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Abstract This paper presents single lepton and dilepton
kinematic distributions measured in dileptonic ¢7 events pro-
duced in 20.2 fb™" of /s = 8TeV pp collisions recorded
by the ATLAS experiment at the LHC. Both absolute and
normalised differential cross-sections are measured, using
events with an opposite-charge e pair and one or two b-
tagged jets. The cross-sections are measured in a fiducial
region corresponding to the detector acceptance for lep-
tons, and are compared to the predictions from a variety of
Monte Carlo event generators, as well as fixed-order QCD
calculations, exploring the sensitivity of the cross-sections
to the gluon parton distribution function. Some of the dis-
tributions are also sensitive to the top quark pole mass;
a combined fit of NLO fixed-order predictions to all the
measured distributions yields a top quark mass value of
mf()le = 173.24+0.9+0.8£1.2GeV, where the three uncer-
tainties arise from data statistics, experimental systematics,
and theoretical sources.

1 Introduction

The top quark is the heaviest known fundamental particle,
with a mass (m,) that is much larger than any of the other
quarks, and close to the scale of electroweak symmetry break-
ing. The study of its production and decay properties in
proton—proton (pp) collisions forms an important part of the
ATLAS physics program at the CERN Large Hadron Collider
(LHC). Due to its large mass and production cross-section,
top quark production is also a significant background to many
searches for physics beyond the Standard Model, making pre-
cise predictions of absolute rates and differential distributions
for top quark production a vital tool in fully exploiting the
discovery potential of the LHC.

* e-mail: atlas.publications @cern.ch

At the LHC, top quarks are primarily produced as quark-
antiquark pairs (17). The inclusive ¢7 production cross-section
0,7 has been calculated at full next-to-next-to-leading-order
(NNLO) accuracy in the strong coupling constant «g, includ-
ing the resummation of next-to-next-to-leading logarithmic
(NNLL) soft gluon terms [1-5]. The resulting prediction at
a centre-of-mass energy /s = 8TeV is o,; = 252.9 +
11.7fgjg pb for a top quark mass of 172.5GeV, calculated
using the top++ 2.0 program [6]. The first uncertainty
is due to parton distribution function (PDF) and ag uncer-
tainties, calculated using the PDF4LHC prescription [7]
with the MSTW2008 68% [8,9], CT10 NNLO [10,11] and
NNPDF 2.3 5fFFN [12] PDF sets, and the second to quantum
chromodynamics (QCD) scale variations. This prediction,
which has a relative precision of 5.5%, agrees with measure-
ments from ATLAS and CMS at /s = 8 TeV [13-15] which
have reached a precision of 3—4%. Measurements in LHC
pp collisions at v/s = 7TeV [13,15] and more recently at
/s = 13TeV [16,17] are also in good agreement with the
corresponding NNLO + NNLL predictions.

Going beyond the inclusive production cross-section,
measurements of 77 production as a function of the top quark
and ¢f system kinematics properties allow the predictions
of QCD calculations and Monte Carlo event-generator pro-
grams to be probed in more detail. These comparisons are
typically more sensitive at the level of normalised differ-
ential cross-sections, i.e. shape comparisons, where both
experimental and theoretical uncertainties are reduced. Mea-
surements by ATLAS [18-21] and CMS [22-24] have gen-
erally demonstrated good agreement with the predictions
of leading-order (LO) multi-leg and next-to-leading-order
(NLO) event generators and calculations, though the top
quark pp spectrum is measured to be softer than the pre-
dictions by both experiments; this distribution appears to be
sensitive to the additional corrections contributing at NNLO
[25]. Measurements of jet activity in ¢7 events [26-29] are
also sensitive to gluon radiation and hence the ¢7 production
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dynamics, without the need to fully reconstruct the kine-
matics of the 77 system. However, all these measurements
require sophisticated unfolding procedures to correct for the
detector acceptance and resolution. This leads to significant
systematic uncertainties, especially due to modelling of the
showers and hadronisation of the quarks produced in the top
quark decays, and the measurement of the resulting jets in
the detector.

In the Standard Model (SM), the top quark decays almost
exclusively to a W boson and a b quark, and the final state
topologies in ¢ production are governed by the decay modes
of the W bosons. The channel where one W boson decays to
an electron (W — ev) and the other to a muon (W — uv),
giving rise to the et w~ vibb final state,l is particularly clean
and was exploited to make the most precise ATLAS measure-
ments of 0,7 [13,17]. The leptons carry information about the
underlying top quark kinematics, are free of the uncertainties
related to the hadronic part of the final state, and are precisely
measured in the detector. Measurements of the ¢7 differential
cross-section as a function of the lepton kinematics there-
fore have the potential to provide a complementary view of
tf production and decay dynamics to that provided by the
complete reconstruction of the 77 final state.

This paper reports such a measurement of the absolute
and normalised differential cross-sections for 17 — epuvivbb
produced in pp collisions at /s = 8TeV, as a function of
the kinematics of the single leptons and of the dilepton sys-
tem. Eight differential cross-section distributions are mea-
sured: the transverse momentum p% and absolute pseudora-
pidity |17£| of the single leptons (identical for electrons and
muons), the pp, invariant mass and absolute rapidity of the
dilepton system (p3"‘, m“" and |y“"]), the azimuthal angle
in the transverse plane A¢“" between the two leptons, the
scalar sum pr + pfp of the pr of the two leptons, and the

sum E° + E" of the energies of the two leptons.2 The mea-
surements are corrected to particle level and reported in a
fiducial volume where both leptons have pp > 25GeV and
In| < 2.5, avoiding extrapolations into regions of leptonic
phase space which are not measured. The particle-level def-
inition includes the contribution of events where one or both
W bosons decay to electrons or muons via leptonic decays
of t-leptons (t - W — 7 — e/pu), but an alternative set of

! Charge-conjugate decay modes are implied unless otherwise stated.

2 ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point in the centre of the detector, and the z axis
along the beam line. Pseudorapidity is defined in terms of the polar
angle 6 as n = —Intan /2, and transverse momentum and energy are
defined relative to the beamline as pr = psin6 and E1 = E sin6. The
azimuthal angle around the beam line is denoted by ¢, and distances

in (1, ¢) space by AR =/ (An)2 + (A¢)2. The rapidity is defined as

1 E+p, :
y=5In (ﬁ) where p, is the z-component of the momentum and

E is the energy‘ of the relevant object or system.
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results is provided where the contributions of t-leptons are
removed with a correction derived from simulation. The def-
inition of the fiducial volume does not make any requirement
on the presence of jets from the hadronic decay products of
the 7 system. The measurements are made using events with
an opposite-charge ep pair and one or two b-tagged jets,
and extrapolated to the fiducial volume (without jet require-
ments), using an extension of the double-tagging technique
used in the inclusive 7 cross-section measurement [13]. This
approach minimises the systematic uncertainties due to the
use of jets and b-tagging in the experimental event selection.
Since the lepton kinematics are precisely measured in the
ATLAS detector, a simple bin-by-bin correction technique
is adequate to correct for efficiency and resolution effects,
without the need for a full unfolding procedure.

The results are compared to the predictions of various
NLO and LO multi-leg ¢7 event generators, and to fixed-order
perturbative QCD predictions from the MCFM [30] program,
which is used to explore the sensitivity to PDFs and QCD
scale uncertainties. These comparisons are complementary
to previous ATLAS analyses exploring how well ¢7 event
generators can describe the jet activity [27] and production
of extra heavy-flavour jets [31] in the \/s = 8 TeV t7 dilepton
sample.

Some of the cross-section distributions are sensitive to the
top quark mass, as suggested in Ref. [32], and mass measure-
ments are made by comparing the measured distributions to
predictions from both NLO plus parton shower event gener-
ators and fixed-order QCD calculations. The former are sim-
ilar to traditional measurements where the top quark mass is
reconstructed from its decay products [33-36], but rely only
on the leptonic decay products of the ¢7 system and are less
sensitive to experimental uncertainties related to the hadronic
part of the final state. The measurements based on fixed-order
QCD predictions in a well-defined renormalisation scheme
correspond more directly to a measurement of the top quark
pole mass m'twle, the mass definition corresponding to that of
a free particle, which may differ from that measured in direct
reconstruction of the decay products by O (1 GeV) [37-39].
Previous determinations of mf()le from inclusive and differen-
tial 77 cross-section measurements are compatible with the
top quark mass measured from direct reconstruction, with
uncertainties of 2-3GeV [13,15,40,41].

The data and Monte Carlo simulation samples used in
this analysis are described in Sect. 2, followed by the event
reconstruction and selection in Sect. 3, definition and deter-
mination of the fiducial differential cross-sections in Sect. 4
and systematic uncertainties in Sect. 5. Results and compar-
isons with predictions are given in Sect. 6. The ability of
the data to constrain the gluon PDF is investigated in Sect. 7
and the determination of the top quark mass is discussed in
Sect. 8. Finally, conclusions are given in Sect. 9.
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Table 1 Summary of simulated event samples used for ¢7 signal and background modelling, giving the matrix-element event generator, PDF set,
parton shower and associated tune parameter set. More details, including generator version numbers and references, are given in the text

Process Matrix-element PDF Parton shower Tune Comments

tr POWHEG CT10 PYTHIAG P2011C hgamp = M,
POWHEG CT10 HERWIG+]IMMY AUET2 hgamp = 00
MC@NLO CT10 HERWIGH]IMMY AUET2
ALPGEN CTEQ6L1 HERWIG+H]IMMY AUET2 incl. 17 bb, 1t c¢
POWHEG CTI0 PYTHIAG P2012 radHi Ramp = 2. SILF R
POWHEG CT10 PYTHIAG P2012 radLo hdamp = My, 210 F R

43 POWHEG CT10 PYTHIAG P2011C diagram removal

Z, W+jets ALPGEN CTEQ6L1 PYTHIAG P2011C incl. Zbb

WW,WZ,ZZ ALPGEN CTEQ6L1 HERWIG AUET2

tr+W, 7z MADGRAPH CTEQ6L1 PYTHIAG P2011C

Wy+jets SHERPA CT10 SHERPA default

t-channel top ACERMC CTEQ6L1 PYTHIAG AUET2B

2 Data and simulated samples

The ATLAS detector [42] at the LHC covers nearly the entire
solid angle around the collision point, and consists of an
inner tracking detector surrounded by a thin superconduct-
ing solenoid magnet producing a 2T axial magnetic field,
electromagnetic and hadronic calorimeters, and an external
muon spectrometer incorporating three large toroidal mag-
net assemblies. The analysis was performed on a sample
of proton—proton collision data at /s = 8TeV recorded
by the ATLAS detector in 2012, corresponding to an inte-
grated luminosity of 20.2 fb~'. Events were required to pass
a single-electron or single-muon trigger, with thresholds set
to be fully efficient for leptons with pt > 25GeV passing
offline selections. Each triggered event also includes the sig-
nals from on average 20 additional inelastic pp collisions in
the same bunch crossing, referred to as pileup.

Monte Carlo simulated event samples were used to
develop the analysis procedures, to compare with data, and
to evaluate signal efficiencies and background contributions.
An overview of the samples used for signal and background
modelling is shown in Table 1, and further details are given
below. Samples were processed using either the full ATLAS
detector simulation [43] based on GEANT4 [44], or a faster
simulation making use of parameterised showers in the
calorimeters [45]. The effects of pileup were simulated by
generating additional inelastic pp collisions with PYTHIA8
[46] using the A2 parameter set (tune) [47] and overlay-
ing them on the primary simulated events. These combined
events were then processed using the same reconstruction and
analysis chain as the data. Small corrections were applied to
the lepton trigger and selection efficiencies better to model
the performance measured in data.

The baseline simulated 77 sample was produced using the
NLO matrix element event generator POWHEG- BOoxX v1.0
(referred to hereafter as POWHEG) [48—51] using the CT10
PDFs [10], interfaced to PYTHIAG6 (version 6.426) [52] with
the CTEQOL1 PDF set [53] and the Perugia 2011C (P2011C)
tune [54] for parton shower, hadronisation and underlying
event modelling. This setup provides an NLO QCD predic-
tion of the ¢7 production process, a leading-order prediction
for the top quark decays, and an approximate treatment of
the spin correlations between the quark and antiquark. The
POWHEG parameter A g,,,,, used in the damping function that
limits the resummation of higher-order effects incorporated
into the Sudakov form factor, was set to m,. This value
was found to give a better modelling of the ¢7 system py
at /s = 7TeV [55] than the setting of hgamp = 00 used for
the baseline 77 sample in Ref. [13], which corresponds to no
damping.

Alternative ¢f simulation samples used to evaluate sys-
tematic uncertainties were generated with POWHEG inter-
faced to HERWIG (version 6.520) [56,57] with the ATLAS
AUET?2 tune [58] and JIMMY (version 4.31) [59] for underly-
ing event modelling, with MC@NLO (version 4.01) [60,61]
interfaced to HERWIG + JIMMY, and with the leading-order
‘multi-leg’ event generator ALPGEN (version 2.13) [62], also
interfaced to HERWIG + JIMMY. The ALPGEN samples used
leading-order matrix elements for 77 production accompa-
nied by up to three additional light partons, and dedicated
matrix elements for ¢7 plus bb or ¢ production, together
with the MLM parton-jet matching scheme [63] to account
for double-counting of configurations generated by both the
parton shower and matrix-element calculation. The effects of
additional radiation in 77 events were further studied using
two additional POWHEG + PYTHIAG samples, one using the
Perugia 2012 radHi tune [54], with hg,p, set to 2m; and

@ Springer



804 Page 4 of 66

Eur. Phys. J. C (2017) 77:804

factorisation and renormalisation scales 1 and p p reduced
from their event generator defaults by a factor of two, giv-
ing more parton shower radiation; and one with the Perugia
2012 radLo tune [54], up and pp increased by a factor of
two and hgym, = m;, giving less parton shower radiation.
The parameters of these samples were chosen to span the
uncertainties in jet observables measured by ATLAS in 77
events at /s = 7TeV [26,55,64]. The top quark mass was
set to 172.5GeV in all these samples, consistent with recent
measurements by ATLAS [35] and CMS [36]. They were
all normalised to the NNLO+NNLL cross-section predic-
tion discussed in Sect. 1 when comparing simulation with
data. Further ¢7 simulation samples with different event gen-
erator setups were used for comparisons with the measured
differential cross-sections as discussed in Sect. 6.2, and in
the extraction of the top quark mass as discussed in Sect. 8.
Backgrounds to the 77 event selection are classified into
two types: those with two real prompt leptons from W or
Z boson decays (including those produced via leptonic t
decays), and those where one of the reconstructed lepton
candidates is misidentified, i.e. a non-prompt lepton from the
decay of abottom or charm hadron, an electron from a photon
conversion, hadronic jet activity misidentified as an electron,
or a muon produced from the decay in flight of a pion or
kaon. The first category is dominated by the associated pro-
duction of a W boson and a single top quark, Wt, that is sim-
ulated using POWHEG + PYTHIA6 with the CT10 PDFs and
the P2011C tune. The ‘diagram removal’ scheme was used
to handle the interference between the ¢7 and W final states
that occurs at NLO [65,66]. Smaller backgrounds result from
Z — 117(— eu)+jets, modelled using ALPGEN + PYTHIAG
including leading-order matrix elements for Zbb production,
and diboson (WW, WZ and ZZ) production in association
with jets, modelled with ALPGEN + HERWIG + JIMMY. The
Wt background was normalised to the approximate NNLO
cross-section of 22.4 £ 1.5pb, determined as in Ref. [67].
The inclusive Z cross-section was set to the NNLO predic-
tion from FEWZ [68], but the normalisation of the Z — 7t
background with b-tagged jets was determined with the help
of data control samples as discussed in Sect. 4.2. The small
diboson background was normalised to the NLO QCD inclu-
sive cross-section predictions calculated with MCFM [69],
using the ALPGEN + HERWIG prediction for the fraction of
diboson events with extra jets. Production of 7 in association
with a W or Z boson, which contributes to the control sample
with two same-charge leptons, was simulated with MAD-
GRAPH [70] interfaced to PYTHIA6 with CTEQ6L1 PDFs,
and normalised to NLO cross-section predictions [71,72].
Backgrounds with one real and one misidentified lep-
ton arise from 7 events with one hadronically-decaying W;
W +jets production, modelled as described above for Z+jets;
Wy +jets, modelled with SHERPA 1.4.1 [73] with CT10 PDFs;
and #-channel single top production, modelled with ACERMC
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[74] with the AUET2B tune [75] and CTEQ6L1 PDFs inter-
faced to PYTHIAG6. The normalisations of these backgrounds
in the opposite-charge ept samples were determined with the
help of the corresponding same-charge ey samples in data.
Other backgrounds, including processes with two misidenti-
fied leptons, are negligible after the event selections used in
this analysis.

3 Event reconstruction and selection

The analysis makes use of reconstructed electrons, muons,
and b-tagged jets, selected exactly as described in Ref. [13].
In brief, electron candidates [76] were required to satisfy
Et > 25GeV and || < 2.47, and to not lie within the transi-
tionregion 1.37 < |n| < 1.52 between the barrel and endcap
electromagnetic calorimeters. Muon candidates [77] were
required to satisfy pr > 25GeV and |n| < 2.5. In order to
reduce background from non-prompt leptons, electrons were
required to be isolated from nearby hadronic activity using
both calorimeter and tracking information, and muons were
required to be isolated using tracking information alone. Jets
were reconstructed using the anti-k; algorithm [78,79] with
radius parameter R = 0.4 using calorimeter energy clusters
calibrated with the local cluster weighting method [80]. Jets
were further calibrated using information from both simula-
tion and data [81,82], and required to satisfy py > 25GeV
and |n| < 2.5. Jets satisfying pr < 50GeV and |n| < 2.4
were additionally required to pass pileup rejection criteria
based on their associated tracks [82]. To further suppress
non-isolated leptons likely to originate from heavy-flavour
decays within jets, electron and muon candidates within
AR < 0.4 of selected jets were discarded. Finally, jets likely
to contain b-hadrons were b-tagged using the MV1 algo-
rithm [83], a multivariate discriminant making use of track
impact parameters and reconstructed secondary vertices. A
tagging working point corresponding to a 70% efficiency for
tagging b-quark jets from top decays in 7 events was used,
giving a rejection factor of about 140 against light-quark and
gluon jets, and about five against jets originating from charm
quarks.

As in Ref. [13], events were required to have at least
one reconstructed primary vertex° and to have no jets with
pr > 20GeV failing jet quality requirements [81]. Events
having muons compatible with cosmic-ray interactions or
losing substantial energy following bremsstrahlung in the
calorimeter material were rejected. A preselection requir-
ing exactly one electron and one muon selected as described
above was then applied, requiring at least one selected lep-
ton to be matched to a corresponding electron or muon

3 The reconstructed vertex with the largest sum of p% for the constituent
tracks was selected as the primary vertex.
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Table 2 Observed numbers of opposite-sign ey events with one and
two b-tagged jets (N; and N,) together with the estimates of back-
grounds and associated total uncertainties described in Sect. 5

Event counts Ny N,

Data 21666 11739

Wt single top 2080 £ 210 350+ 120
Z(— tT — ep)+ets 210 £ 40 7T+2
Diboson 120 £ 30 3+1
Misidentified leptons 220 £+ 80 78 £ 50
Total background 2630 + 230 440 + 130

trigger signature. Events with an opposite-charge-sign eu
pair formed the main analysis sample, with events having a
same-sign pair being used to estimate the background from
misidentified leptons.

