) are given in
Sec. II. Here, we present these major structural parame-
ters in the explicit form that is necessary in any numer-
ical implementation of the general techniques developed
in Refs. [3–6].

1. Dirac sets of matrices N1(m, s)

We present N1(m, s) and N2(s) in order of the sequen-
tial numbering i = 0, 1, . . . of points s = sh(i) ∈ L
(see appendix in Ref. [4]). There are 12 points with
g4d(s) = 1. They are elements (from 2 to 13) of the

list

S69 ={sh(i), i = 0, 1, ..., 69}
={(0, 0, 0, 0),
(0, 0,−1,−1), (0,−1, 0,−1), (−1, 0, 0,−1),

(1, 0, 0,−1), (0, 1, 0,−1), (0, 0, 1,−1),

(0, 0,−1, 1), (0,−1, 0, 1), (−1, 0, 0, 1),

(1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1),

(0, 0, 0,−2), (0, 0, 0, 2),

(0, 0,−2, 0), (0,−1,−1, 0), (−1, 0,−1, 0),

(1, 0,−1, 0), (0, 1,−1, 0), (0,−2, 0, 0),

(−1,−1, 0, 0), (1,−1, 0, 0), (−2, 0, 0, 0),

(2, 0, 0, 0), (−1, 1, 0, 0), (1, 1, 0, 0),

(0, 2, 0, 0), (0,−1, 1, 0), (−1, 0, 1, 0),

(1, 0, 1, 0), (0, 1, 1, 0), (0, 0, 2, 0),

(0, 0,−2,−2), (0,−1,−1,−2), (−1, 0,−1,−2),

(1, 0,−1,−2), (0, 1,−1,−2), (0,−2, 0,−2),

(−1,−1, 0,−2), (1,−1, 0,−2), (−2, 0, 0,−2),

(2, 0, 0,−2), (−1, 1, 0,−2), (1, 1, 0,−2),

(0, 2, 0,−2), (0,−1, 1,−2), (−1, 0, 1,−2),

(1, 0, 1,−2), (0, 1, 1,−2), (0, 0, 2,−2),

(0, 0,−2, 2), (0,−1,−1, 2), (−1, 0,−1, 2),

(1, 0,−1, 2), (0, 1,−1, 2), (0,−2, 0, 2),

(−1,−1, 0, 2), (1,−1, 0, 2), (−2, 0, 0, 2),

(2, 0, 0, 2), (−1, 1, 0, 2), (1, 1, 0, 2),

(0, 2, 0, 2), (0,−1, 1, 2), (−1, 0, 1, 2),

(1, 0, 1, 2), (0, 1, 1, 2), (0, 0, 2, 2)} . (A.1)

The D sets of matrices N1[m, sh(i)], i = 1, . . . , 12, have
the form [5]

Ds{N1[m, (0, 0,−1,−1)]} =
{−2(A31w1 +A32w2), 0, iA32Ω,−iA31Ω, 0, 0, 0, 0,

0, 0,−A31Ω−,−A32Ω−, 0, 0, 0, 0} ,

Ds{N1[m, (0,−1, 0,−1)]} =
{−2(A21w1 +A23w3), iA21Ω,−iA23Ω, 0, 0, 0, 0, 0,

0,−A23Ω−,−A21Ω−, 0, 0, 0, 0, 0} ,

Ds{N1[m, (−1, 0, 0,−1)]} =
{−2(A12w2 +A13w3),−iA12Ω, 0, iA13Ω, 0, 0, 0, 0,

0,−A13Ω−, 0,−A12Ω−, 0, 0, 0, 0} ,

Ds{N1[m, (1, 0, 0,−1)]} =
{−2(A42w2 +A43w3), iA42Ω, 0,−iA43Ω, 0, 0, 0, 0,

0,−A43Ω−, 0,−A42Ω−, 0, 0, 0, 0} ,

Ds{N1[m, (0, 1, 0,−1)]} =
{−2(A51w1 +A53w3),−iA51Ω, iA53Ω, 0, 0, 0, 0, 0,

0,−A53Ω−,−A51Ω−, 0, 0, 0, 0, 0} ,
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Ds{N1[m, (0, 0, 1,−1)]} =
{−2(A61w1 +A62w2), 0,−iA62Ω, iA61Ω, 0, 0, 0, 0,

