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1. Introduction

The spectral analysis of operators associated with dynamical systems is of considerable importance.
In particular, in the series of articles [1-6], a relation between t-entropy and spectral radii of the
corresponding operators has been established. Here, the authors have uncovered a new dynamical
invariant—t-entropy—that is related to the Legendre transform of the spectral exponent of the
operators in question. The t-entropy plays a significant role in various nonlinear phenomena. In particular,
it serves as a principal object in thermodynamical formalism (see [2,6,7], and the sources quoted therein).
The description of t-entropy is not elementary and its calculation is rather sophisticated. In the present
article, we give a new definition of f-entropy that makes it more explicit and essentially simplifies the
process of its calculation.

The article consists of two sections. In Section 2, we consider t-entropy for the model example.
Here, Theorem 2 gives a new definition of t-entropy, that simplifies its calculation. The general situation
of arbitrary C*-dynamical system is discussed in Section 3. To illustrate similarity and difference
between the objects considered in the model and general situations, we present here a number of
examples and finally introduce the general new definition of t-entropy in Theorem 3.

2. A New Definition of t-Entropy for Continuous Dynamical Systems

In this Section, we consider a model example. Here, we use definitions, notation, and results
from [4,5]. We denote by X a Hausdorff compact space, and by C(X) we denote the algebra of
continuous functions on X taking real values and equipped with the max-norm. Consider an arbitrary
continuous mapping «: X — X. The corresponding dynamical system will be denoted by (X, «).

The main object under investigation is a transfer operator A: C(X) — C(X), associated with a
given dynamical system. Its definition is given in the following way:

(a) Aisa positive operator (that is it maps nonnegative functions to nonnegative) and
(b) the following homological identity for A is valid:

Agow-f) =gAf, g feC(X). )
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The set of linear positive normalized functionals on C(X) will simply be denoted by M. The Riesz
theorem states that elements of M can be identified with regular Borel probability measures on X and
henceforth we assume this identification and, therefore, elements of M will be called probability measures.

Let us recall the classical definition of an invariant measure: y € M is a-invariant if p(g) = p(gow)
for g € C(X). The family of a-invariant probability measures on X is denoted by M,.

A continuous partition of unity in C(X) is a finite set G = {g1, ..., gk} consisting of nonnegative
functions g; € C(X) satisfying the identity g1 +--- + g = 1.

According to [5], t-entropy is the functional 7(p) on M which is defined in three steps.

Firstly, for a given € M, each partition of unity G = {g1,..., g}, and any n € N we set

m(A"gi)

2 (1,G) == ) In TR 8i) 2
Tu(p, G) ZgApAg;Gu(g)n (2 3]

Here, if j1(g;) = 0 for some g; € G then the corresponding summand in (2) is assumed to be zero
regardless of the value m(A"g;); if A"g; = 0 for some g; € G and at the same time y(g;) > 0, then
Tu(p, G) = —oo.
Secondly, we put
() = nf T (p, G), ®)
here, the infimum is taken over all partitions of unity G in C(X).

Finally, the t-entropy 7() is defined as

T(p) := inf M 4)

neN 1

Let A be a given transfer operator in C(X). In what follows, we denote by A, the family of
transfer operators in C(X), where ¢ € C(X), given by the formula

Aof = A(e?f).

Next, we denote by A(¢) the spectral potential of A,, namely,

AMp) = lim llnHA’;)

n—oo 1

The principal importance of t-entropy is clearly demonstrated by the following Variational Principle.

Theorem 1. ([5], Theorem 5.6) Let A: C(X) — C(X) be a transfer operator for a continuous mapping
«: X — X of a compact Hausdorff space X. Then,

Ae) = P{g%(ﬂ(fp) +1(n), ¢ €C(X).

The next principal result of the article presents a new definition of t-entropy:.

Theorem 2. For a-invariant measures y € My, the following formula is true

el n(A"g)
T(p) = hf,‘éag&”(g) In @) (5)

In other words, in the definition of t-entropy, one should not calculate the supremum in (2) but
can simply put m = u there. Thus, expression (2) is changed for

/ _ L A"
T, (1, G) —gEZGﬂ(g)l @) (6)
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Remark 1. In connection with Theorem 2, it is worth mentioning the results of [7], where for a special case of
transfer operator similar formulae are obtained and their relation to thermodynamical formalism is studied.

To prove Theorem 2, we need the next

Lemma 1. Let G be a partition of unity in C(X). Then, for any pair of numbers n € N, & > 0 there exists a
partition of unity E in C(X) such that for each pair of functions g € G and h € E the oscillation of A"g over
supph := {x € X | h(x) > 0} is less than «:

sup{A”"g(x) | h(x) > 0} —inf{A"g(x) | h(x) > 0} <e. )

Proof. For any ¢ € G and n € N, the function A" g belongs to C(X). Therefore, its range is contained
in a certain segment [a, b].

Evidently, there exists a partition of unity {fi,..., fy} in C[a, b] such that the support of every
one of its elements is contained in a certain interval of the length less than e. Then, the family
Eq = {fioA"g, ..., fr 0A"g} forms a partition of unity in C(X) and the oscillation of A"g is less
than ¢ on the support of each of its elements. Now all the products [[;cg hg, where hg € Eg, form the
desired partition of unity E. [

Now let us prove Theorem 2. Comparing (2) and (6), one sees that
(1, G) < T(p, G).

Therefore, to prove (5), it is enough to verify the inequality

() < 7(1, G).

Since in the case when T, (i) = —oo the latter inequality is trivial, in what follows we assume that
Tu(p) > —oo.