A total of 66,453 data events passed the opposite-sign e
preselection. Events were then further sub-divided accord-
ing to the number of b-tagged jets, irrespective of the num-
ber of untagged jets, and events having one or two b-
tagged jets were retained for further analysis. The num-
bers of one and two b-tagged jet events selected in data are
shown in Table 2, compared with expected non-t¢ contri-
butions from Wt and dibosons evaluated from simulation,
and Z(— 1T — ep)+jets and misidentified leptons eval-
uated from data and simulation, as discussed in detail in
Sects. 4.2 and 5 below.* In simulation, the one b-tagged sam-
ple is about 88% pure and the two b-tagged sample 96% pure
in t7 events, with the largest backgrounds coming from Wt
production in both cases. The distribution of the number of
b-tagged jets in preselected opposite-sign ey events is shown
in Fig. 1a, compared to the predictions from simulation using
POWHEG + PYTHIA6 (PY6), MC@NLO + HERWIG (HW) and
ALPGEN + HERWIG ¢ samples, normalising the total simula-
tion prediction in each case using the integrated luminosity
of the data sample. The distributions of the pt of b-tagged
jets, and the reconstructed electron and muon pt and || in
events with at least one b-tagged jet are shown in Fig. 1b—f,
with the total simulation prediction normalised to the same
number of events as the data to facilitate shape comparisons.
The distributions of the reconstructed dilepton variables pf}“ ,
m, |y, Ap®", p-er—i—pflf and E¢ + E" are shown in Fig. 2,
with the simulation normalised as for Fig. 1b—f. In general the
data are well described by the predictions using the different
tf models, but a few differences are visible. The lepton pr
spectra are softer in data than in simulation, the lepton |ne|
and dilepton |y“"| distributions are more central than the
POWHEG + PYTHIA6 and MC@NLO + HERWIG predictions,

* The background event counts and uncertainties shown in Table 2 differ
from those in Ref. [13] due to the use of different simulation samples and
the estimation of the background in bins of lepton kinematic variables.

and the A¢" distribution is slightly flatter in data than in all
the predictions.

4 Fiducial cross-section determination

The cross-section measurements were made for a fiducial
region, where the particle-level electron and muon were
required to have opposite charge signs, to each come from
W decays either directly or via W — t — ¢/ and to
each satisfy pr > 25GeV and || < 2.5. The lepton four-
momenta were taken after final-state radiation, and ‘dressed’
by including the four-momenta of any photons within a cone
of size AR = 0.1 around the lepton direction, excluding pho-
tons produced from hadronic decays or interactions with the
detector material. The total cross-section within this fidu-
cial volume corresponds to the fiducial cross-section mea-
sured in Ref. [13]. According to the predictions of the base-
line POWHEG + PYTHIAG6 ¢7 simulation, it is about 44% of
the total 17 — euvibb cross-section without restrictions
on the lepton acceptance and including contributions via
W—1—e¢e/u.

4.1 Cross-section extraction

The differential cross-sections were measured using an
extension of the technique used in Ref. [13], counting the
number of leptons or events with one (N}) or two (N3) b-
tagged jets where the lepton(s) fall in bin i of a differential
distribution at reconstruction level. For the single-lepton dis-
tributions p!} and |n(Z |, there are two counts per event, in the
two bins corresponding to the electron and muon. For the
dilepton distributions, each event contributes a single count
corresponding to the bin in which the appropriate dilepton
variable falls. For each measured distribution, these counts
satisfy the tagging equations:
Ni = Loj; G, 2¢,(1 — Cjep) + N,

ey

N = Log; G, Cheh)” + NY*e,

where o7 is the absolute fiducial differential cross-section
in bin i, and L is the integrated luminosity of the sample.
The reconstruction efficiency G, .. represents the ratio of the

number of reconstructed ep events (or leptons for p% and
|né |) falling in bin i at reconstruction level to the number of
true ep events (or leptons) falling in the same bin at parti-
cle level, evaluated using ¢7 simulation without making any
requirements on reconstructed or particle-level jets. It there-
fore corrects for both the lepton reconstruction efficiency and
bin migration, where events corresponding to bin j at par-
ticle level appear in a different bin i # j at reconstruction
level. The values of Gleu in simulation are typically in the

@ Springer
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range 0.5-0.6, with some dependence on lepton kinematics
due to the varying reconstruction efficiencies with lepton ||
and pr, and the effect of isolation requirements when the
leptons are close together in the detector.

The efficiency €, represents the combined probability for
a jet from the quark ¢ in the t — Wgq decay to fall within
the detector acceptance, be reconstructed as a jet with pp >
25 GeV and be tagged as a b-jet. Although this quark is almost
always a b-quark, €, also accounts for the 0.2% of top quarks
that decay to Ws or Wd. If the kinematics of the two b
quarks produced in the top quark decays are uncorrelated the
probability to tag both is given by €,, = (eb) In practice,
small correlations are present, for example due to kinematic
correlations between the b-jets from the top quark decays, or
extra bb or cé pairs produced in association with the 77 system
[13]. Their effects are corrected via the tagging correlation
coefficient Cb =€/ (eb) whose values are taken from #7
simulation. They depend slightly on the bin i of the dilepton
system but are always within 1-2% of unity, even for the bins
at the edges of the differential distributions. The correlation
C}, also corrects for the small effects on N}, N5 and €, of the
small fraction of ¢f events which have additional b quarks
produced in association with the 7 system, and the even
smaller effects from mistagged light quark, charrn or gluon
jets in ¢7 events. This formalism involving €, and Cb allows
the fraction of top quarks where the jet was not reconstructed
to be inferred from the counts Nj and N;, minimising the
exposure to systematic uncertainties from jet measurements
and b-tagging, and allowing the fiducial cross-sections o7 to
be defined with no requirements on the jets in the final state.

Backgrounds from sources other than rr — ejLvbb
events also contribute to the counts N; and N2, and are repre-
sented by the terms NiP 1 & and Ny 1Oke iy Eq. (1). These con-
tributions were evaluated using a combination of simulation-
and data-based methods as discussed in Sect. 4.2 below.

The tagging equations were solved numerically in each bin
i of each differential distribution separately. The bin ranges
for each distribution were chosen according to the experi-
mental resolution, minimising the bin-to-bin migration by
keeping the bin purities (the fractions of reconstructed events
in bin i that originate from events which are also in bin i at
particle level) above about 0.9. The resolution on the recon-
structed kinematic quantities is dominated by the electron
energy and muon momentum measurements, and the puri-
ties for the distributions which depend mainly on angular
variables are higher, around 0.96 for [y**| and 0.9 for |n"|
and A¢". For these distributions, the bin ranges were cho-
sen so as to give about ten bins for each distribution. The bin
range choices for all distributions can be seen in Tables 3,
4,5 and 6 in Sect. 6, and the last bin of the p%, pr.m,
Pr+ p? and E° + E" distributions includes overflow events

@ Springer

falling above the last bin boundary, indicated by the ‘+’ sign
after the upper bin limit.

The normalised fiducial differential cross-section distri-
butions ¢,; were calculated from the absolute cross-sections

ali; determined from Eq. (1) as follows:

i i
. ok ok
i it _ 9
Sif = S ol i (2)
i % Ofd

where oéé is the total cross-section summed over all bins

of the fiducial region. The ¢, values are divided by the bin

widths W;, to produce the cross-sections differential in the
. [

variable x (x = pr, ||, etc.):

1 (do\  of
o \dx /), W'

The normalisation condition in Eq. (2) induces a statistical
correlation between the normalised measurements in each
bin. The absolute dilepton cross-section measurements are
not statistically correlated between bins, but kinematic cor-
relations between the electron and muon in each event induce
small statistical correlations between bins of the absolute sin-
gle lepton p% and Inz| distributions, as discussed in Sect. 4.3
below.

The measured cross-sections include contributions where
one or both leptons are produced via leptonic tau decays
t - W — 1 — e/un), but the fixed-order predic-
tions discussed in Sect. 6.3 only include the direct decays
t - W — e/u. To allow comparison with such predic-
tions, a second set of cross-section results were derived with
a bin-by-bin multiplicative correction f; to remove the T
contributions:

ol (no-1) = flo)-, 3)

and similarly for the normalised cross-sections gf,— (no-7).
The corrections ffi were evaluated from the baseline
POWHEG + PYTHIAG 7 simulation and are typically close to
0.9, decreasing to 0.8—0.85 at low lepton pr.

4.2 Background estimates

The Wt single top and diboson backgrounds were estimated
from simulation using the samples discussed in Sect. 2, whilst
the Z+jets background (with Z — 77 — eu4v) and the
contribution from events with one real and one misidenti-
fied lepton were estimated using both simulation and data
as discussed below. The backgrounds in both the one and
two b-tagged samples are dominated by Wt (see Table 2).
The total background fraction (i.e. the predicted fraction of
events in each bin which do not come from ¢7 with two real
prompt leptons) varies significantly as a function of some
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of the differential variables, as shown in Fig. 3. This varia-
tion is taken into account by estimating the background con-
tributions N i’bkg and Né’bkg separately in each bin of each
differential distribution.

The production cross-sections for Z bosons accompa-
nied by heavy-flavour jets are subject to large theoreti-
cal uncertainties. The background predictions from ALP-
GEN + PYTHIAG in each bin of each distribution were there-
fore normalised from data, by multiplying them by constant
scale factors of 1.4 £ 0.2 for the one b-tagged jet sample
and 1.1 £ 0.3 for the two b-tagged jet sample. These scale
factors were derived from the comparison of data and sim-
ulated event yields for Z — ee and Z — pp plus one
or two b-tagged jets, inclusively for all lepton pairs passing
the kinematic selections for electrons and muons [13]. The
uncertainties are dominated by the dependence of the scale
factors on lepton kinematics, investigated by studying their
variation with Z-boson pr, reconstructed from the ee or pu
system.

The background from events with one real and one
misidentified lepton was estimated using a combination of
data and simulation in control regions with an electron and
muon of the same charge [13]. Simulation studies showed
that the samples with a same-sign ey pair and one or two
b-tagged jets are dominated by events with a misidentified
lepton, with rates and kinematic distributions similar to those
in the opposite-sign sample. The distributions of the dilepton
kinematic variables for same-sign events with at least one b-
tagged jet in data are shown in Fig. 4, and compared with the
predictions from simulation. The expected contributions are
shown separately for events with two prompt leptons, events
where the electron candidate originates from a converted
photon radiated from an electron produced in a top quark
decay, events with a converted photon from other sources,
and events where the electron or muon originates from the
decay of a bottom or charm hadron. The analogous distribu-
tions for the electron and muon pr and || are shown in Ref.
[13]. In general, the simulation models the rates and kine-
matic distributions of the same-sign events well. The mod-
elling of misidentified leptons was further tested in control
samples where either the electron or muon isolation require-
ments were relaxed in order to enhance the contributions
from heavy-flavour decays, and similar levels of agreement
were observed. S

The contributions N}‘mlsfld of events with misidentified
leptons to the opposite-sign samples with j = 1, 2 b-tagged
jets were estimated in each bin i of each distribution using

imis—id __ i i,data,SS i,prompt,SS
Ny = RGN N; ).
; N;.,mlS*ld,OS (4)
Rj = N ms—IdSS
J

i,data,SS

where N j is the number of observed same-sign events

in bin i with j b-tagged jets, N}’p rompLSS < the estimated

number of events in this bin with two prompt leptons, and
le is the ratio of the number of opposite- to same-sign events
with misidentified leptons in bin i with j b-tagged jets. This
formalism uses the observed data same-sign eventrate in each
bin to predict the corresponding opposite-sign contribution
from misidentified leptons. It relies on simulation to predict
the ratios of opposite- to same-sign rates and the prompt
same-sign contribution, but not the absolute normalisation
of misidentified leptons. The prompt-lepton contribution in
Eq. (4) comes mainly from semileptonic ¢f events with an
additional W or Z boson, diboson events with two same-
sign leptons, and 17 — epvibb events where the electron
charge was misreconstructed. These components were evalu-
ated directly from simulation in each bin (i, j), and an uncer-
tainty of £ 50% was assigned [13]. The values of R; were
taken from simulation, separately for each differential dis-
tribution and j = 1 and 2 b-tagged jets, and averaged over
several consecutive bins i in order to reduce statistical fluc-
tuations. The values of R} range from 0.8 to 1.5, and R from
1.2 t0 2.0, as the predicted background composition changes
across the kinematic distributions. As in Ref. [13], uncer-
tainties of 4 0.25 and =+ 0.5 were assigned to R| and Rj,
based on the variation of R; for different components of the
misidentified lepton background, and taken to be correlated
across all bins (i, j).

4.3 Validation of the analysis procedure

The method for the differential cross-section determination
was tested on simulated events in order to check for biases
and determine the expected statistical uncertainties. Pseudo-
data samples corresponding to the data integrated luminosity
were produced by varying the event counts Nj and N, in each
bin i independently, according to Poisson distributions with
mean values predicted from a chosen ¢7 simulation sample
plus non-z7 backgrounds. The tagging equations Eq. (1) were
then solved for each pseudo-experiment using the values of
Gi 1w C l’;, N i’bkg and Né’bkg calculated with the baseline sim-
ulation samples. An initial set of 1000 pseudo-experiments
was performed using the baseline simulation sample as a ref-
erence, and the mean and RMS width of the deviations of the
result in each bin from the reference values were used to
validate the analysis procedure. The black points in Fig. 5
show the mean deviation of the results (averaged over all
pseudo-experiments) for four of the measured normalised
distributions, with error bars corresponding to the uncertainty
in the mean due to the finite size of the simulation samples
(about 17 times the data integrated luminosity). The resid-
ual biases of the mean deviations away from the reference
are compatible with zero and in all cases much smaller than
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ken down into contributions where both leptons are prompt, or one is
a misidentified lepton from a photon conversion originating from a top
quark decay or from background, or from heavy-flavour decay. In the
p%” ,m, p% + pét and E° + E" distributions, the last bin includes the
overflows
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Fig. 5 Results of pseudo-experiment studies on simulated events for
the extraction of the normalised differential cross-section distributions
for a p-f-, b pif‘, c |n£| and d |y“"|, shown as relative deviations
(0 — 0pet)/0rer from the reference cross-section values in the base-
line POWHEG+PYTHIA6 CT10 sample with m, = 172.5GeV. The black
points show the mean deviations from the reference when fitting pseudo-
data samples generated with the baseline simulation sample, with error
bars indicating the uncertainties due to the limited number of simulated

the expected statistical uncertainties in data, measured by the
RMS widths and shown by the cyan bands. Similar results
were obtained for the other normalised differential cross-
section distributions, and for the absolute distributions. The
pull distributions (i.e. the distributions of deviations divided
by the estimated statistical uncertainty from each pseudo-
experiment) were also found to have widths within a few
percent of unity. The X2 values for the compatibility of each
measured distribution with the reference were also calculated
for each pseudo-experiment and the distribution of the corre-
sponding p-values across all pseudo-experiments was found
to be uniform between zero and one. These tests confirm that
the analysis procedure is unbiased and correctly estimates
the statistical uncertainties in each bin of each distribution.
Additional pseudo-experiments were performed to test
the ability of the analysis procedure to reconstruct distri-
butions different from the reference, taking the values of
Gi s C,",, N {’bkg and Né’bkg from the baseline samples. Tests
were conducted using simulated POWHEG + PYTHIA6 and

@ Springer

s AR
o 025 ATLAS simulation E
" ®0.15[ o ref. fit Powheg+PY6 m=172.5 GeV ]
g 0 F o alt. fit Powheg+PY6 mt=165 GeV E
g E expected stat. error E
2 0.05F . 3
§ heteliees E
5 E e M o E
Z .0.05) o e
g - :
01 = % E
-0.15F .
'0-2;H\HH\HH\HH\HH\‘H;
0 50 100 150 200 250 300
(b) Dilepton pj“ [GeV]
e T ]
© (.2F ATLAS Simulation E
"B 45E " ® ref. fit Powheg+PY6 CT10 E
g “19F o alt. fit Powheg+PY6 HERAPDF1.5 1
%’ 0.1; expected stat. error E
2 0.05F0= E
S 0.05F0om ——
[} 0: T 3
Z -0.05F =
04F =
-0.15F =
-02F E
o b by e by by
0 0.5 1 15 2 25
(d) Dilepton |y*"|

events. The cyan bands indicate the expected statistical uncertainties for
a single sample corresponding to the data integrated luminosity. The
open red points show the mean deviations from the reference values
when fitting pseudo-experiments generated from alternative simulation
samples with m, = 165GeV (a, b) or with the HERAPDF 1.5 PDF (c,
d), with error bars due to the limited size of these alternative samples.
The red dotted lines show the true deviations from the reference in the
alternative samples

MC@NLO +HERWIG 7 samples with different top mass
values, a POWHEG + PYTHIAG6 sample generated using the
HERAPDF 1.5 [84,85] PDF set instead of CT10, and a
POWHEG + PYTHIA6 sample reweighted to reproduce the top
quark pr distribution calculated at NNLO from Ref. [25].
In all cases, the analysis procedure recovered the true dis-
tributions from the alternative samples within the statistical
precision of the test, demonstrating the adequacy of the bin-
by-bin correction procedure without the need for iteration
or a more sophisticated matrix-based unfolding technique.
Some examples are shown by the red points and dotted lines
inFig. 5, for an alternative sample withm, = 165 GeV for p%
and p7", and for HERAPDF 1.5 for In°| and |y, both sim-
ulation samples having about twice the statistics of the data.
These figures also demonstrate the sensitivities of some of
the measured distributions to m, and different PDFs.

For the single-lepton distributions p% and |ng |, which have
two entries per event, the formalism of Eq. (1) and the pseudo-
experiments generated by fluctuating each bin independently
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do not take into account correlations between the kinemat-
ics of the electron and muon in each event. This effect was
checked by generating pseudo-data samples corresponding
to the data integrated luminosity from individual simulated
events, taken at random from a large ¢ sample combining
both full and fast simulation and corresponding to about 70
times the data integrated luminosity. The effect of neglecting
the electron-muon correlations within an event was found to
correspond to at most a 2% fractional overestimate of the
absolute and 2% fractional underestimate of the normalised
cross-section uncertainties. Hence, no corresponding correc-
tions to the statistical uncertainties were made.

5 Systematic uncertainties

Systematic uncertainties in the measured cross-sections arise
from uncertainties in the values of the input quantities G|, 1w
Cli,, N;’bkg, N;’bkg and L used in Eq. (1). Each source of
systematic uncertainty was evaluated by coherently chang-
ing the values of all relevant input quantities and re-solving
Eq. (1), thus taking into account correlations of the uncer-
tainties in e.g. G,, and Cj. The uncertainties are divided
into five groups (¢ modelling, leptons, jets/b-tagging, back-
ground and luminosity/beam energy uncertainties) and are
discussed in Sects. 5.1-5.5. The resulting relative uncertain-
ties in each measured differential cross-section value are
shown in the results Tables 3, 4, 5 and 6, and the grouped
systematic uncertainties for the normalised differential cross-
sections are shown in Fig. 6, together with the statistical and
total uncertainties.