0, 0,−A61Ω−,−A62Ω−, 0, 0, 0, 0} ,

Ds{N1[m, (0, 0,−1, 1)]} =
{−2(A∗

61w1 +A∗
62w2), 0, iA

∗
62Ω,−iA∗

61Ω, 0, 0, 0, 0,

0, 0,−A∗
61Ω+,−A∗

62Ω+, 0, 0, 0, 0} ,

Ds{N1[m, (0,−1, 0, 1)]} =
{−2(A∗

51w1 +A∗
53w3), iA

∗
51Ω,−iA∗

53Ω, 0, 0, 0, 0, 0,

0,−A∗
53Ω+,−A∗

51Ω+, 0, 0, 0, 0, 0} ,

Ds{N1[m, (−1, 0, 0, 1)]} =
{−2(A∗

42w2 +A∗
43w3),−iA∗

42Ω, 0, iA
∗
43Ω, 0, 0, 0, 0,

0,−A∗
43Ω+, 0,−A∗

42Ω+, 0, 0, 0, 0} ,

Ds{N1[m, (1, 0, 0, 1)]} =

{−2(A∗
12w2 +A∗

13w3), iA
∗
12Ω, 0,−iA∗

13Ω, 0, 0, 0, 0,

0,−A∗
13Ω+, 0,−A∗

12Ω+, 0, 0, 0, 0} ,

Ds{N1[m, (0, 1, 0, 1)]} =

{−2(A∗
21w1 +A∗

23w3),−iA∗
21Ω, iA

∗
23Ω, 0, 0, 0, 0, 0,

0,−A∗
23Ω+,−A∗

21Ω+, 0, 0, 0, 0, 0} ,

Ds{N1[m, (0, 0, 1, 1)]} =

{−2(A∗
31w1 +A∗

32w2), 0,−iA∗
32Ω, iA

∗
31Ω, 0, 0, 0, 0,

0, 0,−A∗
31Ω+,−A∗

32Ω+, 0, 0, 0, 0} .

2. Coefficients N2(s)

There are 56 points s = sh(i) ∈ L, i = 13, . . . , 68 with
g4d(s) = 2. They are elements (from 14 to 69) of the list

S69. The list of the coefficients N2(s) has the form

{N2[sh(i)], i = 13, . . . , 68} =

{2 (A12A42 +A13A43 +A21A51 +A23A53

+A31A61 +A32A62),

2 (A∗
12A

∗
42 +A∗

13A
∗
43 +A∗

21A
∗
51 +A∗

23A
∗
53

+A∗
31A

∗
61 +A∗

32A
∗
62) ,

2(A31A
∗
61 +A32A

∗
62), 2(A31A

∗
51 +A21A

∗
61),

2(A32A
∗
42 +A12A

∗
62), 2(A

∗
12A32 +A42A

∗
62),

2(A∗
21A31 +A51A

∗
61), 2(A21A

∗
51 +A23A

∗
53),

2(A23A
∗
43 +A13A

∗
53), 2(A

∗
13A23 +A43A

∗
53),

2(A12A
∗
42 +A13A

∗
43), 2(A

∗
12A42 +A∗

13A43),

2(A13A
∗
23 +A∗

43A53), 2(A
∗
23A43 +A∗

13A53),

2(A∗
21A51 +A∗

23A53), 2(A21A
∗
31 +A∗

51A61),

2(A12A
∗
32 +A∗

42A62), 2(A
∗
32A42 +A∗

12A62),

2(A∗
31A51 +A∗

21A61), 2(A
∗
31A61 +A∗

32A62),

(A31 + iA32)(A31 − iA32), 2A21A31, 2A12A32,

2A32A42, 2A31A51, (A21 + iA23)(A21 − iA23),

2A13A23, 2A23A43, (A12 + iA13)(A12 − iA13),

(A42 + iA43)(A42 − iA43), 2A13A53, 2A43A53,

(A51 + iA53)(A51 − iA53), 2A21A61, 2A12A62,

2A42A62, 2A51A61, (A61 + iA62)(A61 − iA62),

(A∗
61 + iA∗

62)(A
∗
61 − iA∗

62), 2A
∗
51A

∗
61, 2A

∗
42A

∗
62,

2A∗
12A

∗
62, 2A

∗
21A

∗
61, (A

∗
51 + iA∗

53)(A
∗
51 − iA∗

53),

2A∗
43A

∗
53, 2A

∗
13A

∗
53, (A

∗
42 + iA∗

43)(A
∗
42 − iA∗

43),

(A∗
12 + iA∗

13)(A
∗
12 − iA∗

13), 2A
∗
23A

∗
43, 2A

∗
13A

∗
23,

(A∗
21 + iA∗

23)(A
∗
21 − iA∗

23), 2A
∗
31A

∗
51, 2A

∗
32A

∗
42,

2A∗
12A

∗
32, 2A

∗
21A

∗
31, (A

∗
31 + iA∗

32)(A
∗
31 − iA∗

32)} .
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