Let us fix some n € N, a partition of unity G in C(X) and ¢ > 0. For these objects, there exists a
continuous partition of unity E mentioned in Lemma 1. Consider one more partition of unity in C(X)
that consists of the functions g - h o a”, here ¢ € G and h € E. For this partition, by the definition of
T, (i) (see (2) and (3)), there exists a probability measure m € M for which the next inequality holds:

n m(A”(g-hoa”))
Tn(}l)—eﬁg;ch;sy(g-hozx )In (g o)

From the homological identity, it follows that A" (g - h o a") = hA"g. Therefore, the latter inequality is
equivalent to

nyq. MhA"(g))
Tn(ﬂ)—sﬁgezchgﬂ(g'holx )IHW. (8)

Now for each pair g € G, h € E choose a number y, satisfying two conditions

m(hA"g) = m(h)ygn, ©)
inf{A"g(x) | h(x) > 0} < yg, <sup{A"g(x) | h(x) > 0}. (10)
Then, inequality (8) takes the form
h
W) o< T plg howt)n O ay
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which is equivalent to

T(u)—e< ) ), y(g~hoa”)ln% + Y ) u(g-hoa™)Inm(h). (12)
g€G heE pg-hoat) ¢€G heE

Let us consider separately the second summand in the right-hand side of (12):

Yo Y u(g-hoa"yInm(h) =Y p(hoa")Inm(h) =Y u(h)Inm(h (13)
8€G heE heE heE

Here, in the left-hand equality, we have exploited the fact that G is a partition of unity and in the
right-hand equality we have used a-invariance of j. If we treat m(h) in (13) as independent nonnegative
variables satisfying the condition Y j,cg m(h) = 1, then the routine usage of the Lagrange multipliers
principle shows that the function Y, p#(h) In m(h) attains its maximum when m(h) = p(h). Evidently,
the same is true for the right-hand sides in (12) and (11). Therefore,

.u(h)]/gh
Y —e< choa™In ————=— . 14
o €<gezch§g”(g g Hoa) o

Observe that estimates (7) and (10) imply

p()yen < u(h(A"g +e)). (15)

Observing that the logarithm is a concave function, and using (14), (15), and the fact that E is a partition
of unity in C(X), we conclude that

() —e< Y zwg.mn)lnw

g€G heE p(g-hoat)
_ p(g-hoa), p(h(A"g+e))
_gg;” hg 14(3 p(g-hoam)
N u(h(A"g+¢)) A”g+£)
= gg;” (&)1 hg u(g) gg;” n(g)

By the arbitrariness of ¢, this implies

. LA
() < g;;u(g)l () 2 (1, G)

and finishes the proof of Theorem 2.
Now let us proceed to the general C*-dynamical setting.

3. The General Case of C*-Dynamical Systems

The general notion of t-entropy involves the so-called base algebra and a transfer operator for a
C*-dynamical system. Let us recall definitions of these objects (see [5]).
Let B be a commutative C*-algebra with an identity 1 and C be its selfadjoint part, that is,

C={beB|b =b}

In this situation, we call C a base algebra.
A C*-dynamical system is a pair (C, ), where ¢ is an endomorphism of C satisfying the equality
o(1) =1.
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Definition of a transfer operator A (for (C,d)) is given in the following way:

(a) Ais alinear positive operator in C and
(b) the homological identity for A is valid:

A((6g)f) =8Af, g feC. (16)

Let M(C) be the family of all linear positive normalized functionals on C. A functional u € M(C)
is 0-invariant if u(6f) = u(f) forall f € C. By M;s(C), we denote the family of all /-invariant functionals
from M(C).

By a partition of unity in the algebra C, we mean any finite collection G = {g3, ..., g} consisting
of nonnegative elements g; € C satisfying the identity g1 +--- + g = 1.

The formulae (2)-(4) from the previous section naturally lead to a definition of t-entropy for
C*-dynamical systems. Namely, the t-entropy T(p) for y € M(C) is defined in three steps as follows:

(1, G) == sup ) p(g)ln m(d%s) (17)
meM(C) geC u(g)
To(p) := iréfrn(y,G), (18)
and
w00 = jng E a

The infimum in (18) is taken over all the partitions of unity G in C.

The t-entropy just defined is of principal importance in spectral analysis of abstract transfer and
weighted shift operators in LP-type spaces (see [5], Theorems 6.10, 11.2, 13.1 and 13.6).

The similarity and essential difference between the objects considered in this and the previous
sections are discussed in ([5], Section 7).

We now present the C*-dynamical analogue to Theorem 2.

Theorem 3. For é-invariant functionals p € M;(C), the following formula is true

inf & H(A"g)
= inf — 1 : 20
(n) ;,r/lcnggcﬂ(g)n W(2) (20)

Proof. This theorem can be derived from Theorem 2.

By means of the Gelfand transform, one can establish an isomorphism between the algebra C
and the algebra C(X) of continuous functions on X with real values (where X is the compact space of
maximal ideals in C).

Moreover, under the identification of C and C(X) the endomorphism é mentioned in the definition
of the C*-dynamical system (C, §) takes the form

[0f](x) = f(a(x))

(for details, see [5], Theorem 6.2). Thus, the C*-dynamical system (C, d) is completely defined by the
corresponding dynamical system (X, «).
In terms of (X, a), the homological identity (16) for the transfer operator A can be rewritten as (1).
By the Riesz theorem, the identification between measures y# on X and functionals u € C is given by

u(g)=/xgd% g€C=C(X). (21)
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Finally, if 4 € M;(C) is a é-invariant functional, then the corresponding measure y in (21) is

a-invariant, that is

u(g) =u(gon), g€ C(X).

In this manner, one identifies the set Ms(C) with M, mentioned in Section 2.

Under all these identifications, the desired result follows from Theorem 2. [
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