5.1 tf modelling

The uncertainties in G,,, and C}, (and f; for the T-corrected
cross-sections) were evaluated using the various alternative
¢t simulation samples detailed in Sect. 2.

tt generator: Event generator uncertainties were evaluated
by comparing the baseline POWHEG + PYTHIAG ¢ sample
(with gy, = m,) with alternative samples generated
with MC@NLO interfaced to HERWIG (thus changing
both the NLO hard-scattering event generator and the par-
ton shower, hadronisation and underlying event model),
and with the LO multi-leg event generator ALPGEN, also
interfaced to HERWIG. The bin-by-bin shifts in G., . and

C li, were fitted with polynomial functions in order to
reduce statistical fluctuations caused by the limited size
of the simulated samples, and the larger of the differ-
ences between the baseline and the two alternative sam-
ples was taken in each bin to define the generator uncer-
tainty. As also found in the inclusive cross-section analy-

sis [13], a substantial part of the differences in Gi, " in the
various samples arises from differences in the hadronic
activity close to the leptons, which affects the efficiency
of the lepton isolation requirements. These efficiencies
were therefore measured in situ in 77 events selected in
data as discussed in Sect. 5.2 below, and the simulation
uncertainties on Gleu evaluated by considering the lep-
ton reconstruction, identification and lepton-jet overlap
requirements only. The resulting uncertainties on Gleu
are typically 0.5-1% in most regions of the phase space,
varying only slightly as a function of the lepton and dilep-
ton kinematics. The same procedure was used to evaluate
uncertainties in C},, and the predictions of the three sim-
ulation samples were found to agree at the 0.5-1% level,
giving similar predictions for the variations of C}, across
the bins of the various measured distributions. Alterna-
tive ¢7 samples generated with POWHEG + PYTHIA6 and
POWHEG + HERWIG (both with hy,,, = 00) were also

considered, but the resulting differences in Giu and

Cli, were found to be significantly less than those from
the comparisons with MC@NLO + HERWIG and thus no
additional uncertainty was assigned. Variations in the pre-
dictions of f; from the three t7 samples were found to
be at the 0.2% level, and were also taken into account for
the T-corrected cross-section results. . . '

Initial/final-state radiation: The effects on G,,, C; and f;
of uncertainties in the modelling of additional radiation
in ¢7 events were assessed as half the difference between
POWHEG + PYTHIA6 samples tuned to span the uncertain-
ties in jet activity measured in /s = 7TeV ATLAS
data [26,55,64], as discussed in Sect. 2. The uncertainties
were taken as half the difference between the upward and
downward variations, and were substantially reduced by
measuring the lepton isolation efficiencies from data, in
the same way as for the ¢7 generator uncertainties dis-
cussed above. 4

Parton distribution functions: The uncertainties in G, "
due to limited knowledge of the proton PDFs were eval-
uated using the error sets of the CT10 [10], MSTW 2008
68% CL [8] and NNPDF 2.3 [12] NLO PDF sets, by
reweighting the MC@NLO + HERWIG ¢7 sample based
on the x and Q2 values of the partons participating in the
hard scattering in each event. The final uncertainty in each
bin was calculated as half the envelope encompassing the
predictions from all three PDF sets and their associated
uncertainties, following the PDF4LHC prescription [7].
The resulting uncertainties on G., .. are typically around
0.3% except at the high ends of the distributions, and
were taken to be fully correlated across all bins.

Top quark mass: The values of G, .. and the predicted lev-
els of Wt background depend weakly on the assumed
value of m,. These effects were evaluated with 7 and Wt
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and background, as a function of each lepton or dilepton differential beam energy uncertainties
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samples simulated with m, values of 170 and 175 GeV,
and scaled to a nominal 1 GeV mass variation. The
resulting effects are at the level of 0.1-0.2% on G, » and
are partially cancelled by the variations in the Wt back-
ground, whose cross-section decreases with increasing
m;. The residual uncertainties are typically around 0.1%
for the absolute cross-sections except at the extreme ends
of the distributions, and smaller for the normalised cross-

sections.

The total £f modelling uncertainties in the normalised dif-
ferential cross-sections also include the small uncertainties
on G, pand C » from the limited size of the simulated ¢7 sam-
ples, and are shown by the green lines in Fig. 6. They are
typically dominated by the ¢7 event generator comparisons.

5.2 Lepton identification and measurement

Uncertainties in the modelling of the detector response to
electrons and muons affect both Gleu and the background
estimates, with the largest uncertainties in the cross-section
measurements coming via the former.

Lepton identification: The modelling of the electron and
muon identification efficiencies, and the rate of elec-
tron charge misidentification, were studied using Z —
ee/upn, J/ — ee/upn and W — ev events in data
and simulation [76,77], taking into account the system-
atic correlations across different regions of the lepton pr
and n spectrum. The uncertainties in Gi .. are typically
below 0.5% for electron and below 0.3% for muon effi-
ciencies, with significant cancellations in the normalised
differential cross-sections.

Lepton scales and resolution: The electron and muon
energy/momentum scales and resolutions were deter-
mined using Z — ee/up, Z — (ee/un)y, J/v —
ee/up and Y — pp decays [77,86]. The largest uncer-
tainty comes from the limited knowledge of the elec-
tron energy scale, which gives uncertainties varying from
0.2% to over 2% for the bins involving the highest energy
electrons. The muon momentum scale uncertainties are
small in comparison.

Lepton isolation: Building on the studies described in Ref.
[13], the efficiencies of the lepton isolation requirements
were measured in data, using the fractions of selected
opposite-sign ep events with at least one b-tagged jet
where either the electron or the muon fails the isolation
requirement. After correcting for the contamination from
events with a misidentified lepton, these fractions give
the inefficiency of the isolation requirements on signal ¢7
events. The misidentified lepton backgrounds were mea-
sured both by using the same-sign ey control samples

discussed in Sect. 4.2 above, and by using the distribu-
tions of lepton impact parameter significance |dy|/oy,,
where d) is the distance of closest approach of the lep-
ton track to the event primary vertex in the transverse
plane, and oy its uncertainty. The isolation inefficien-
cies were measured as functions of lepton pt separately
for the barrel (|| < 1.5) and endcap regions of the detec-
tor. Consistent results were obtained using both misiden-
tified lepton estimation methods, and showed that the
baseline POWHEG + PYTHIAG 77 simulation sample over-
estimates the efficiencies of the lepton isolation require-
ments by up to 1% for electrons with pr in the range 40—
80GeV, and by up to 2% for muons at low pr, decreasing
rapidly to less than 0.5% for 40 GeV. The values of Gi "
from the baseline simulation were corrected for these
pr-dependent shifts using a reweighting technique. The
corresponding uncertainties are dominated by those on
the misidentified lepton subtraction (including a compar-
ison of the same-sign and |d0|/0d0 -based methods) and
amount to typically 0.5-1% for electrons and 0.2-0.5%
for muons. The effect on the normalised cross-sections is
about half that on the absolute measurements, taking into
account systematic correlations across lepton pr and ||
bins.

Lepton trigger: The efficiencies of the single-lepton trig-
gers were measured in data using Z — ee/uu events
[87]. Since only one lepton trigger was required to accept
the e event, the trigger efficiency with respect to the
offline event selection is about 99%, with a residual
uncertainty of less than 0.2%.

The lepton-related uncertainties are shown by the blue dot-
dashed lines in Fig. 6, and the largest uncertainties typically
come from the electron energy scale and electron isolation
uncertainties.

5.3 Jet measurement and b-tagging

Uncertainties in the selection and b-tagging of jets affect
the background estimates N i‘bkg and Né’bkg, and to a lesser

extent, the correlation Cj. The jet uncertainties also have
a very small effect on G, > through the requirement that

leptons be separated from selected jets by AR > 0.4.

Jet-related uncertainties: The jet energy scale was varied
according to the uncertainties derived from simulation
and in situ calibration measurements [81], using a model
with 22 orthogonal uncertainty components describing
the evolution with jet pt and |n|. The effects of residual
uncertainties in the modelling of the jet energy resolution
[88] were assessed by smearing jet energies in simulation.
The jet reconstruction efficiency was measured in data
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using track-based jets, and the effect of residual uncer-
tainties assessed in simulation by randomly discarding
jets. The modelling of the pileup rejection requirement
applied to jets was studied using Z — ee/uu+jets events
[82].

b-tagging uncertainties: The efficiencies for b-tagging jets
in 17 signal events were extracted from the data, but
simulation was used to predict the numbers of b-tagged
jets in the Wt single top and diboson backgrounds. The
corresponding uncertainties were assessed using studies
of b-jets containing muons, charm jets containing p**
mesons and inclusive jet events [83].

The jet- and b-tagging-related uncertainties are shown by
the purple lines on Fig. 6, and are typically dominated by the
effect of the jet energy scale on the level of Wt background.

5.4 Background modelling

As well as the detector-related uncertainties discussed above,
the background estimates depend on uncertainties in mod-
elling the Wt and diboson processes taken from simulation,
and uncertainties in the procedures used for estimating the
Z+jets and misidentified lepton backgrounds from data.

Single top modelling: Uncertainties in the modelling of the
Wt background were assessed by comparing the predic-
tions from the baseline POWHEG + PYTHIA6 sample with
those from MC @NLO + HERWIG, and from two samples
generated with ACERMC + PYTHIA6 utilising different
tunes to vary the amount of additional radiation, in all
cases normalising the total production cross-section to
the approximate NNLO prediction based on Ref. [67].
The uncertainty in this prediction was evaluated to be
6.8%. The Wt background with two b-tagged jets is sen-
sitive to the production of Wt with an additional b-jet,
an NLO contribution which interferes with the 7 final
state. The corresponding uncertainty was assessed by
comparing the predictions of POWHEG + PYTHIA6 with
the diagram removal and diagram subtraction schemes
for handling this interference [65,66]. The latter predicts
up to 25% less Wt background in the one b-tagged and
60% less in the two b-tagged channels at the extreme high
ends of the lepton pr and dilepton p7*, m“", p1+ p} and
E° 4+ E" distributions, but only 1-2% and 20% differ-
ences for one and two b-tagged Wt events across the Ing [,
|y“"| and A¢®"" distributions, similar to the differences
seen for the inclusive analysis [13]. The uncertainties due
to the limited size of the W simulation samples are neg-
ligible in comparison to the modelling uncertainties.

Diboson modelling: The uncertainties in modelling the
diboson background events (mainly W W) with one and
two additional b-tagged jets were assessed by compar-
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ing the predictions from ALPGEN+ HERWIG with those
of SHERPA 1.4.3 [73] including the effects of massive b
and ¢ quarks. The resulting uncertainties in the diboson
background are typically in the range 20-30%, substan-
tially larger than the differences between recent predic-
tions for the inclusive diboson cross-sections at NNLO in
QCD [89] and the NLO predictions from MCFM used to
normalise the simulated samples. The background from
SM Higgs production with H — WW and H — Tt is
smaller than the uncertainties assigned for diboson mod-
elling, and was neglected.

Z+jets extrapolation: The backgrounds from Z — 77 —
e accompanied by one or two b-tagged jets were extrap-
olated from the analogous Z — ee/u i event rates, with
uncertainties of 20% for one and 30% for two additional
b-tagged jets, as discussed in Sect. 4.2.

Misidentified leptons: Uncertainties in the numbers of
events with misidentified leptons arise from the statisti-
cal uncertainties in the corresponding same-sign samples,
together with systematic uncertainties in the opposite-to-
same-sign ratios le and the estimated contributions of
prompt same-sign events. The total uncertainties in the
measured cross-sections are typically 0.2-0.5%, except
at the extreme ends of distributions where the same-sign
data statistical uncertainties are larger.

The background uncertainties are shown by the solid red
lines on Fig. 6, and are dominated by Wt modelling uncer-
tainties, in particular from the W¢-¢7 interference at the high
ends of some distributions.

5.5 Luminosity and beam energy

Uncertainties in the integrated luminosity and LHC beam
energy give rise to additional uncertainties in the differential
cross-section results.

Luminesity: The uncertainty in the integrated luminosity
is 1.9%, derived from beam-separation scans performed
in November 2012 [90]. The corresponding uncertainty
in the absolute cross-section measurements is slightly
larger, typically about 2.1%, as the Wt and diboson back-
grounds were evaluated from simulation, thus becoming
sensitive to the assumed integrated luminosity. The sen-
sitivity varies with the background fractions, leaving a
residual uncertainty of typically less than 0.1% in the
normalised cross-section results.

Beam energy: The LHC beam energy during the 2012 pp
run was determined to be within 0.1% of the nominal
value of 4TeV per beam, based on the LHC magnetic
model together with measurements of the revolution fre-
quency difference of proton and lead-ion beams [91].
Following the approach used in Ref. [13] with an earlier
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less precise determination of the LHC beam energy [92],
an additional uncertainty corresponding to the change in
cross-sections for a 0.1% change in /s was applied to
the final results, allowing them to be interpreted as mea-
surements at exactly /s = 8 TeV. The changes in each
differential cross-section bin were calculated by scaling
the differences seen in POWHEG + PYTHIA6 samples gen-
erated at /s = 8 TeV and /s = 7 TeV. The resulting val-
ues were cross-checked with an explicit NLO fixed-order
calculation using SHERPA 2.1 [73], making use of the
APPLGRID framework [93] to reweight an \/s = 8 TeV
prediction so as to change the /s value by +0.66%
which was then rescaled to correspond to a /s change of
0.1%. The changes in the absolute cross-sections are in
the range 0.2-0.4%, and largely cancel in the normalised
cross-sections.

These uncertainties are not shown separately in Fig. 6, but
are included in the total uncertainties shown by the black
lines, and given in Tables 3, 4, 5 and 6.

6 Results

The absolute differential cross-sections were determined by
solving Eq. (1) separately for each bin i of each lepton and
dilepton differential distribution, taking the effects of system-
atic uncertainties into account as discussed in Sect. 5. The
normalised differential cross-sections were determined from
the absolute results using Eq. (2). The values of 6;7, i.e. the
product of jet acceptance, reconstruction and b-tagging prob-
abilities in each bin, were determined to be in the range 0.5—
0.6, in agreement with the simulation prediction for each bin.
The results were found to be stable when changing the min-
imum jet pr requirement from 25GeV up to 55GeV, and
when using b-tagging working points corresponding to b-jet
efficiencies of 60-80%. The electron and muon pt and |n|
distributions were also measured separately, instead of com-
bining them into lepton distributions with two entries per
event, and found to be compatible. The bin-by-bin compar-
ison of the electron and muon py (|n|) distributions has a
X2 per degree of freedom of 10.9/9 (12.5/8), in both cases
taking into account statistical and uncorrelated systematic
uncertainties.

6.1 Fiducial cross-section measurements

The measured absolute and normalised fiducial differential
cross-sections are shown in Table 3 (p!} and |77£|), Table 4
(p?" and m®"), Table 5 (|y*| and A¢“") and Table 6
(pT+ph and E°+E"). Each table shows the measured cross-
section values and uncertainties, together with a breakdown

of the total uncertainties into components due to data statis-
tics (‘Stat.”), tf modelling uncertainties (‘¢f mod.”), lepton-
related uncertainties (‘Lept’), jet and b-tagging uncertain-
ties (‘Jet/b’), background uncertainties (‘Bkg.”) and lumi-
nosity/beam energy uncertainties (‘L/E}’), corresponding
to the breakdown in Sects. 5.1-5.5. The rightmost columns
show the cross-sections corrected to remove the contributions
where one or both leptons result from W — 7 — e/u decays
using Eq. (3). As can also be seen from Fig. 6, the total uncer-
tainties on the normalised differential cross-sections range
from 1.2% to around 10%, typically smaller than those for
the measurements as a function of the ¢ system kinematics
in Ref. [21]. The largest uncertainties are generally statistical
(from 1.1% to about 10%), with the background uncertainties
also becoming large at high values of some kinematic vari-
ables. Other systematic uncertainties due to 7 modelling,
leptons and jets are significantly smaller than the statistical
uncertainties, benefiting from cancellations between bins.
The cancellations are particularly important when leptons
with similar p contribute to all bins, as is the case for A¢“"
and the bulk of the |77£| and |y“"| distributions. The uncer-
tainties in the absolute cross-sections are substantially larger,
with the systematic uncertainties due to 77 modelling and
leptons becoming comparable to the statistical uncertainties.
The absolute cross-sections also have an uncertainty of 2.1—
2.5% from the integrated luminosity measurement, depend-
ing on the background level in each bin.

The integrals of the differential cross-sections across all
bins of a given distribution (Uég in Eq. (2)) agree in all
cases within 0.4% of the integrated fiducial cross-sections
of 3.455 £ 0.025pb (or 3.043 £ 0.022 pb excluding t con-
tributions) measured within the same fiducial region in Ref.
[13,14]. The quoted uncertainties are statistical.’

The normalised differential cross-sections are shown
graphically in Figs. 7 and 8; in these and later figures, the
data points are plotted at the centre of each bin. The mea-
sured cross-sections are compared to the particle-level pre-
dictions from the POWHEG + PYTHIA6, MC @NLO + HERWIG
and ALPGEN + HERWIG 7 samples within the fiducial vol-
ume of the measurement, including the contributions from
W — t — e/u decays. Similar trends in the description
of the measured distributions by the predictions can be seen
as for the reconstructed distributions for events with at least
one b-tagged jet in Figs. 1 and 2.

6.2 Comparison with event generator predictions
The measured normalised differential cross-sections are
compared to a larger set of predictions from different 77

Monte Carlo event generator configurations in Figs. 9, 10,

> The integrals of the p—? and |17l| distributions correspond to twice
these values, as the definitions include two leptons per event.

@ Springer



Eur. Phys. J. C (2017) 77:804

804 Page 18 of 66

8000°0 F 2L00'0 Lot €0 TL €T €T LT L9 £000°0 F 0L00°0 +00£-00C
61000 F LSE0'0 €5 10 8¢ Tl 91 60 6€ 8100°0 F 8¥€0°0 00Z-0ST
1700°0 F SEIT°0 9€¢ 10 Sl €1 Tl 90 LT 0000 F 8601°0 0S1-0TI
§900°0 F ¥T+T'0 LT 00 01 90 80 $0 €T €900°0 F €7€T°0 021001
96000 F 1€8+°0 0C 00 §0 80 L0 0 'l €600°0 F €L9%°0 001-08
110°0 F 068°0 €1 00 €0 0 0 €0 'l 110°0 F 998°0 08-09
0200 F 0LE'T 'l 00 €0 €0 0 z0 €1 6100 F 0S€'1 09-0S
€200 F YL €1 00 0 0 0 7o Il €200 F ¥ILT 050
620°0 F 8¥0°'C vl 00 §0 €0 L0 €0 01 620°0 F 801'C 0r=0€
TH0'0 F 060°C 0C 00 80 90 60 0 'l SP0'0 F S€TT 0€-5C
(A?D)

(A®D/__01) (2 0w) 1dp/op? (B)eeL () Y9/1 (%)3Nd () apr (%) T (%) pow 4 (%) 118 (A%D/,_0D) 4dp/opy UIq pasI[eULoN
SO0F vv0 S v'T SL 6C €T $€ L9 90°0 F 6¥°0 +00£-00C
EI0FLIT z9 e 43 91 L1 91 6€ STOFIYT 002081
E0TF 169 9¥ (e 61 ST ! 'l LT SEOFI9L 0S1-0TI
8S0F SLYI 6€ (e S 'l 'l 60 €T ¥9°0 F €291 021001
01 F¥6C s€ e 'l 'l 'l 80 91 I'TF¥Te 00108
9T FI'bS 0€ 1'c 60 90 60 60 Tl 8'1F009 0809
9TF S I'e 1'c 60 80 01 01 vl 6TFS€E6 09-0$
€EF €01 I'e 1'C 60 01 01 'l Tl LEF 8811 0S-0%
TYF OVl €€ 1'C 01 80 'l Tl 'l 6% F 1oVl 0=0€
8 FTLTl Le 1'C Tl 80 8l €1 91 L'SF 8¥SI 0€-5C
(A2D/4) (2 o) tdp/op (%) TeroL () 4/1 (%) 344 (%) apar (%) 1doT (%) "pour 11 (%) 118 (A2D/q3) dp/op (A9D) u1q dmn[osqy

uS1s .+, oy} £q PAJEOIPUI 2IAYM SMOJFISAO0 SIPNOUT UIq ISB[ YL, .00, Aq PIIBIIPUI dIe 9,G()"() UBY} IS[[EWIS SANUILLIAOUN JATE[IY "SKBOIp
1/2 < 1 < A{ BIA SUONQINUOD QAOUWIAI 0} PIJIILIOD UOT)OIS-SSOIO [ENURIIIJIP PUE ‘AJUTEIIIOUN QATJB[RI [€10) ‘(3XQ) 99S) SOLI0FILD SNOLIBA UT SOIIUTEIIo0UN OIJBUIAISAS dAIR[AI ‘AJUTRIIOdUN [BO1ISIIEIS
dATIR[I ‘AJUTEIIOUN [10} PUB UOI}OIS-SSOID PAINSBAW ‘SaSUel UIq 9} MOYS SUWN|od 3y, “(Wooq) C:_ pue (doy) w& JO suonouNj Se SUOIOIS-SSOID [ENUIILIP PASI[EULIOU pue AN[0sqy € J[qeL

pringer

Qs



Page 19 of 66 804

Eur. Phys. J. C (2017) 77:804

1€0°0 F €€T'T §T 00 01 0 90 Lo I'c 1€0°0 F 12T’ 0$'7-00'C
¥S0°0 F 080'C 9 00 80 0 90 90 €T ¥S0'0 F 0L0°C 00TSL'T

190°0 F #56'C 0C 00 0 z0 90 0 61 0900 F ¥¥6'C SLT-0S'T

8900 F 6L5°€ 61 00 €0 z0 z0 0 81 8900 F vLS'€ 0S'1-$T'T

990°0 F ¥8¥'% 'l 00 €0 z0 z0 €0 vl 990°0 F T8’y STI-00'T

0L0°0 F 98T'S €1 00 z0 z0 z0 z0 €1 0L0°0 F L6T'S 00'1-5L°0

¥L0'0 F £01°9 Tl 00 z0 10 z0 z0 'l vLO'0F LIT'9 §L'0-0S0

9L0°0 F 91+9 Tl 00 z0 10 T0 €0 'l 9L0°0 F 829 05'0-52°0

£80°0 F T€99 Tl 00 €0 10 4 0 'l £80°0 F 999 §T0-000

(lemum)

(Lwun/ o1) (20w [ Uulp/opy ()L (%) /T () E (B)gper ()T () pow s () @S  (Wun/ oD | klp/opy uIq p3sieulioN
0g F 6vL 0 ¢ vl L0 vl €1 e vEF vP8 0ST-00°C

0S F €921 0 I'c ! 90 vl Tl v'e LS F 1gv1 00TSL'T

$9 F €6L1 9¢ 1T 01 Lo vl 'l 61 €L F S€0T SLT-0S'T

LLF €L1T e 1z 01 60 01 'l 61 L8 F OLVT 0S'1-$T'T

68 F TTLT €€ 1z 01 60 01 01 ST 001 F 001¢€ STI-00'T

001 F 0lce e 1z 01 80 01 01 €1 011 F 099¢ 00'1-5L°0

0Z1 F01LE e 'z 60 60 01 01 Tl 0€1 F ogTy §L'0-0S0

0Z1 F 006€ e 1z 60 60 01 01 Tl ov1 F Ovby 05'0-52°0

0€1 F 0£0P e 1'C 60 60 01 01 Tl 0¥l F 06SY §T'0-000

(leyrum)

(le3runyqy) (2 ou) | lfp/0p (%) Ter0L () a/1 (%) 334 (%) apar (%) 1do1 (%) "pour 11 (%) 118 (leyrunyqy) | lfp/op uIq Anjosqy

panunuod ¢ Iqe],

pringer

As



Eur. Phys. J. C (2017) 77:804

804 Page 20 of 66

1100°0 F L9000 691 0 o€l 9¢ LT €¢ T6 1100°0 F 9900°0 +00€-00T
6200°0 F 61¥0°0 0L T0 6'¢ 6’1 61 A 6t 8200°0 F T0¥0°0 00208 T
6900°0 F €661°0 Se 00 Tl 01 Tl 90 8T 9900°0 F 9881°0 0S1-0TI
€10°0 F L6V'0 ST 00 S0 80 80 0 Tt TI0'0 F €LV0 0Z1-001
S10°0 F 0L8°0 81 00 ¥0 90 €0 €0 Sl S10'0 F €+8°0 001-08
910°0 F O€T'T Sl 00 €0 0 €0 €0 €l 910°0 F LTI'T 08-09
LT0'0 F 900°T 91 00 S0 S0 0 €0 A LTO'0 F 9€0°1 09-0%
SI00F €L0 0C 00 90 S0 S0 0 L1 SI0'0F TLLO 0v—0T
0100 F91€°0 0¢ 00 80 L0 S0 S0 LT 010°0 F T€€°0 020
(A9D)

(A?D/,_01) (2 0u) Jkdp/op? (%) 1esoL, (%) 4/71 (%) 319 (%) apr (%) o] (%) 'pow 11 (%) 1818 (A%D/,_01) Jidp/op? UIq PasI[eULION
¥0'0 F0T0 9Ll ST el 'y 6'C (a4 €6 $0'0 F €20 +00£-00T
0T'0F LT'T 6L €T (a4 Tt 1'C Tt 0s IT0F6¢€1 002081
820 F 909 9Y Tt 91 Tl Sl A 6T 0€'0F €59 0S1-0TI
09°0F IT°SI 6'¢ 1'c 'l €l €1 Tl €T $9°0 F 8¢°91 0Z1-001
88°0 F 8+°9¢C € 1T 01 80 01 01 L1 960 F 61°6C 001-08
'L Fvve 43 |4 60 60 'l 60 Sl CIFO06E 0809
0'TF90¢ a3 |4 01 'l Tl 60 91 TIF6SE 09-0%
18°0 F 29°CC S¢ 1 01 01 Tl 01 61 ¥6°0 F TL'9T 0v—0¢
Ir0F 796 (47 |4 Tl 'l Tl Tl 8T 670 F0ST1 070
(A2D/q)) (2 ow) Ldp/op (%) reloL, (%) %9/1 (%) 334 (%) aper (%) 1do1 (%) ‘powr 11 (%) 118 (A2D/ay) ;Ldp/op (A?D) uIq An[osqy

uS1s .+, oy £q PoJEOIPUI 2IOYM SMOISAO SIPNOUT UIq ISB[ QYL *.(0'0, Aq POIBIIPUI dIe 9,G()"() UBY} IS[[BUWIS SATUIEIIAOUN dATE[IY SKBOap
11/2 < 1 < A BIA SUONNQINUOD JAOUIAI 0} PIJIILIOD UONIIS-SSOIO [EIUAIAIJIP PUE ‘AJUTBIIdOUN QAR [B10) ‘(3X) 93S) SILI0FILD SNOLIBA UT SOIIUTEIIdOUN JIJBUWINSAS JAIR[AI ‘AJUTRIIOOUN [BI1ISIIRIS
QATIR[aI “A)JUTE)IEOUN [£]0) PUR UOTIOIS-SSOI0 PAINSLIUT ‘SoFueI UIq ) M0ys Suwn(od YT, ‘(wonoq) ,, u pue (doy) Ld jo suonouny se suonoss-sso1o enuerofip pasiewrion pue AN[OSqQY  § AL

pringer

Qs



Page 21 of 66 804

pringer

As

Eur. Phys. J. C (2017) 77:804

1800°0 F 0280°0 66 10 Sy 0T 6’1 97 08 9L00°0 F €9L0°0 +00S—00%
€10°0 F €020 $9 10 8T 91 A 81 TS TI0°0 F 161°0 00+—-00€
0€0°0 F 065°0 I's 00 LT A 01 01 Ay 6200 F €950 00£-0ST
W00 F 2T 1 v'e 00 Tl 01 80 L0 6'C 1%0°0 F 081°T 0ST-002
650°0 F €9L°C 1T 00 90 L0 S0 +0 8l 850°0 F LOLT 002081
T60°0 F 6£8°F 61 00 €0 S0 €0 €0 L1 T60°0 F €28+ 0S1-0T1
YI'0 F 099 0C 00 €0 L0 €0 €0 8l Y10 F S99 021-001
YIOF LEL 8l 00 0 90 €0 €0 L1 YIOFISL 001-08
YI0OF SLO 1'C 00 L0 €0 90 0 81 Y10 F 69 08—09
ANIE XY ST 00 01 0 L0 S0 1T EI0F OIS 09-0%

S60°0 F 9ST'¢ 0¢ 00 60 0 S0 L0 LT S60°0F LST'E 00z
990°0 F LL60 L9 00 ¢l i Tl il 9 9900 F ££6°0 070
[A2D/_01] (%) (%) (%) (%) (%) (%) (A2D)
(20u)  wp/op3 [eI0L (%) 9/71 (%) 339 (%) qpar (%) 1do] (%) "pouwt 11 (%) 1018 (A®D/_0D) ,UP/OPT uiq PasIEULION
€00 F ST0 €01 Tt 8Y 1'C 1'c Tt 08 €00 F 920 +00S—00%

$0°0 F 29°0 'L (e ¢ 07 [ ¢l TS S0'0F 990 00t—00€

01’0 F 081 LS Tt 1T vl Tl 01 v I10FS6'1 00£-0S¢

II'0FELE ey 1T 9] I'1 I'1 80 0°¢ 81°0 F 60F 057002

0S0F I+'8 9°¢ |4 Tl €l 60 80 61 ¥€°0 F 8€°6 002081

1SOF Lyl v'e |4 01 01 60 01 61 LSOF IL91 0S1-0T1

€L°0F LOOT 9¢ |4 60 Tl 01 I'1 07 €8'0 F €0°€T 0T1-001

8L°0 F Th'TT v'e |4 60 80 I'1 Tl 8l 06°0 F 00°9¢C 001-08

9L°0 F #S°0¢T L€ |4 Tl 80 vl ¢l 61 68°0 F 86°€T 08-09

19°0 F 6T°S1 0t 1T €l L0 Sl vl Tt 0L0F99°LI 09-0%

It'0 F 19°6 (9% 1T Tl 60 vl Sl 8T LY'0 F ¥6°01 002

TTOFL6T YL 1T €l €1 61 07 €9 STOFLEE 070

(A9D/q3) (2 o) , wp/op (%) Te10L (%) H/1 (%) 39d (%) apar (%) 1de1 (%) "powt 1 (%) 118 (ASD/4Y) ,,,wp/op (ASD) u1q AN[0sqy

panunuod § qe],



Eur. Phys. J. C (2017) 77:804

804 Page 22 of 66

120°0 F 2020 S0l 10 a4 ST L1 1T 8’8 120°0 F 002°0 0S7-00C
8500 F $£6°0 9 10 8’1 60 01 ¢l 96 LS00 F 0£6°0 00T-SL'1

€L0°0 F 0S8'T 0t 00 80 80 L0 80 9¢ €LO'0 F 9v8'1 SLT-0ST

680°0 F 600°€ 8T 00 90 90 ¥0 90 97 $80°0 F 600°€ 0S'1-6T'1

660°0 F 8S+'¥ Tt 00 €0 ¥0 0 S0 1T 6600 F IS+ STI-001

11°0F LSS 6’1 00 0 €0 0 0 LT 11°0F LSS 00 T-SL°0

I1°0F 00°L 91 00 €0 €0 0 €0 Sl IT0F 10°L SL'0-0S0

TI0FILL ST 00 €0 €0 0 €0 A TIOFLLL 0S$°0-$2°0

SIOFILS A 00 €0 €0 0 €0 ¢l SI0OFILS ST0-000

(€ yun)

(Cyun/,_o1) (2 00) |, & Ip/op (%) TeroL, (%) 4/71 (%) 349 (%) apar (%) do] (%) ‘powt 11 (%) 118 (©yun/, 01) 1€ Ip/op UIq pasI[etlIoN
89F 19 11 Tt LY €T €T LT 8’8 LLFT69 0$700C

0T F €8¢ I'L Tt 1T Tl 81 07 LS €TF ICE 00T-SL'T

6C F 19§ TS Tt €l €1 97 97 Le €€ F LE9 SL1-0ST

8¢ FTI6 (Y |4 Tl L0 ¢l €1 LT €7 F 8€01 0S'1-6T'1

0S F I6¢€1 Le 1T 01 80 'l Tl Tt LS F 9¢ST STI-00T

€9 F 08LI S¢ 1T 'l 80 'l I'1 6'1 1L F 920C 00 T-SL0

ILF €TIT € I 01 01 01 01 97 08 F 61+¢C SL'0-0S0

9L F €5€T e |4 60 80 01 60 ST 98 F 189¢C 0S°0-$2°0

¥8 F 6£9C Te 1T 80 01 01 60 [ S6 F LOOE ST0-000

(€ yunyqy) (2 ow) |, £|p/op (%) Te10, () Y4/1 (%) 33d (%) gpar (%) 1dorT (%) "powt 11 (%) @18 (€yunyqg) |, «|p/op (£ y1un) uiq AIN[oOSqy

saoe[d [ewIOap 0M) 0} pajonb dre Inq (/2 Jo sd[dnNW 39X 0) puodsdrIod Py 10§ SILEPUNO UIq YL, *,(°0, AQ PIIBIIPUL BI8 9 G()'() UBY) JO[[BWS SINUIBLISOUN JATR[Y "SALIIP
71/2 < 1 < A{ ®IA SUOIINQLIUOD SAOWAI 0) PAJIALIOD UOTIIAS-SSOID [ENURIQJJIP PUE ‘AJUTRLISOUN JANB[AI [£10) ‘(JXQ) 99S) SOLIOSAJBD SNOLIBA UI SAMIUIBLIOUN JIJBWAISAS QATIB[AI ‘AJUIBLIdoUN [BOTISTIR)S
SAE[AI ‘AJUIELISOUN [210) PUE UOTOIS-SSOIO PIINSEIW ‘SIFUBL UIQ Y} MOYS SUWN[OD Y, “(Wonoq) |, v pue (do) |, ] Jo suonouny se suorjdds-ssold [ERUIIRJFIP PISI[EULIOU PUE JIN[0SAY & J[YBL

pringer

Qs



Page 23 of 66 804

Eur. Phys. J. C (2017) 77:804

8800 F LSL'¥ 81 00 S0 10 €0 ¥0 LT 0600 F L68'H P1°¢—€8C
980°0 F €¥t't 6’1 00 0 €0 0 0 81 880°0 F 9¥S'¥ €8°C-1ST
8100 F 820°F 61 00 €0 €0 10 0 6'1 6L0°0 F 690 1702
TLO'0 F 65S°€ 07 00 €0 0 10 ¥0 0T €L0°0 F 995°€ 077881
1L0°0 F LOT'E Tt 00 €0 €0 10 ¥0 1T 0L0°0 F S81°¢ 88'1-LS'I
S90°0 F €LLT €T 00 0 0 0 0 T ¥90°0 F TEL'T LST-9TT
$90°0 F 90S°'C 9 00 ¥0 90 T0 S0 v'C ¥90°0 F ¥St'C 9T T-+6°0
0900 F 11€°C 9 00 ¥0 0 €0 S0 ST 650°0 F TST'T ¥6'0-€9°0
8500 F 6L1°C LT 00 ¥0 ¥0 €0 S0 9 LSOOF ITI'T €9°0-1€°0
790°0 F 890°C 0°¢ 00 ¥0 S0 0 90 8T 090°0 F 010°C 1€°0-00°0
(pex)

(pe1/,_01) (2 ow) 1,dVP/0pT (%) reroL, (%) 99/71 (%) 319 (%) apr (%) 1do] (%) ‘pow 11 (%) 118 (pe1/,_01) 1V P/0pT UIq PISI[eULION
IS F 6b¥1 v'e 1T Tl 60 60 60 61 85 F 9691 P1'€—€8°C
6F F €5¢€1 9¢ 1T 'l 'l 60 60 0¢ 9G F SLST €8°C-1ST
vb F9Cel S¢ 1'C 01 'l 01 01 0C 0S FOI¥1 1§70
8¢ F ¥801 g¢ 1'c 60 L0 01 01 1'c € F seTl 07881
LEFLLG LE 1T 60 'l 'l 'l T I F €011 88 1-LS'I
€ F 8 8¢ 1'c 01 80 Tl I'l €T 9¢ F LY6 LS'T-9T'1
0€ F €9L 6'¢ 1'c 60 L0 Tl Tl ST €€ F 058 9T 160
8T F ¥0L 6'¢ 1T 60 L0 Tl €l 9T 1€ F08L $6°0-€9°0
9 F $99 (/87 1'c 60 90 €l €l LT 6C F SEL €9°0-1€°0
LT F 0£9 T 1'c 60 L0 €l Al 67T 0€ F 969 1€0-00°0
(pey/qy) (2 0u) | dvp/op (%) 12101, (%) 4/1 (%) 334 (%) 9par (%) 1de1 (%) "pour 11 (%) 118 (pey/qy) ,, PvVp/op (pex) uIq Anjosqy

ponunuod g dqex,

pringer

As



Eur. Phys. J. C (2017) 77:804

804 Page 24 of 66

21000 F 911070 Y01 70 79 6T v ST 0L 1100°0 F 0110°0 +00¥—00€

¥200°0 F 92€0°0 €L 10 (43 ST 07 ¢l 9¢ €200°0 F 11€0°0 00€-0ST

1¥00°0 F 2160°0 St 10 1T A A L0 v'e 6£00°0 F SL80°0 0S7-002

€900°0 F 91LT0 v'T 00 01 90 60 0 81 7900°0 F LT9T0 002-0ST

010°0 F €29°0 LT 00 0 €0 S0 €0 [ 010°0 F 909°0 0S1-0CI

910°0 F €00°T 97 00 0 0 €0 €0 A 910°0 F 066°0 0Z1-001

810°0 F S80'T 97 00 90 0 S0 €0 [ LTO0 F L60'T 00108

¥10°0 F 129°0 Tt 00 Tl €0 01 0 [ S10°0 F #99°0 08-0$

(A9D)

(A%D/__01) (2 0u) (L +Ld)p/op?  (w)TOL () F/T ()T (B) gL (%) WIT (%) Pow 1 (%) WS (ASD/ .01 (§d + Ld)p/op3 U1q pasITetioN
Y00 F S0 11 €T $9 € €T €¢ 0L ¥0°0 F 8¢°0 +00¥—00€

80°0 F 66°0 '8 Tt S¢ 6T 07 6’1 LS 600 F 80T 00£-0ST

SI'0FSLT Y Tt v'C A Sl [ S¢ 90 F€0¢ 057002

I€0F LTS 8¢ Tt [ Tl 'l 01 6’1 YEOFIT6 002-0ST

€9°0 F S6'81 € |4 01 80 01 60 LT 690 F00'1C 0S1-0CI

0'TFS0¢ e I'c 60 60 01 01 91 I'TFEHE 0Z1-001

I'TFO0€e € 1T 60 80 Tl 01 Sl TIF 08¢ 001-08

€L°0 F 0681 8¢ 1T [ L0 81 Tl LT 68°0 F20°€T 08-0S

(AD/Q) (2 0u) (Y + Ld)p/op ()0l (%) F/T (W) NE (@) amr (%) T () pow sy () @S  (AD/A) (id 4+ Ld)p/op  (A9D) uIq Anjosqy

uS1s .+, oy} £q PAJEOIPUT 2IAYM SMOJFISAO0 SIPNOUT UIq ISB[ YT, *.(0'0, Aq PAIBIIPUL I 9,G()’() UBY) JO[[BUIS SIANUTLLIOOUN JANR[IY "SABOAp 11/ <— 1 < A
BIA SUOTINGLIUOD SAOWAI 0] PIJIILIOd UOTIOIS-SSOIO [BIIUSISJJIP pue ‘AJUILlIooun QANB[I [810) ‘(1X9) 99S) SILIOSILd SNOLIBA UI SONUIBLIdOUN JNBWSISAS 9AR[OI ‘AJUIRIIOOUN [BONISIIS SATIB[OI
‘KJure1190UN [210) PUE UOTIIIS-SSOIO PAINSEIU ‘SaFULT UIq oY) MOYS SUWN[0d oYL, “(Wonoq) 7 + 7 pue (doy) Ld + Id jo suonouny se suonoas-sso1o [eNULIIIP PISIEULIOU PUE AN[OSqY 9 QR

pringer

Qs



Page 25 of 66 804

Eur. Phys. J. C (2017) 77:804

$600°0 F €9+1°0 $9 10 S¢ Tl 6’1 8T LY 16000 F €6£1°0 +00L—00S
610°0 F 29¢°0 TS 10 07 Tl LT 01 (Y 810°0 F 8+€°0 00S—00%
920°0 F L06°0 6T 00 I'1 L0 80 S0 v'C 9200 F 8L8°0 00+—-00€
6¥0°0 F 6¥8'1 97 00 L0 60 S0 S0 €T 8700 F €08'I 00£-0ST
960°0 F $S6'C 61 00 0 S0 0 0 LT $S0°0 F $06°'C 0S7-002
L90°0 F S8S'¥ Sl 00 €0 0 €0 €0 ¢l L90°0 F $9S'¥ 002081
6600 F 8L¥'S 81 00 S0 ¥0 0 €0 971 6600 F 12S°S 0S1-0CI
TI0OFIIS €T 00 L0 90 90 0 0C TIOFICS 0Z1-001
IT0FSLE 8T 00 60 L0 80 S0 v'C IT0FS6'E 001-08

9b0°0 F 850'1 (9% 1’0 I'l L0 vl 80 8¢ 0S0'0 FTLI'T 08-0S
(A9D)

A%/ _01) (2 00) (,7 + LAP/oPT (B oL (%) /T (%) g (@) aper ()T (%) pow i (%) S (A9D/ 0D G+ ,A)p/op7 UIq PISI[eULION
€00 F t¥°0 YL Tt 8¢ 91 €T €T 8Y ¥0°0 F 8+°0 +00L—00S
LOOFOI'T 1'9 Tt ¥'T [ 0C Sl €Y LOOFOTT 00S—00%
TI0OFSLT T Tt LT 60 €l I'1 ST EI0OFH0'E 00+—00€
TCOFI9°¢S (VR4 1'C A Tl 01 01 v'T STOFHT9 00€-0ST
[€0F L6'8 Se 1'c I'l I'l 60 01 81 SEOF 001 0S7-00T
SPOFTOEl e 1'C 60 01 60 01 Sl IS0F6LSI 002081
9¢°0 F €991 €e 1'c 60 80 'l 'l L1 ¥9°0 F 01°61 0S1-021
LSOF L9ST 9¢ 1T 60 80 €1 I'1 1T L9°0 F 9¢°81 0ZT1-001
80 F 8CI1 (Y 1'c 'l Tl 91 Tl ST LSO F 89°¢l 001-08
LIOFITE €¢ 1T Tl 'l T €1 8¢ TTOF SO 08-0S
(A2D/QY) (2 0v) (, & + ,74)p/op (%)L (%) |/T (%) (B aper (%) o1 (@) pow iz (%) WIS (ASD/A) (,F + ,4)P/op  (ASD) uIq AM[Osqy

peanunuod 9 Jqe],

pringer

As



804 Page 26 of 66

Eur. Phys. J. C (2017) 77:804

— e
3 C ATLAS 1
2 i Vs=8TeV,202f" ]|
107 ® Data 2012 -
s E — Powheg+PY6 ]
L r - MC@NLO+HW 1
o) 2 Alpgen+HW .
10°F E
- . i
10% =
C L | ]
© - T =
£ 12 ]
© [
5
s : 1
0.8 3
50 100 150 200 250 300
Lepton p_ [GeV]
(a) !
< UL B B
3 ATLAS
Q Vs=8TeV, 202" =
o ® Data 2012 ]
O .
[ — Powheg+PY6 ]
< - MC@NLO+HW
B N Alpgen+HW
§ 10°E E
C = ]
10* -
& 12F — ,
2k iy |
®] b ! [ ]
= o8 E

0 50 100 150 200 250 300
Dilepton p™* [GeV]
(0 T

Fig. 7 Normalised differential cross-sections as a function of a pr[F, b

Inlz l, ¢ p%” and d m°". The measured values are shown by the black
points with error bars corresponding to the data statistical uncertain-
ties and cyan bands corresponding to the total uncertainties in each
bin, and include the contributions via W — 1 — e/u decays. The

11 and 12. The figures show the ratios of each prediction to
the data as a function of the differential variables, organised
into four groups of samples as summarised in Table 7. These
event generator setups and tunes were used in ATLAS top
physics analyses at /s = 7TeV and /s = 8TeV, or have
been studied in preparation for analyses at /s = 13TeV
[55,94,95].

The first group shows the baseline POWHEG + PYTHIAG 7
sample with /4,yp,=m, (Which is also shown in Figs. 7

@ Springer
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results are compared to the predictions from the POWHEG + PYTHIAG,
MC@NLO +HERWIG and ALPGEN + HERWIG 77 simulation samples.
The lower plots show the ratios of predictions to data, with the error
bars indicating the data statistical uncertainties and the cyan bands indi-
cating the total uncertainties in the measurements

and 8), together with the two tunes giving more or less
parton shower radiation — the Perugia 2012 radHi and
radLo tunes [54] coupled to scale and g,y,, parameter
variations as discussed in Sect. 2.

The second group shows a POWHEG + PYTHIA6 sample with
hgamp = 00 (i.e. no damping of the first emission), the
baseline POWHEG + PYTHIA6 sample with the top quark
p spectrum reweighted to the NNLO prediction of Ref.
[25], and a sample generated with POWHEG and gy, =
m, interfaced to PYTHIAS8 (version 8.186) [46] with the
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Fig. 8 Normalised differential cross-sections as a function of a |y
b AP, e pT + p‘TL and d E® + E". The measured values are shown
by the black points with error bars corresponding to the data statistical
uncertainties and cyan bands corresponding to the total uncertainties in
each bin, and include the contributions via W — 7 — e/u decays. The

c‘p.l
5

A14 tune [96] and the CTEQ6L1 PDF set for the parton
shower, hadronisation and underlying event modelling as
described in Ref. [94].

The third group shows a POWHEG + PYTHIA6 sample with
hgamp = m, generated with the HERAPDF 1.5 PDF

set [84,85] instead of CTlO,6 and a POWHEG + PYTHIAG

6 Although HERAPDF 1.5 has been superseded by HERAPDF 2.0
[97], which uses the final combined DIS data from the H1 and ZEUS
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results are compared to the predictions from the POWHEG + PYTHIAG,
MC@NLO + HERWIG and ALPGEN +HERWIG ¢7 simulation samples.
The lower plots show the ratios of predictions to data, with the error
bars indicating the data statistical uncertainties and the cyan bands indi-
cating the total uncertainties in the measurements

sample with h4,,, = 00 and no simulation of spin cor-
relations between the top and antitop quarks.

The fourth group shows alternative matrix-element event
generators — the ALPGEN+ HERWIG and MC@NLO +
HERWIG samples described in Sect. 2 and shown in
Figs. 7 and 8, together with a sample generated using

Footnote 6 continued
experiments, HERAPDF 1.5 is used here due to availability of the
corresponding simulation sample.
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Fig. 9 Ratios of predictions of normalised differential cross-sections

to data as a function of a p% and b \nel, The data statistical uncertain-
ties are shown by the black error bars around a ratio of unity, and the

MADGRAPHS_AMC@NLO 2.2.1 [98] (referred to as
AMC@NLO below) and CT10 PDFs, interfaced to HER-
WIG++ [99] with the UE-EE-5 HERWIG++ author tune.

The compatibility of each prediction with each measured
normalised distribution was assessed quantitatively using a
x2 test, calculated as:

2 T -1
X = Au_1)Su—nAu-1), (%)

where A, _jy is the vector of differences between the mea-
sured and predicted normalised differential cross-section in
each of the n bins, excluding the last one, and S,,_ ) is the
corresponding covariance matrix, including both the exper-
imental uncertainties in the measurement and the statisti-
cal uncertainties in the predictions. Bin-to-bin correlations
in both the statistical (from the normalisation condition)
and systematic uncertainties were taken into account via
off-diagonal entries. The last bin of each distribution was
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excluded due to the normalisation condition, rendering the
covariance matrix S, invertible.” The resulting X2 val-
ues, number of degrees of freedom (n — 1) and corresponding
X2 probability p-values are shown for each distribution and
prediction in Table 8.

As can be seen from Fig. 9, in the single-lepton p% distri-
bution, the data are softer than the predictions from POWHEG
with CT10 PDFs, interfaced to either PYTHIAG or PYTHIAS.
The POWHEG-based predictions do not depend strongly on
the choice of parton shower/hadronisation model or tune
parameters controlling the amount of radiation. However, the
agreement with data is improved when using HERAPDF 1.5
or reweighting to the NNLO top quark pt prediction from
Ref. [25]. The predictions from the samples with alternative
matrix-element event generators, i.e. MC@NLO + HERWIG
and ALPGEN + HERWIG, are also harder than the data, though

7 The X2 value does not depend on the choice of which bin is removed.
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Fig. 10 Ratios of predictions of normalised differential cross-sections
to data as a function of a p-er“ and b m*. The data statistical uncertain-
ties are shown by the black error bars around a ratio of unity, and the

AMC @NLO + HERWIG++ describes the data well. The pT +
p% and E° + E" distributions (Fig. 12) show some simi-
lar features to p%, being softer than the predictions from the
POWHEG + PYTHIAG samples with CT10, and better described
with HERAPDF 1.5, and by AMC@NLO + HERWIG++.

The predictions for the single lepton |r;Z| and dilepton
|y“"| distributions (Figs. 9, 10, 11) are insensitive to the
choice of parton shower/hadronisation model and tune, and
are also insensitive to the top quark py reweighting. The
data distributions are more central than the predictions of
all the NLO event generators (POWHEG, MC@NLO and
AMC@NLO) with CT10 PDFs, but are better described by
PowHEG with HERAPDF 1.5, and to a lesser extent also by
ALPGEN + HERWIG, which uses the leading-order CTEQ6L1
PDF. These distributions, whose experimental measurements
are limited by statistical uncertainties over the full kinematic
range, are thus particularly suitable for constraining PDFs,
as explored further in Sect. 7.
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total uncertainties are shown by the cyan bands. The ¢7 predictions are
shown in four groups from top to bottom, with error bars indicating the
uncertainties due to the limited size of the simulated samples

The dilepton p;“ and m“"* distributions (Fig. 10) are gen-
erally well described by all the NLO event generators, except
for AMC @NLO which does not model the data well at low

m". The p ! distribution is sensitive to the amount of par-
ton radiation, and is better described by the radLo than the
radHi POWHEG + PYTHIA6 sample, and by /4.y, = m, than
hgamp = 00. Both distributions are sensitive to the mod-
elling of #¢ spin correlations, and are not well-modelled by
the POWHEG + PYTHIA6 sample without spin correlations.

The A¢" distribution (Fig. 11) is particularly sensi-
tive to spin correlations, and has been previously used to
exclude ¢7 simulation models without spin correlation and the
pair-production of supersymmetric top squarks with masses
close to m,, via template fits to reconstruction-level distri-
butions [100,101]. The particle-level A¢“" measurements
shown here also exclude the prediction without spin cor-
relations and the LO implementation of spin correlations
in the ALPGEN+HERWIG sample. The A¢“" distribution
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Fig. 11 Ratios of predictions of normalised differential cross-sections
to data as a function of a |y*| and b A¢°". The data statistical uncer-
tainties are shown by the black error bars around a ratio of unity, and

is also sensitive to radiation, this time favouring the radHi
POWHEG + PYTHIAG sample.

The X2 formalism of Eq. (5) was extended to consider
several normalised distributions simultaneously, by forming
vectors A; where the index runs over the bins of several dis-
tributions, excluding the last bin in each one to account for
the normalisation condition. The covariance matrix S was
extended with off-block-diagonal components encoding the
correlations between bins of different measured distributions.
The statistical correlations between distributions were evalu-
ated using pseudo-experiments generated by sampling from
the large simulated 77 sample discussed in Sect. 4.3. The
individual sources of systematic uncertainty were assumed
to be fully correlated across the different distributions. Five
sets of combined distributions were considered: the combi-
nation of p% and p%“ , combining all the information from
single and dilepton pt; the combination of p-eF“ , m" and
Pr+ p#, including all the dilepton kinematic distributions
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the total uncertainties are shown by the cyan bands. The ¢7 predictions
are shown in four groups from top to bottom, with error bars indicating
the uncertainties due to the limited size of the simulated samples

except rapidity; the combination of |r/e| and |y“"|, combin-
ing the single and dilepton rapidity information; the combi-
nation of [°], |y*| and E + E*, combining all the distribu-
tions with longitudinal information; and the combination of
all eight measured distributions, denoted ‘All’. The resulting
X2 values, numbers of degrees of freedom and p-values are
shown for each combination and prediction in Table 9.

The results for the combinations of distributions reflect the
observations for the individual distributions. The best mod-
elling of the first two combinations (involving pfr, p%“ ,m
and pt + p% ) is given by POWHEG + PYTHIA6 with either
HERAPDF 1.5 or with CT10 plus reweighting of the top
quark pr distribution to the NNLO prediction; the radHi vari-
ation of POWHEG + PYTHIAG6 also does well. The combina-
tions involving |1‘| and | y**| and the combination of all eight
distributions are only well-described by POWHEG +PYTHIAG
with HERAPDF 1.5, and marginally well described by the
radHi variation. All other event generator setups (in par-
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samples

unity, and the total uncertainties are shown by the cyan bands. The ¢7

Table7 Summary of particle-level simulation samples used in the com-
parison to the corrected data distributions in Sect. 6.2, giving the matrix-

each measured distribution show

element event generator, PDF set, parton shower and associated tune

500600 700

Dilepton E°+E" [GeV]

predictions are shown in four groups from top to bottom, with error
bars indicating the uncertainties due to the limited size of the simulated

parameter set. The four groups shown correspond to the four panels for

n in Figs. 9, 10, 11 and 12

Matrix-element PDF Parton shower Tune Comments
1 POWHEG CT10 PYTHIAG P2011C hgamp = m;
POWHEG CTI0 PYTHIAG6 P2012 radHi Ramp = 2m,, 35 R
POWHEG CT10 PYTHIAG P2012 radLo hgamp =My, 21p R
2 POWHEG CT10 PYTHIAG P2011C hgamp = 00
POWHEG CT10 PYTHIAG P2011C hgamp = m;, NNLO top pr
POWHEG CT10 PYTHIA8 Al4 hgamp = M,
3 POWHEG HERAPDF 1.5 PYTHIA6 P2011C hgamp = m,
POWHEG CT10 PYTHIAG P2011C Igamp = 00, nO spin corl.
4 ALPGEN CTEQ6L1 HERWIG+H]IMMY AUET2 incl. 17 bb, 1t c¢
MC@NLO CT10 HERWIG+]IMMY AUET2
MG5_AMC@NLO CT10 HERWIG++ UE-EE-5
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Table 8 The Xz values (top) and associated probabilities (bottom) for comparison of measured normalised differential fiducial cross-sections with

various 77 simulation samples. Probabilities smaller than 10710

are shown as zero

Generator p% |n[| p%“ en |ye“| Aq.’)e““ p% + p# E‘+ E"
Naoy 9 8 8 11 8 9 7 9
POWHEG +PY6 13.6 263 73 14.6 46.6 14.0 113 227
POWHEG + PYG6 radLo 159 229 7.6 14.6 45.6 25.9 14.0 22.0
POWHEG + PY6 radHi 10.0 282 11.0 12.6 42,0 45 9.1 214
POWHEG + PY6 /gy = 00 17.2 225 14.5 12.9 42.8 5.0 15.6 23.4
POWHEG + PY6 py NNLO 8.3 28.5 6.3 12.1 492 76 7.6 17.4
POWHEG + PY8 /1y = 00 15.1 289 8.3 14.4 443 13.0 12.7 25.8
POWHEG + PY6 HERAPDF 1.5 114 11.8 36 11.1 6.7 10.3 7.0 1.9
POWHEG + PY6 no spin corl. 21.8 232 152 100 453 279 224 276
ALPGEN + HW 312 116 15.5 137 15.3 36.0 274 12.7
MC@NLO + HW 15.7 18.8 9.4 9.3 39.4 7.1 11.8 16.2
AMC@NLO+HW ' 7.8 292 7.6 24.5 46.6 8.2 12.0 13.8
POWHEG + PY6 0.14 910™* 0.51 0.20 21077 0.12 0.13 71073
POWHEG + PY6 radLo 0.070 3107° 0.48 0.20 31077 2107° 0.052 9107°
POWHEG + PY6 radHi 0.35 4107 0.20 0.32 110°° 0.87 0.24 0.011
POWHEG +PYG6 A gy = 00 0.045 4107 0.069 030 110°° 0.83 0.029 5107
POWHEG + PY6 pr NNLO 0.51 4107* 0.62 0.36 610" 0.57 0.36 0.043
POWHEG + PY8 /1y = 00 0.089 3107 0.41 0.21 51077 0.16 0.080 21077
POWHEG + PY6 HERAPDF 1.5 0.25 0.16 0.89 0.44 0.57 0.32 0.43 0.99
POWHEG + PY6 no spin corl. 0.010 3107° 0 0 31077 0 21077 1107°
ALPGEN + HW 3107 0.17 0.051 0.25 0.054 4107° 310 0.17
MC@NLO + HW 0.073 0.016 0.31 0.60 4107° 0.62 0.11 0.063
AMC@NLO + HW '+ 0.56 3107* 0.47 0.011 21077 0.52 0.10 0.13

ticular the LO multileg event generator ALPGEN) fail to
describe some of the distributions, but this could potentially
be improved by appropriate parameter tuning and switching
to a different PDF set. These results highlight the sensitiv-
ity of the differential distributions to the choice of PDF, in
particular that of the gluon, as discussed further in Sect. 7.
They also indicate that NNLO corrections may be important
in describing the kinematics of the decay leptons, as well as
for the prediction of the top quark pt spectrum as discussed
in Ref. [25].

6.3 Comparison with fixed-order predictions

The comparisons described in Sect. 6.2 show that the pre-
dictions are strongly sensitive to the choice of PDF, and
also to the QCD scale (whose variation approximates the
effects of missing higher-order corrections) and other param-
eters related to the amount of radiation. In this section,
these aspects are further explored using a set of predic-
tions from the MCFM program (version 6.8) [30], combined
with APPLGRID (version 1.4.73) [93] to interface to various

@ Springer

PDF sets available in LHAPDF (version 6.1.5) [102]. Four
recent NLO PDF sets were considered, namely CT14 [103],
MMHT14 [104], NNPDF 3.0 [105] and HERAPDF 2.0 [97].
The data were also compared to HERAPDF 1.5 [85] for com-
parison with the results of Sect. 6.2; the results from these
two PDF sets are similar.

MCFM provides an NLO fixed-order prediction of the ¢7
process in the dilepton channel, including NLO QCD correc-
tions in both production and decay in the on-shell approxi-
mation, and full NLO spin correlations [106]. Only the direct
decays of W — ¢/ are included, so these predictions were
compared to the measurements corrected to remove the lep-
tonic t decay contributions. The top quark mass m, was set
to 172.5GeV. Informed by the discussion in Ref. [107], the
central values for the QCD renormalisation and factorisa-
tion scales were set to m,/2, the lower than typical (m,)
scale choice being intended to account for the impact of
resummed soft-gluon contributions not included in the fixed-
order calculations. The MCFM predictions do not include
quantum electrodynamics (QED) final state photon radia-
tion, unlike the experimental measurements where the lep-
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Table 9 The X2 values (top) and associated probabilities (bottom) for comparison of combinations of measured normalised differential fiducial

. . . . . o -10
cross-sections with various ¢ simulation samples. Probabilities smaller than 10~ are shown as zero

Generator Pr. PY+ Y Py m ™ p% o+ py 'l 1y In' I 1y, E° + E" Al
Naos 16 26 16 25 69
POWHEG +PY6 20.7 382 57.6 70.0 120
POWHEG + PY6 radLo 24.6 50.6 57.6 70.6 138
POWHEG + PY6 radHi 16.4 29.7 523 62.8 98.7
POWHEG + PY6 /gy = 00 25.0 40.1 542 68.7 113
POWHEG + PY6 py NNLO 15.1 30.0 60.0 68.2 109
POWHEG + PY8 /1y = 00 23.6 373 56.8 713 121
POWHEG + PY6 HERAPDF 1.5 20.1 29.6 22.5 24.5 68.6
POWHEG + PY6 no spin corl. 30.2 284 583 77.4 462
ALPGEN + HW 38.9 79.3 49.3 67.2 154
MC@NLO + HW 23.1 352 54.8 65.7 110
AMC@NLO+HW '™ 19.1 452 63.1 70.2 128
POWHEG + PY6 0.19 0.058 1107° 4107° 1107
POWHEG + PY6 radLo 0.077 3107 1107° 3107° 210°°
POWHEG + PY6 radHi 0.43 0.28 11070 4107° 0.011
POWHEG + PY6 /gy = 00 0.069 0.038 5107° 6107° 610"
POWHEG +PY6 py NNLO 0.51 0.27 51077 7107° 21077
POWHEG +PY8 Ay = 00 0.100 0.071 2107° 2107° 1107
POWHEG + PY6 HERAPDF 1.5 0.21 0.29 0.13 0.49 0.49
POWHEG + PY6 no spin corl. 0.017 0 1107¢ 31077 0
ALPGEN + HW 11072 31077 3107 1107° 21078
MC@NLO + HW 0.11 0.11 4107° 2107° 1107°
AMC@NLO + HW ' 0.26 0.011 21077 4107° 2107°

tons are dressed with nearby photons as discussed in Sect. 4.
Therefore, the MCFM predictions were corrected bin-by-
bin using corrections derived from two ¢7 samples generated
with PYTHIAS (version 8.205) [108] and the ATTBAR tune
[109] with QED final-state radiation enabled and disabled.
These corrections are typically 1-2% on the absolute and
always smaller than 1% on the normalised differential cross-
sections. No corrections were applied to the normalised |ne|
and |y“"| distributions, as the determined corrections were
always smaller than 0.3% and consistent with unity within
the simulation statistical uncertainties.

The ratios of the MCFM normalised differential cross-
section predictions with HERAPDF 1.5 (the PDF set found
to best fit the data when comparing with POWHEG + PYTHIA6
samples in Sect. 6.2) to data are shown in Fig. 13. The
uncertainties in the predictions include effects from PDFs,
QCD scales and the value of the strong coupling constant
ag. For each individual component variation, the prediction
was renormalised to unity before calculating the shift for
each bin; the effects on the normalised cross-section pre-
dictions are typically significantly smaller than those on the

absolute cross-sections. The PDF uncertainties for CT14 and
MMHT were evaluated from the sum in quadrature of the
symmetrised up/down variations from each individual eigen-
vector pair from the PDF error set. For the HERAPDF sets,
each pair of eigenvector or model parameter variations was
treated as an independent variation. For NNPDF 3.0, the 100
replica sets which represent the NNPDF uncertainty were
used to define a full covariance matrix taking into account
correlations between the bins of each distribution. The QCD
scale uncertainties were evaluated by varying the renormal-
isation and factorisation scales ;p and pp separately, and
adding the variations in quadrature. Each scale was varied
by factors of one-half and two from its central value (m;,/2),
and the resulting variations symmetrised. This procedure
was used instead of taking an envelope including simulta-
neous variations of pr and pp in order to properly account
for the correlations between bins of the normalised differ-
ential cross-section predictions. Finally, the ag uncertainty
was evaluated using the HERAPDF 1.5 PDF sets with ag
set to 0.116 and 0.120, rescaling the resulting uncertainty to
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Fig. 13 Ratios of MCFM + HERAPDF 1.5 fixed-order predictions of
normalised differential cross-sections to data as a function of lepton and
dilepton variables. Contributions via W — 7 — ¢/ decays are not
included, and the MCFM predictions have been corrected to include
QED final-state radiation effects. The total data uncertainties are shown
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Aag = £0.0015, in line with the corresponding PDFALHC
recommendation [110].

The compatibility of the predictions with the normalised
cross-section data was tested quantitatively using the X2 of
Eq. (5), updating the covariance matrix S to also include
the theoretical uncertainties discussed above, including their
bin-to-bin correlations via the off-diagonal terms. The result-
ing XZ and p-values are shown as the ‘MCFM + HERAPDF
1.5” entries in Table 10 for individual distributions, and in
Table 11 for the combinations of distributions. As can be seen
from these tables and from Fig. 13, MCFM with the HERA-
PDF 1.5 PDF describes the data well, once all the theoretical
uncertainties are taken into account. The predictions for p%,
pi“ ,mt, A" and p% + pg have large scale uncertainties,
which largely cover any differences between the measure-
ments and central predictions with scales tp = up = m, /2.
The |n°| and |y**| distributions have little scale dependence
and are more sensitive to PDF variations, but are again well-
described within the uncertainties of the HERAPDF 1.5 set.
The ag-related uncertainties are small compared to the other
two classes.

The predictions for all five PDF sets (including PDF uncer-
tainties, scaled to 68% CL for CT14, as well as scale and «g
uncertainties) are compared to the data in Fig. 14. The cor-
responding X2 and p-values, including the PDF, scale and
ag uncertanities on the predictions, are shown in Tables 10
and 11. The results for HERAPDF 1.5 and HERAPDF 2.0
are close to the data, whereas the CT14, MMHT and NNPDF
3.0 PDF sets describe the data slightly less well, particularly
for pt, [n°], |y**| and E + E". These conclusions are sim-
ilar to those found for HERAPDF 1.5 and CT10 with the
POWHEG + PYTHIAG setup discussed in Sect. 6.2 above. How-
ever, the difference in X2 between the PDF sets is smaller
for the fixed-order predictions, as the explicit inclusion of
PDF and scale uncertainties in the predictions renders the
differences between the central predictions of each PDF less
significant. The PDF comparisons would benefit from the
availability of predictions including NNLO QCD effects in
both the top quark production and decay, which should sub-
stantially reduce the scale uncertainties.

7 Constraints on the gluon parton distribution function

As a demonstration of the ability of the normalised differen-
tial cross-section measurements to constrain the gluon PDF,
fits were performed to deep inelastic scattering (DIS) data
from HERA I+II [97], with and without the addition of the
constraints from ¢7 dilepton |ne|, ly"| and E¢ + E" dis-
tributions. As shown in Fig. 13, these distributions are the
most sensitive to PDF variations, whilst being less sensitive
to QCD scale variations and the value of m,. The fits are based

on the predictions from MCFM and APPLGRID discussed in
Sect. 6.3, allowing predictions for arbitrary PDF variations to
be obtained much faster than if a full NLO plus parton shower
event generator setup were to be used. The QCD scales were
set to fixed values of up = up = m, /2. The fits were per-
formed using the XFITTER package [111,112], which allows
the PDF and other theoretical uncertainties to be included via
asymmetric error propagation. In this formalism, the X2 for
the compatibility of the measurements with the prediction is
expressed by:

2 th —1 th _th th
=) (gfx" — ) Sexpiij (Si 2 63 (gf"p —; )
iy

(6)

where gl.eXp is the measured normalised differential cross-
section in bin i (equivalent to gtit- in Eq. (2)), gl-th is the cor-
responding theoretical prediction, Sey, ;; is the covariance
matrix of experimental uncertainties including both statisti-
cal and systematic contributions, and correlations between
bins, and the sums for i and j run over n — 1 bins to account
for the normalisation condition. Unlike in the formulation
of Eq. (5), the covariance matrix is a function of the the-
oretical predictions, with the statistical uncertainties being
rescaled according to the difference between the measured
values and the predictions using a Poisson distribution, and
the systematic uncertainties being scaled in proportion to the
predictions.

Following the formalism outlined in Ref. [113], the covari-
ance matrix was decomposed into a diagonal matrix D repre-
senting the uncorrelated parts of the uncertainties, and a set
of coefficients y;Xp giving the one standard deviation shift in
the measurement i for source j, where j runs over the cor-
related part of the statistical uncertainties and each source of
systematic uncertainty. Each source of experimental uncer-
tainty was then associated with a ‘nuisance parameter’ b ..,
parameterising the associated shift in units of standard devi-
ation. The X2 becomes a function of the set of PDF param-
eters p defining the theoretical prediction g,-th and the vector
of experimental nuisance parameters by, and is given by:

exp exp th 2
(§,~ + Zq/ Yij bj,exp -G (P))

2

2
X (P bep) =
dii

i
2
+Y bjep + L, @)
J

where d;; are the non-zero elements of the diagonal matrix D,
and the rescaling of the uncertainties leads to the logarithmic
term L, arising from the likelihood transition to Xz as dis-
cussed in Refs. [113,114]. The X2 was minimised as a func-
tion of the PDF parameters p and the nuisance parameters
beyp, and the value at the minimum provides a compatibility
test of the data and prediction.
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decays are not included, and the MCFM predictions have been corrected
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to include QED final-state radiation effects. The total data uncertainties
are shown by the cyan bands around unity, and the total uncertainty for
each prediction (including QCD scales, PDFs, and the strong coupling
constant g) are shown by the vertical bars
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Table 10 The x2 values (top) and associated probabilities (bottom) for
comparison of measured normalised differential fiducial cross-sections
with the predictions of MCFM with various PDF sets. Contributions via
W — © — e/u decays are not included, and the MCFM predictions

have been corrected to include QED final-state radiation effects. The
results take into account the uncertainties in both the measurements and
predictions

Generator pr 'l Pt m Iy N P+ Pt EC+E"
Naof 9 8 8 11 8 9 7 9
MCFM +CT14 11.5 14.1 7.2 11.2 13.0 7.2 114 11.2
MCFM + MMHT 11.3 12.8 7.2 11.2 12.6 7.1 11.2 9.6
MCFM +NNPDF 3.0 11.7 11.3 7.2 114 94 7.3 11.5 8.5
MCFM + HERAPDF 1.5 9.1 109 6.4 12.1 8.0 6.9 8.5 2.6
MCFM + HERAPDF 2.0 8.4 12.0 6.2 12.4 8.0 6.8 8.0 2.7
MCFM +CT14 0.24 0.080 0.51 0.43 0.11 0.62 0.12 0.27
MCFM + MMHT 0.26 0.12 0.51 0.42 0.13 0.62 0.13 0.38
MCFM + NNPDF 3.0 0.23 0.18 0.52 0.41 0.31 0.61 0.12 0.49
MCFM + HERAPDF 1.5 0.43 0.21 0.61 0.36 0.44 0.65 0.29 0.98
MCFM + HERAPDF 2.0 0.49 0.15 0.63 0.33 0.44 0.66 0.34 0.97

Table 11 The X2 values (top) and associated probabilities (bottom) for
comparison of combinations of measured normalised differential fidu-
cial cross-sections with the predictions of MCFM with various PDF
sets. Contributions via W — t — e/u decays are not included, and

the MCFM predictions have been corrected to include QED final-state
radiation effects. The results take into account the uncertainties in both
the measurements and predictions

Generator T, PY+ DY pit m, pi + ph ‘I, 1y ‘I, 1y*I, EC + E* All

Naoy 16 26 16 25 69

MCFM +CT14 19.5 29.6 24.2 32.4 73.0
MCFM + MMHT 19.3 29.6 23.4 30.7 72.0
MCFM + NNPDF 3.0 19.9 29.7 20.1 27.4 69.3
MCFM + HERAPDF 1.5 16.1 28.8 21.5 26.1 68.8
MCFM + HERAPDF 2.0 15.3 30.0 22.7 27.4 69.0
MCFM +CT14 0.24 0.28 0.086 0.15 0.35
MCFM + MMHT 0.25 0.28 0.10 0.20 0.38
MCFM +NNPDF 3.0 0.23 0.28 0.22 0.34 0.47
MCFM + HERAPDF 1.5 0.45 0.32 0.16 0.40 0.48
MCFM + HERAPDF 2.0 0.51 0.27 0.12 0.34 0.48

For the PDF fits, the perturbative order of the DGLAP
evolution [115-117] was set to NLO, to match the order of the
MCFM predictions. The gluon PDF g(x) was parameterised
as a function of Bjorken-x as:

xg(x) = AxB(1 — 01 + Ex?y ™, ®)

which, compared to the standard parameterisation given in
Eq. (27) of Ref. [97], removes the negative A’ term at low x
and adds more flexibility at medium and high x through the
additional terms with the parameters £ and F. The standard
parameterisations were used for the quark PDFs, giving a
total of 14 free PDF parameters in the vector p, after imposing
momentum and valance sum rules, and the constraint that the
i and d contributions are equal at low x. Other parameters
in the PDF fit were set as described in Ref. [113].

The minimised X2 values from the fits without and with
the ¢ data are shown in Table 12, which gives the partial X2
for each dataset included in the fit (i.e. the contribution of that
dataset to the total x 2) and the total x % for each fit. The partial
X2 values indicate that the ¢7 data are well-described by the
PDF derived from the combined fit, and that the description
of the HERA I+II data is not degraded by the inclusion of
the ¢7 data, i.e. there is no tension between the two datasets.
The ratios of the fitted gluon PDF central values with and
without the ¢7 data included are shown in Fig. 15a, together
with the corresponding uncertainties. The ratio of relative
uncertainties in the PDFs with and without the 77 data are
shown in Fig. 15b. The inclusion of the #7 data reduces the
uncertainty by typically 10-25% over most of the relevant x
range.
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Table 12 Results of the PDF fit to HERA I+II data (left column), and
to HERA I+II data plus the normalised differential 7 cross-sections as

a function of \nel, ly*| and E¢ + E* (right column). The partial Xz
and number of data points for the datasets used in each fit are given,
together with the overall x % and total number of degrees of freedom for
each fit

Datasets fitted HERA I+I1 HERA I+II + ¢7
Partial X2 ! Npoint

HERA I+II 1219/ 1056 1219/ 1056

i (n‘l, 1y, B + E™) - 27/25
Total x2 ! Ngof 1219/ 1042 1247/ 1067

The gluon PDF obtained from this procedure is compared
to the gluon PDFs from the CT14 [103] and NNPDF 3.0
[105] global PDF sets in Fig. 16. These PDF sets, shown by
the green bands, both have a larger high-x gluon than pre-
ferred by the HERA I+II data, with or without the addition
of the ¢7 data from this analysis. The impact of the 77 data on
the global PDF sets was investigated using a profiling proce-
dure [113,118,119], extending the X2 definition of Eq. (7) to
incorporate a vector by, of nuisance parameters by, ¢, express-

ing the dependence of the theoretical prediction gl-th on the
uncertainties for a particular PDF set. In this formulation, the
X2 definition becomes:

2
th th
<§ieXp + Zj yii‘prj,exp -G - Zk Yik bk,th)

2
X (g, byy) = Z

where by, ¢, = *1 corresponds to the +1 standard deviation
change of the PDF values according to the kth eigenvector
of the PDF error set. The values and uncertainties of the
nuisance parameters by , after minimisation of the X2 of
Eq. (9) give the profiled PDF with modified central values
and uncertainties according to the effect of the ¢ differential
cross-section distributions. These profiled PDFs are shown as
the orange bands in Fig. 16. Both the CT14 and NNPDF 3.0
gluon PDFs are shifted downwards at high x (corresponding
to a softer gluon distribution). The effect is larger in the case
of CT14, which has larger uncertainties in the gluon PDF in
this region.

8 Extraction of the top quark mass

The normalised lepton py and dilepton pS*, m*", p% + pl
and E + E" differential distributions are sensitive to the
value of the top quark mass, as already shown in Fig. 5a
for p!F and Fig. 5b for p;“. Provided that other theoretical
uncertainties in the predictions (as discussed in Sect. 6) can
be kept under control, fitting these distributions offers a com-
plementary way to measure m, compared to more traditional
determinations from complete reconstruction of the top quark
decay products [33-36]. Ref. [32] explores such an approach
in detail, arguing that measurements from normalised lepton
distributions are less sensitive to the modelling of perturba-
tive and non-perturbative QCD, and are closer to the ideal of
a measurement of the top quark pole mass m}mle than those
employing a direct measurement of the top quark decay prod-
ucts. It also stresses the importance of using several different
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Fig. 15 a Ratio of the gluon PDF determined from the fit using HERA
I+II data plus the normalised differential cross-section distributions as
a function of |né|, |y*| and E¢ + E" in t7 events, to the gluon PDF
determined from the fit using HERA I+II data alone, as a function of
Bjorken-x. The uncertainty bands are shown on the two PDFs as the

@ Springer

0.75

| L L

1072 107"

blue and red shading. b Ratio of the relative uncertainty in the gluon
PDF determined from the fit to HERA I+IT plus ¢7 data to that from
HERA data alone. The PDFs are shown evolved to the scale Q2 =m ,2
in both cases



Eur. Phys. J. C (2017) 77:804

Page 39 of 66 804

)ref

g b @=m ATLAS
X I E==HERA I+
@ 14 HERAIILH
' | ==CT14nlo
g &= CT14nlo profiled
k)
x
1.2

Fig. 16 Ratios of various gluon PDFs and their uncertainty bands to the
gluon PDF determined from HERA I+II data alone (red shading). The
blue shaded band shows the gluon PDF from the fit to HERA I+II data
plus the normalised differential cross-section distributions as a function

leptonic observables to probe for inadequacies in the theo-
retical descriptions of the distributions which may introduce
biases in the extracted m; values. Experimentally, the double-
tagging technique employed here results in measurements
with little uncertainty from the hadronic components of the
tf system, again reducing the exposure to QCD modelling
compared to the measurements based on reconstructing the
top quark decay products.

Several sets of top mass determinations are reported here,
based either on predictions from the NLO matrix element
event generator POWHEG interfaced to PYTHIA6 and the CT10
PDFs as described in Sect. 2, or on fixed-order predictions
with NLO descriptions of the 77 production and top quark
decay from the MCFM program with various PDF sets, as
described in Sect. 6.3. In the first case, m, is extracted either
by using a template fit parameterising the predictions as a
function of m, and finding the value which minimises the X2
with respect to the measured data (described in Sect. 8.1),
or by calculating moments of the distributions in data and
comparing them to the corresponding moments of the pre-
dicted distributions for different values of m, (Sect. 8.2). In
the template fit method, the comparisons between data and
predictions are performed at particle level, in contrast to the
template fits used for the ATLAS m, measurements based on
reconstruction of the top quark decay products [120], where
the comparisons are performed at detector level using the
reconstructed distributions and fully-simulated Monte Carlo
events. The template fit method uses the complete informa-
tion from the measured distribution, taking into account the
uncertainty in each bin, whereas the moments method, advo-
cated in Ref. [32], allows different features of the distribution
shapes to be emphasised via the comparisons of moments of

)ref
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of |'7£ , 1y*| and E® 4+ E" in 17 events. The green band shows the gluon
PDF from the CT14 [103] PDF set in a and the NNPDF 3.0 [105] PDF
set in b. The orange bands show the result of profiling these PDFs to
the ¢f normalised differential cross-section data

different order. The results from these two methods are dis-
cussed and compared in Sect. 8.3.

In the mass determination from QCD fixed-order calcu-
lations, described in Sect. 8.4, X2 values are calculated for
the comparison of data with predictions at different m, values
using the formalism of Eq. (9), and the best-fit m, is found by
polynomial interpolation. This approach is similar to the tem-
plate fit discussed above; the use of moments was not pursued
as it does not exploit the full information of each distribution
and does not allow the reduction of uncertainties via con-
strained nuisance parameters. The m; value used in the fixed-
order predictions corresponds to a well-defined renormalisa-
tion scheme, which is the pole mass (mf(’le) scheme within the
MCFM implementation. Both the QCD scale uncertainties,
representing the effects of missing higher-order corrections
beyond NLO, and the PDF uncertainties, are included in the
X ? formalism in a natural way. This formalism also allows m;
to be determined using several distributions simultaneously,
giving the most precise results from any of the techniques
explored here. The results from this method are discussed in
Sect. 8.5 and are used to define the final measurement of the
top quark mass from the distributions measured in this paper.

8.1 Mass extraction using template fits
In the template fit method, the best fit top quark mass for
each measured distribution was obtained by minimising the

X2 for the comparison of that distribution with predictions at
different values of m,, defined analogously with Eq. (5):

X2 (mp) = A1y (m) Sty Aty (my) (10)
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Table 13 Changes in the top quark mass fitted in data from each lep-
ton or dilepton distribution using the template fit method. The first row
shows the shifts when changing the POWHEG parameter A gy, from 0o

to m,, a correction which is applied to the results quoted in Table 14.
The second row shows additional shifts when reweighting the top quark
pr in POWHEG + PYTHIAG to the NNLO prediction of Ref. [25]

Mass shift (GeV) pe i m pr+ P E‘+E"
POWHEG (hgymp = 00) = (gamp = m;) 0.9 3.0 -1.3 0.9 0.5
Top pt NNLO reweighting 1.8 0.3 2.2 1.3 1.3

where A,_y(m,) represents the vector of differences
between the measured normalised differential cross-section
value and the prediction for a particular value of m,. The
latter were obtained from a set of seven particle-level 77 sam-
ples generated using POWHEG + PYTHIA6 with A gy, = 00
and the CT10 PDF set, for values of m; ranging from 165—
180GeV in 2.5 GeV steps. The variation of the cross-section
in each bin was parameterised with a second-order polyno-
mial in m,, allowing predictions for arbitrary values in the
considered range to be obtained by interpolation. An addi-
tional multiplicative correction was applied to the predic-
tions in each bin, based on the ratio of predictions from
POWHEG + PYTHIA6 samples with A gy, = m; and hgymp =
00, in order to correspond to the baseline event generator
choice with hgyyp, = m,. As shown in Table 13, the effects
of this correction range from —1.3 to 3.0 GeV depending on
the distribution fitted, and were assumed to be independent of
m,. As the predictions include the simulation of leptons from
W — © — e/u decays, the comparisons are made with the
experimental results including leptons from t decays, as in
Sect. 6.2.

The template fit method was tested with pseudo-
experiments based on fully-simulated #7 samples with m,
values in the range 165-180GeV plus non-¢7 backgrounds.
The pseudo-data were processed through the complete analy-
sis procedure starting from the observed event counts in each
bin, using the methodology described in Sect. 4.3. The base-
line POWHEG + PYTHIAG6 7 sample with m, = 172.5GeV
was used as reference for the calculation of Giu, Cli,, N i’bkg
and Né’bkg. No statistically significant biases were found for

the fits based on the prer, p;“ and m°" distributions, but biases
of up to 0.6 GeV for pT + p% and 0.9 GeV for E€ + E" were
found in pseudo-experiments with true m, values 5 GeV away
from the 172.5GeV reference, still small compared to the
expected statistical uncertainties using these distributions.
These biases were corrected in the fit results from data dis-
cussed in Sect. 8.3 below. The pseudo-experiments were also
used to check the statistical uncertainties returned by the fit
via the pull distributions, which were generally found to be
within £ 5% of unity.

Both the data statistical uncertainty and experimental
systematic uncertainties on the measurements of the dif-
ferential distributions are included in the matrix S(,_) in
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Eq. (10). Further uncertainties in the extracted m, value
arise from the choices of PDFs and event generator setup
for the predictions. The PDF uncertainties were assessed
from the variations in normalised ¢7 differential cross-section
distributions predicted by MC@NLO + HERWIG reweighted
using the error sets of the CT10, MSTW and NNPDF
2.3 PDF sets as described in Sect. 5.1. The event gen-
erator setup uncertainties were assessed as the quadrature
sum of a 7 generator uncertainty and a QCD radiation
uncertainty. The former was obtained from the compari-
son of results using POWHEG + PYTHIAG (hg,y, = m;) and
MC@NLO + HERWIG samples (thus varying both the matrix
element and parton shower generator). The latter was defined
as half the variation from fits using the POWHEG + PYTHIAG
samples with radLo and radHi tunes discussed in Sect. 2. In
all cases, the uncertainties were defined from the difference
inm, values obtained when fitting the two samples as pseudo-
data, using the full experimental covariance matrix from the
data measurement and the standard templates obtained from
the POWHEG + PYTHIA6 samples as discussed above.

8.2 Mass extraction using moments

Top quark mass information can also be derived from a mea-
sured distribution by calculating Mellin moments of the dis-
tribution, and comparing the values observed to a calibration
curve obtained from predictions with different values of m,
[32]. The kth order Mellin moment ,u(k) for a distribution
D(x) = do/dx as a function of a kinematic variable x is
defined as:

1
,u(k) = — ka(x) dx,
Ofid

(11)

where the integral is taken over the fiducial region, and
the total fiducial cross-section opgq = f D(x)dx. These
moments can in principle be evaluated without binning the
data, since for leptonic observables, the value x for each indi-
vidual event is measured with high precision. However, for
the purpose of this analysis, these moments were approxi-
mated by binned moments 0™ evaluated as:

v = Z ¢h-X;, X; =<x* >inbini, (12)
i
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where g,it— is the fraction of the total fiducial ¢7 cross-section
in bin i (Eq. (2)) and X; is the mean value of x for all
the events falling in bin i. The values of X;, which act as
weights for each bin i of each kinematic distribution when
calculating the moment k, were evaluated using the baseline
POWHEG + PYTHIA6 sample and kept constant when eval-
uating moments for the data and all simulation samples.
Calibration curves for the first, second and third moments
®(1), ®(2) and @G) were derived using the same set of
POWHEG + PYTHIA6 samples with top quark masses in the
range 165-180GeV as used for the template analysis. The
dependencies of ©%® on m, were found to be well-described
by second-order polynomials oW (m;) = P,(m;). A con-
stant offset in each moment was used to correct to the cali-
bration appropriate for i g,y, = m, samples, and the polyno-
mial inverted to obtain the m, value corresponding to a given
measured kth moment ©®.

The extraction procedure was tested for bias with pseudo-
experiments in the same way as for the template fit. The
observed biases were of similar size to those in the template
fit, and were corrected in the same way. Experimental system-
atic uncertainties were evaluated by calculating the moments
from the normalised cross-section distribution with each bin
shifted by one standard deviation of each systematic, and
translating the resulting shift in 0% to a shift in m,. Uncer-
tainties in the predictions due to the choice of PDFs, ¢7 gen-
erator and radiation settings were assessed in the same way,
i.e. from the shifts in @ % predicted by each of the alternative
samples.

8.3 Results from the template and moment methods

The results of applying the template and first, second
and third moment methods to each of the p%, pfr” , m,
Pr+ p% and E€ + E" distributions using predictions from
POWHEG + PYTHIA6 and CT10 PDFs are shown in Table 14
and Fig. 17. The table shows the X2 at the best fit mass for
each distribution, and the breakdown of uncertainties into
statistical, experimental systematic and theoretical contri-
butions, evaluated as discussed in Sect. 8.1. For the tem-
plate fits, the data statistical uncertainty was evaluated from
a x~ minimisation of Eq. (10) with only statistical uncer-
tainties included in the covariance matrix S. The experi-
mental systematic uncertainty was evaluated as the quadra-
ture difference between the total uncertainty (when includ-
ing both statistical and experimental systematic uncertainties
in S), and the data statistical uncertainty. For the moments
method, the statistical and experimental systematic uncer-
tainties were evaluated directly on the moments 0% as dis-
cussed in Sect. 8.2.

The ratios of predictions to data at the best-fit top quark
mass found by the application of the template fit method to

each distribution are shown in Fig. 18. The data are gener-
ally well-described by these predictions, as can also be seen
from the X2 values in Table 14, except for the E® + E"
distribution. This distribution is quite sensitive to PDFs as
well as m;, and is better described by the HERAPDF PDFs
than the CT10 PDFs used here to extract m,, resulting in a
low fitted value with a large PDF uncertainty, and a large
variation between the template and moment fit results. Total
uncertainties in m, of about 2GeV are obtained from the
template fits to the p, p&/* and p§ + p/* distributions. These
results have relatively small theoretical uncertainties, and the
experimental uncertainties are dominated by ¢7 — Wt inter-
ference and the electron energy scale. The m" distribution
is intrinsically less sensitive to m,, having larger statistical,
experimental and theoretical systematic uncertainties. The
results from the extraction based on moments have larger
uncertainties than those from the template fit, reflecting that
the moments do not take into account the relative precision
on the different bins of the distributions, and that the higher
moments are more sensitive to the tails of the distributions,
which are less precisely measured and subject to larger theo-
retical uncertainties. Within each distribution, the m; values
from the different moments are close, though 3—-4 GeV lower
than the template fit results for m“", and up to 7 GeV lower
in the case of EC 4+ E".

The central values of the template fit results from the five
distributions exhibit a spread (envelope) of about 6GeV.
The results from the fits of py and pg + pk lie 4-5GeV
below that from pf}“ , which is close to the world-average
mass value from reconstruction of top quark decay prod-
ucts of 173.34 = 0.76 GeV [121]. The consistency of the fit
results was assessed by combining them using the best lin-
ear unbiased estimate (BLUE) technique [122]. Correlations
in the statistical uncertainties were assessed using pseudo-
experiments as described in Sect. 4.3. Correlations between
systematic uncertainties were determined by assuming the
effects on m, from each individual experimental or theoret-
ical component to be fully correlated between distributions.
PDF uncertainties were assessed using the eigenvector pairs
of the CT10 PDF only. The combination of all five distribu-
tions has a X2 probability of 4%, indicating that the system-
atic uncertainties may be underestimated.

The POWHEG + PYTHIAG ¢7 samples used here do not pro-
vide a good modelling of the top quark pr spectrum [18-
20,22,23], potentially biasing the results. The size of this
possible bias was explored by fitting the distributions from
the POWHEG + PYTHIAG baseline sample reweighted to the
top quark pr spectrum calculated at NNLO precision in Ref.
[25]. The reweighted sample gives a better description of
the pr and pt + p# distributions, as can be seen from the
x> values for ‘POWHEG +PY6 pr NNLO’ in Table 8. The
mass shifts between the baseline and reweighted samples,
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Table 14 Measurements of the

¢ e ep e w e "
top quark mass from individual Tf;mplate P Pr m Pr+ pr E"+E
template fits to the lepton p% X/ Naos 8.1/8 7.5/7 13.9/10 8.0/6 12.5/8
and dilepton p</*, m", p§ + pl* m, (GeV) 168.4 2.3 173.0 £ 2.1 170.6 4.2 169.4 £2.0 166.9 £ 4.0
e Woqs . .
and £+ E© distributions, and —py o igrics +1.0 +0.9 +2.0 +0.9 +13
using the first, second and third ]
moments of these distributions. Expt. systematic +1.6 +1.0 +3.1 +1.6 +1.5
The data are compared to PDF uncertainty +1.0 +0.2 +£1.6 +£0.6 +34
predictions from . tf generator +0.4 +1.4 +14 +0.4 +1.1
POWHEG + PYTHIAG with the o
CT10 PDF set. The X2 value at QCD radiation +0.7 +0.8 +0.5 +0.2 +0.2
the best-fit mass for each ¢ e en v L . “
distribution (for the template fits Moment 1 pr Pr m pr + pr E +E
only), the fitted mass with its m,; (GeV) 168.2 +2.9 172.4 +£3.8 166.6 + 6.5 168.4+2.9 160.8 7.9
total uncertainty, and the Data statistics +1.0 £1.0 +£24 £1.1 +£22
individual uncertainty
contributions from data Expt. systematic +2.1 +1.6 +3.8 +2.1 +3.1
statistics, experimental PDF uncertainty +1.2 +0.3 +29 +1.1 +6.7
systematics, and uncertainties in 1F generator +02 +13 +34 +02 +2.0
the predictions due to the choice ) ' ' ' ’ ’
of t7 event generator and the QCD radiation +1.2 +3.0 +1.4 +1.1 +0.2
modelling of QCD radiation are . . .
shown gofQ Moment 2 prlr pr mH pr+ ph E¢+ E*
m, (GeV) 168.1 £3.2 172.2+4.5 166.9 £+ 6.9 167.9+£3.3 159.9+9.2
Data statistics +1.2 +1.1 +2.8 +1.3 +2.6
Expt. systematic +23 +2.0 +4.3 +2.4 +3.4
PDF uncertainty +1.3 +0.4 +3.3 +1.3 +7.8
tf generator +0.4 +1.2 +3.2 +0.4 +24
QCD radiation +1.2 +3.7 +0.7 +1.3 +0.2
Moment 3 p% pf}“ m Pr+ p% E‘+ E"
m; (GeV) 168.3 £3.5 172.0+5.6 166.4 £9.1 167.6 £ 3.8 160.9 £ 9.5
Data statistics +1.5 +14 +4.2 +1.6 +3.0
Expt. systematic +2.5 +2.6 +6.0 +2.7 +3.7
PDF uncertainty +1.5 +0.6 +4.1 +1.4 +7.8
tf generator +0.6 +1.1 +35 +0.7 +2.4
QCD radiation +1.1 +4.6 +0.2 +1.4 +0.2
= _ T T T T .
8 - ATLAS Powheg+PY6 ° -Ih;lemplaﬁ =
—_ — n p—
C ¥ Moment 3 ]
175 — % —
170~ } i 3
- 1 -
165— —]
- _ v -
160|— | total uncertainty -
- 1 statistical uncertainty =
= world-average direct reconstruction -
155 — | | ! I —
Lepton o Dilepton pep Dilepton m™ Dilepton peT+p$ Dilepton E%+E"
T

Fig. 17 Measurements of the top quark mass using templates derived
from POWHEG + PYTHIA6 with the CT10 PDF set. The results from fit-
ting templates of the single lepton p-‘? and dilepton p%” ,m, pt+ p’TL
and E€ 4+ E* distributions, and from the first, second and third moments
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of these distributions, are shown. For comparison, the world-average of
mass measurements from reconstruction of the top quark decay products

and its uncertainty [121] is shown by the cyan band
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Fig. 18 Ratios of predictions of normalised differential cross-sections

to data as a function of a p&, b piem™, d pr+ py ande EC + EX,
with the prediction taken from POWHEG + PYTHIA6 with the CT10 PDF

representing the amount that the top quark mass measured in
data would be shifted upwards if the templates were based
on reweighted samples, are shown in Table 13. These shifts
are larger (1.3-1.8GeV) for pT + py and pe than for 2
(0.3GeV), and would bring the results shown in Fig. 17
into closer agreement with each other. However, given that
this reweighting is relatively crude, and does not take into
account the potential NNLO effects on other distributions

N ——
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at the best-fit top quark mass m, for each distribution. The data statis-
tical uncertainties are shown by the black error bars around a ratio of
unity, and the total experimental uncertainties by the cyan band

important for modelling the lepton and dilepton kinemat-
ics (e.g. the invariant mass and rapidity of the ¢z system),
the shifts are taken to be purely indicative, and no attempt
has been made to correct the quoted central values for these
effects. The predictions for the p% and pt + p# distributions
are also sensitive to the choice of PDF. The PDF uncertain-
ties shown for py and p§ + pl* in Table 14 are significantly
larger than those for p7‘, and as shown in Sect. 6.2, the
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POWHEG + PYTHIA6 sample generated using HERAPDF 1.5
instead of CT10 gives a significantly better description of
both distributions at m, = 172.5GeV.

The predictions from POWHEG + PYTHIA6, based on NLO
matrix elements interfaced to parton showers, hence suffer
from significant uncertainties due to missing NNLO correc-
tions and lack of knowledge of the PDFs. Consequently, they
do not have sufficient precision to extract the top quark mass
from individual distributions with a theoretical uncertainty
better than about 2 GeV, slightly larger than the uncertain-
ties corresponding to the precision of the experimental mea-
surements. These limitations are addressed by the approach
discussed below, where several distributions are fitted simul-
taneously to extract m, whilst constraining the uncertainties
in the theoretical predictions.

8.4 Mass extraction using fixed-order predictions

The NLO fixed-order predictions for each distribution were
generated using MCFM as discussed in Sect. 6.3, for top
quark masses in the range 161-180GeV in steps of 0.5 GeV,
with various PDF choices. The X2 for the consistency of
each prediction with the data was calculated using Eq. (9),
incorporating both PDF and QCD scale uncertainties into
the theoretical uncertainties represented by the nuisance
parameters by,. The central scales were again chosen to be
Wp = wp = m,/2, with the values varying with m, in the
mass scan, and independent variations of i and g by fac-
tors of two and one-half defining the one standard deviation
up and down scale variations. The X2 was evaluated at each
mass point, and interpolated using a fourth-order polyno-
mial. The asymmetric uncertainty in the fitted value of m,
was defined as the points at which the X2 increases by one
unit either side of the minimum point. This uncertainty nat-
urally includes both experimental statistical and systematic
uncertainties in the measurements, and theoretical uncertain-
ties due to PDFs and QCD scale choices.

In this method, the top quark mass can be extracted from
each measured distribution individually, or from the combi-
nation of several distributions, where the sum i in Eq. (9)
runs over the bins of all considered distributions, and the
experimental covariance matrix includes both statistical and
systematic correlations between bins of the same and differ-
ent distributions, evaluated as discussed in Sect. 6.2. When
fitting several distributions simultaneously, the system is
over-constrained, profiling the various sources of theoretical
uncertainty. For example, when including all eight measured
distributions, the |7]€| and |y"| distributions have little sen-
sitivity to m,, but constrain the PDF parameters. The A¢"
distribution constrains the QCD scale parameters p©y and
g, under the assumption that uncertainties in higher-order
QCD corrections are parameterised by pp and pp in a way
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that can be transported from one distribution to another. Two
alternative dynamical scale choices were also tested in order
to probe this assumption, as discussed in Sect. 8.5 below.

Potential biases in the method were checked by using pre-
dictions with m, = 172.5GeV as pseudo-data, and consid-
ering both experimental and theoretical uncertainties in the
X2 definition. The resulting fitted values of m, were within
0.1 GeV of the input value for all five fitted individual distri-
butions (p%, pr m ™", pr+ pf and E+ E"), and 0.01 GeV
from the input value for a combined fit of all eight distribu-
tions, also including ‘], |y**| and A¢*". The widths of the
pull distributions were found to be compatible with unity,
confirming the validity of the uncertainty estimates from the
fits.

8.5 Mass results from fixed-order predictions

The results of the fits to NLO QCD fixed-order predictions
with MCFM and the CT 14 PDF set are shown for the individ-
ual distributions in Table 15, and the results using the CT14,
MMHT, NNPDF 3.0, HERAPDF 2.0, ABM 11 [123] and
NNPDF 3.0_nojet [105] PDF sets are shown in Fig. 19. As
shown in Sect. 7, the constraint on the gluon PDF from the
leptonic ¢f measurements is consistent with the PDF determi-
nation from DIS data. The use of the NNPDF 3.0_nojet PDF
set, which does not include Tevatron and LHC jet production
data, allows the effects on m, of any possible tension between
DIS and jet data in the determination of the gluon PDF to be
tested. The results from combined fits to all eight distribu-
tions, using predictions from all six PDF sets, are shown in
Table 16 and Fig. 19. In Tables 15 and 16, the decomposition
of the total uncertainty from each mass fit into statistical,
experimental and theoretical (PDF and QCD scales) uncer-
tainties was obtained in analogy to the numerical procedure
outlined in Ref. [124]. For each individual source of statis-
tical or systematic uncertainty (corresponding to a nuisance
parameter b .., or by ¢, in Eq. (9)), the data were shifted by
plus or minus one standard deviation, and a new m, value
obtained by re-minimising the X2 function. The resulting
shifts in m; were added in quadrature to obtain the decom-
position into the various categories. The quadrature sum of
the decomposed uncertainties agrees with the total to within
10% in all cases, the residual differences being due to non-
linearity between the uncertainty sources and the extracted
values of m;.

The MCFM fixed-order results for individual distributions
shown in Table 15 and Fig. 19 show some similar patterns
to those from the POWHEG + PYTHIAG-based template fits
shown in Table 14 and Fig. 17. The results from p!} and
pT + ph are close, the largest m, values come from py*, the
smallest from E¢ + E" and the least precise determination
is obtained from m". The envelope of the central values
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Table 15 Measurements of the top quark mass from individual fits to
the lepton p+ and dilepton pit,m™, pt + pk and E° + E* distribu-
tions, using fixed-order predictions from MCFM with the CT14 PDF
set. The Xz value at the best-fit mass for each distribution, the fitted

mass with its total uncertainty, and the individual uncertainty contribu-
tions from data statistics, experimental systematics, and uncertainties
in the predictions from PDF and QCD scale effects are shown

P Pt m pT+ Py E‘+ E"
x>/ Naoy 9/8 517 11/10 11/6 8/8
mP (GeV) 169.773%9 1751+ 1.9 174.5 %33 170.3 £ 2.1 168.5 733
Data statistics +2.0 +1.4 MY +14 +23
Expt. systematic f%i: +0.9 i%;g f};g +2.0
PDF uncertainty +0.5 +0.1 +1.1 +0.5 +1.4
QCD scales 1.1 ol +2.6 e +0.7

Table 16 Measurements of the top quark mass from combined fits to
all eight lepton and dilepton distributions, using fixed-order predictions
from MCFM with the CT14, MMHT, NNPDF 3.0, HERAPDF 2.0,
ABM 11 and NNPDF 3.0_nojet PDF sets, and various choices for the
central QCD factorisation and renormalisation scales u  and pg. The
upper section of the table gives the results for up = up = m,/2,

showing the X2 values at the best-fit mass for each PDF set, the fitted

mass with its total uncertainty, and the breakdown of individual uncer-
tainty contributions from data statistics, experimental systematics, and
uncertainties in the predictions from PDF and QCD scale effects. Uncer-
tainties given as ‘0.0’ are smaller than 0.05 GeV. The lower parts of the
table give the X2 values, fitted mass and total uncertainty for alternative
scale choices of up = up = Hr /4 and Ey /2

CT14 MMHT NNPDF 3.0 HERAPDF 2.0 ABM 11 NNPDF nojet
Mg =g =m/2
%%/ Nyog 71/68 70/68 67/68 67/68 71/68 64/68
m* (GeV) 1735+ 1.2 1734 £12 1732412 1729 £ 1.2 1728113 173.1+£1.2
Data statistics £0.9 +£0.9 £0.9 £0.9 +£0.9 £0.9
Expt. systematic ol +0.8 +£0.8 +0.9 e +0.8
PDF uncertainty +£0.1 +0.1 o +0.1 +0.1 +£0.4
QCD scales +0.1 +0.1 e +0.1 +0.1 +0.0
g =pg = Hr/4
X%/ Naoy 69/68 67/68 64/68 61/68 66/68 60/68
m* (GeV) 173.6 £ 1.3 1734 £ 1.3 1732+ 1.3 173.6 £ 1.3 173.7113 1732413
wp =pg=Er/2
%%/ Naog 71/68 70/68 66/68 64/68 68/68 64/68
mP* (GeV) 1747+ 14 1745713 1743713 173.6 13 17347172 174.0 713

is similar (6 GeV), but all values are shifted up by a few
GeV compared to the corresponding POWHEG + PYTHIAG6-
based template fit results for the same distribution. The X2
values are reasonable, indicating a satisfactory description
of the data by the predictions at the best-fit m; values. The
various distributions show different relative sensitivities to
the PDF and QCD scale uncertainties.

As shown in Table 16, the combination of all eight mea-
sured distributions (including |n°[, |y**| and A¢*" which
are not sensitive to m,) significantly reduces the theoreti-
cal uncertainties due to both PDF and QCD scale effects.
The X2 values for the combined description of all eight dis-
tributions are reasonable for all PDFs, implying that there
is no significant tension between the mass fit results from

the individual distributions, once the correlations between
the distributions are taken into account. Several additional
tests using the predictions based on NNPDF 3.0 were per-
formed to probe the compatibility of the top quark mass val-
ues extracted from the different distributions, and the accu-
racy of the physics modelling used to perform the extraction.
The combined fit was repeated removing one distribution at a
time. The largest shift of —1.441.1 GeV was observed when
removing the py* distribution, where the uncertainty corre-
sponds to the quadrature difference of the fit uncertainties
with and without the p7"* distribution included. The removal
of any other single distribution changed the result by less than
0.3GeV, and a fit to only the five distributions directly sensi-
tive to m, (excluding |n£|, |y*| and A¢p") gave a result of
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Fig. 19 Measurements of the top quark mass using predictions derived
from MCFM with the CT14, MMHT, NNPDF 3.0, HERAPDF 2.0,
ABM 11 and NNPDF 3.0_nojet PDF sets. The central factorisation and
renormalisation scales are set to iy = wp = m;/2. The results from

fitting templates of the single lepton p% and dilepton p?l, m, pr+ p‘TL

173.1 £ 1.2GeV, corresponding to a shift of —0.1 GeV with
respect to the eight-distribution result. Finally, the individual
measurements from the five directly-sensitive distributions
were combined using the HAVERAGER program [125,126].
Correlated statistical and systematic uncertainties were taken
into account using nuisance parameters, but post-fit corre-
lations between these nuisance parameters were neglected,
unlike in the simultaneous fit approach with XFITTER. The
average of the five measurements is 173.4 + 1.6 GeV with
a x2 of 6.4/4, in reasonable agreement with the result from
the simultaneous fit of the five distributions. No additional
uncertainty was included as a result of these tests.

The combined-fit X2 values in Table 16 are smallest for
the HERAPDF 2.0 and NNPDF 3.0_nojet PDF sets, which
do not include the constraints on the gluon PDF from LHC
and Tevatron jet data in the region relevant for ¢7 production.
However, the m, values resulting from the NNPDF 3.0 and
NNPDF 3.0_nojet PDFs are close, indicating that the results
are not sensitive to whether the jet data are included or not.
Amongst the ‘global fit’ PDF sets incorporating a larger set of
experimental data, the smallest X2 values result from the fit
with NNPDF 3.0, though the values from the other PDFs are
also reasonable. The results using NNPDF 3.0 were therefore
used to define the central m; value from the combined fit
to all eight distributions, and an additional uncertainty of
0.3 GeV, corresponding to half the difference of the envelope
encompassing all the other PDFs, was added in quadrature
to the PDF uncertainty from NNPDF 3.0 alone. The effect of
the uncertainty in the value of «g was found to be 0.01 GeV.
The residual dependence of the measured differential cross-
sections on the top quark mass assumed in the simulation
(see Sect. 5.1) is very small. A +5 GeV variation around the
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Dilepton m™ Dilepton p°+p" Dilepton E*+E* Comb. (8 dist)
T T

and E° + E" distributions one at a time, and of a combined fit to these
five distributions plus the |r][|, |y*| and A" distributions together,
are shown. For comparison, the world-average of mass measurements
from reconstruction of the top quark decay products and its uncertainty
[121] is shown by the cyan band

baseline value of m, = 172.5GeV was assumed, giving a
0.1 GeV change on the result of the combined fit.

The choice of a fixed central scale, up = pup = m,;/2
is expected to provide a good description of the inclusive 77
cross-section and differential distributions in the kinematic
regions dominated by top quarks with relatively low pr.
However, dynamical scales, which vary as a function of the
top quark kinematics, are expected to be more appropriate
for modelling the regions with high pt [107]. Two alterna-
tive dynamical central scale choices for the 77 production
process were explored to test the sensitivity of the results to
this choice:

e [p = g = Hy/4where Hy isdefinedas,/m,2 + pT(t)2
+4/ mt2 + pT(t_)2 and pr(t) and py(7) are the transverse

momentum of the top quark and antiquark, corresponding
to one of the dynamical scales suggested in Ref. [107].
o up = pp = E;/2 where E; is defined as

‘/mtz—ka(tt_)2 and pr(tr) is the pyp of the 7 sys-

tem, analogously to a scale m%v + pT(W)2 used in the

description of jet production in association with W bosons
[127,128].

In both cases, the central scale for the top quark decay pro-
cess t — blv + X was fixed at m, /2. The corresponding
predictions for the top quark pt spectrum from MCFM with
NNPDF 3.0 and these scale choices are shown in Fig. 20, and
compared to the ATLAS /s = 8 TeV measurement using ¢
events with a lepton and at least four jets [20]. Unlike the pre-
dictions of POWHEG + PYTHIA6 used in Sect. 8.3, the MCFM
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Fig. 20 Measurement of the top quark p spectrum in pp collisions
at /s = 8 TeV from ATLAS events with a lepton and at least four jets
[20], compared to the predictions from MCFM as used in this analysis
with NNPDF 3.0, m;, = 173.3GeV, and QCD scale choices of iy =
ur = m;/2, Hy /4 and E /2, as well as with up = up = m,. The
measurement uncertainties are represented by the yellow band, with the
uncorrelated component shown by the black error bar. The lower plots
show the ratios of the different predictions to the data

predictions with central scale choices of wp = ugp =m,/2,
Hp /4 and Ep /2 provide good descriptions of the measured
top quark pr spectrum, whereas ;up = (g = m, is too hard.

The results from the combined fit to all eight distributions
with these scale choices and all six PDF sets are shown in the
lower part of Table 16, and displayed graphically in Fig. 21.
In the same way as for the fixed central scale, the actual fac-
torisation and normalisation scales used in the predictions
were allowed to vary independently around the dynamical

central scales, with one standard deviation variations corre-
sponding to factors of two and one-half. The x 2 values for the
fits with a central scale of Hy /4 are all improved compared
to those for m, /2, reflecting a generally better description
of the high- pr tails of the distributions. The X2 values from
the E7 /2 fits lie between the other two choices. The largest
difference in the m, values from a dynamical scale and the
fixed scale with any PDF (1.1 GeV for E4 /2 vs. m,/2 with
the CT14 PDF) was used to define an additional theoretical
uncertainty due to the choice of the functional form of the
QCD scales.

The final top quark mass value from the combination of
all distributions is:

mP"® = 1732409+ 0.8 + 1.2GeV,

where the three uncertainties arise from data statistics, exper-
imental systematic effects, and uncertainties in the theoretical
predictions, giving a total uncertainty of 1.6 GeV. The theo-
retical uncertainty is dominated by the comparison of results
with different QCD central scale choices. Figure 22 shows a
comparison with previous determinations of the top quark
pole mass from the inclusive 7z production cross-section
[13,15,40] and from the invariant mass distribution of the ¢7
plus one jet system [41]. The present result is in agreement
with these other results, all of which have larger uncertainties.
It is also in agreement with the Tevatron and LHC average
measurement of 173.34 £ 0.76 GeV from reconstruction of
the top quark decay products [121], as well as with more
precise recent results using similar techniques [35,36,129].
However, the precision of the present pole mass result is not
sufficient to probe potential differences between it and the
other techniques at the 1 GeV level.

< 178 N T T —
3 - ATLAS MCFM NLO fixed-order -
s 176/— Is=8TeV,202fb" .
“EH ] t o
172 (} =
- e CT14 -
70— = MMHT -
- 4 NNPDF 3.0
168|— | total uncertainty v HERAPDF 2.0 7
— 1 statistical uncertainty ° ABM 11 —
- world-average direct reconstruction NNPDF nojet ]

166 . L

Comb. (8 dist), u=m‘/2

Fig. 21 Measurements of the top quark mass using predictions derived
from MCFM with the CT14, MMHT, NNPDF 3.0, HERAPDF 2.0,
ABM 11 and NNPDF 3.0_nojet PDF sets, and the central QCD factori-
sation and renormalisation scales pp and up set to m;/2, Hy /4 and

Comb. (8 dist), u=HT/4

Comb. (8 dist), u=ET/2

E7 /2. The results are derived from a combined fit to all eight lepton and
dilepton distributions. For comparison, the world-average of mass mea-
surements from reconstruction of the top quark decay products [121] is
shown by the cyan band
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Fig. 22 Result of the top quark pole mass determination from the com-
bined fit to eight leptonic distributions (shown by the red point and grey
band), compared to other determinations from inclusive and differential
cross-section measurements in ¢f events [13,15,40,41]. The statistical
uncertainties are shown separately by the thick error bars where avail-
able

The theoretical uncertainty of 1.2 GeV on the final result
using fixed-order predictions is significantly smaller than
the uncertainties due to 77 modelling and potential NNLO
effects in the top quark pt spectrum for the fits based on
POWHEG + PYTHIAG templates. In the fixed-order approach,
the potential missing NNLO corrections are absorbed into the
variations of the QCD scales p f and p p, which are signifi-
cantly constrained by the fit to the complete set of distribu-
tions, including those with little sensitivity to m,. However,
there remains a significant uncertainty of about 1 GeV due to
the choice of the functional form of the QCD scales, limiting
the gain from the combined fit. This approach would there-
fore benefit significantly from the availability of fixed-order
calculations including NNLO effects in the top quark produc-
tion and decay [130], which should reduce the uncertainties
due to scale choices. Off-shell and interference effects in the
pp — WWbb — euvibb + X process (including both ¢7
and single top Wt contributions) [131-137], as well as NLO
electroweak corrections [138,139], were not considered in
this analysis. They are expected to be small compared to the
theoretical uncertainties of the current result, but likely can-
not be neglected in a determination of m, based on NNLO
QCD predictions. These theoretical advances would allow
the power of the full set of distributions to be utilised more
effectively, especially in view of the likely reduction in the
experimental statistical and systematic uncertainties from the
larger ¢ samples now becoming available from LHC running
at /s = 13 TeV.
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9 Conclusions

Lepton and dilepton differential cross-section distributions
have been measured in t7 — euvvbb events selected from
20.2 b 'of pp collisions at /s = 8TeV recorded by
the ATLAS detector at the LHC. The absolute and nor-
malised cross-sections were measured using opposite-charge
ejL events with one or two b-tagged jets, and corrected to a
fiducial volume corresponding to the experimental accep-
tance of the leptons and no requirements on jets. Eight single
lepton and dilepton differential distributions were measured,
with relative uncertainties varying in the range 1-10%, and
presented with and without the contribution from leptonic
decays of t-leptons produced in the W decays.

The results were compared to the predictions of various ¢7
NLO and LO multileg matrix element event generators inter-
faced to several parton shower and hadronisation models.
These generally give a good description of the distributions,
though some distributions are modelled poorly by certain
event generators. Those involving rapidity information are
better described by the HERAPDF PDF sets than the CT10
set used as default. The distributions also show some sensi-
tivity to NNLO corrections in the description of the top quark
pr spectrum. The data are sensitive to the gluon PDF around
x ~ 0.1 and have the potential to reduce PDF uncertainties
in this region.

Several of the measured distributions are sensitive to the
top quark mass, in a way which is complementary to tradi-
tional measurements of m; using the invariant mass of the
reconstructed top quark decay products. Various techniques
for extracting the top quark mass from the measured dis-
tributions were explored, including fits using templates from
POWHEG + PYTHIAG simulated samples, mass determinations
based on moments of the distributions, and fits to fixed-order
NLO QCD predictions, giving access to the top quark pole
mass in a well-defined renormalisation scheme as imple-
mented in MCFM. The most precise result was obtained from
a fit of fixed-order predictions to all eight measured distribu-
tions simultaneously, extracting mf()]e whilst simultaneously
constraining uncertainties due to PDFs and QCD scales. The
final result is:

mP® = 1732409 +0.8 + 1.2GeV,

where the three uncertainties arise from data statistics, exper-
imental systematic effects, and uncertainties in the theoret-
ical predictions. This result is in excellent agreement with
other determinations of m} °' from inclusive and differen-
tial cross-sections, and traditional measurements based on
reconstruction of the top quark decay products.
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