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Abstract. The influence of CVD graphene grain size on the electroméagi(eM) shielding performance of
graphene/polymethyl methacrylate (PMMA) multilayersAiy-band was studied both experimentally and theoreti-
cally. We found that increasing the average graphene graenfeom 20 to 400 microns does not change the EM
properties of heterostructures consisting of graphenersagandwiched between sub-micron thick PMMA spacers.
The independence of EM interference shielding effectigeran the graphene grain size between 20 to 400 microns
allows one to use cheaper (or more convenient regimes of @Qv&)hene samples with low crystallinity and small
grain size in the development of new graphene-based passititomagnetic devices operated at high frequencies.
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1 Introduction

The quality of wafer-size graphene is still remaining thgan&ottleneck in the fabrication and
mass production of novel photonic and optoelectronic d=vielying on unique properties of
Dirac electrons™ This is because the presence of defects, grain boundaridsple domains,
impurities and other irregularities in the graphene sheetitably affects the carriers mobility,
provoking thereby a deterioration of the electronic andoaptproperties. Among the variety
of graphene fabrication techniques, such as mechanicaliaidn of graphite, sublimation of
epitaxial SiC€ and catalyct-assisted chemical vapor deposition (C¥DY, the CVD is the most
promisingroute for scalable graphene fabrication. However, the polyatiise character of CVD
graphene implies electron scattering on boundaries betad@cent crystallites that strongly in-

fluence the transpott, thermal and electrical properties, as well as the contaistance of the



graphene/metal interface, thus reducing the performahtegb-frequency graphene electronic
devicest>!3 In particular, it has been shown that grain boundaries r@sprominent weak local-
ization effects indicative of inter-valley charge carrsgattering that impedes electrical transport
in CVD graphené? This makes it difficult to employ CVD graphene in practicalogtenic com-
ponents and devices capable to generate, detect and peteetsemagnetic (EM) signals.

On the other hand, one may expect that the ability of grapfemabsorbing electromagnetic
radiations at high frequency be less sensitive (in compangth transport properties) to the grain
size. Such an intuitive conclusion is based on the fact thdeuEM radiations with wavelength
of about 1 cm the micron-sized graphene grains are coupledntypelectrically, but also electro-
magnetically.

Recently, we demonstrated that graphene/polymer (polyhatbthacrylate (PMMA)) mul-
tilayers can provide an efficient far-field shielding agaimécrowave radiations, allowing one to
achieve up to 50 % absorption of the incident radiatioithe goal of this paper is to investigate
both experimentally and theoretically the influence of CvVBrene grain size on the electromag-
netic shielding performance of such sandwich structunes broader sense, we aim at revealing
the effects of the CVD graphene quality on the electromagpetperties of passive electromag-

netic devices.

2 Modelling

The Rigorous Coupled-Wave Analysis (RCWA) metHdihs been applied to theoretically explore
the role of graphene grain sizes in the total high-frequetegtromagnetic shielding performance
of graphene-based multilayers. This method is well adafigalane-stratified systems with a

periodic variation of dielectric permittivity in the latrdirectionst’18



The frequency used in the calculations was 30 GHz (1 cm wavelgth in vacuum), the
PMMA/graphene multilayer was treated as a stack of dielectricslabs (PMMA spacers, 100
nm thick, permittivity at the working frequency of 2.6 8), alternating with graphene layers
and deposited on a SiQ substrate with permittivity 3.7.'8 Each graphene layer was treated
as ultra-thin conducting medium (thicknessd,,.,, = 0.34nm) with complex bulk dielectric
function e¢(w) = 2.5+ sz;ﬁ In that expression,o,p is the sheet conductivity of graphene,
which for GHz frequency is dominated by intra-band transitions!®2° For a given sample, the
sheet conductivity of graphene varies only weakly with fregency up to the THz regime?%22
We took the valueo,p /egc = 0.37 used in our previous works (Ref.17)

The electromagnetic modes were calculated in each layeym@fnene/PMMA heterostructure
and then analytically propagated through the system byampappropriate boundary conditions
at each interface. Transmissidh)(@nd reflection R) coefficients were retrieved from the Poynting
vector computed in both incidence and emergence media. b$ertzance 4) followed from
A=1-T—-R.

The polycrystalline character of CVD graphene introducesidaries between adjacent grains.
The width of those grain boundaries is estimated to be 3 - 53nim. the present simulations,
random grains were created with average size gffA(qFig.1 a) and 40Q:m (Fig.1b). The grain
boundaries between adjacent grains were implemented withaidth of approximately 5.5 nm
and a dielectric permittivity of 1. This stands for the worse possible electrical situation, since
the grain boundaries are therefore not made of a conducting raterial anymore.

The modeling results for absorption, transmission andatdlie provided by graphene/PMMA
sandwiches consisting of graphene with different graie sie presented in Fidc. The curves

obtained for the two kinds of graphene can barely be diststga, demonstrating that the electro-
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Fig 1 Graphene grain patchwork for small (2tn) (a) and large (40pm) (b) graphene grains drawn from experiment
and transposed to RCWA calculations to investigate thetsffef grain boundaries on the electromagnetic properties
of a graphene/PMMA multilayer. The blue lines, 5.5 nm thibkye a dielectric permittivity of 1, the rest has the
permittivity of graphene. (c) Absorbancd), reflectance ) and transmittancel() of graphene/PMMA sandwich
structures composed &f graphene layers in case of graphene made of small (red hmeprge (blue lines) grains.
magnetic response is not sensitive to the grain size. Indadh, the grain size are smaller than the
incident wavelengtlof 1 cm in vacuumm, which becomes 0.63 cm (a factor df/1/2.6 smaller)

in the heterostructure and an effective medium theory can be used to describe tiphgna di-
electric permittivity with different grain size. As long #®e total area occupied by the boundaries
remains negligible compared to the total area occupied égthins, the grain boundaries have no
effects on the electromagnetic properties of graphenes& hesults can be compared with those

for a few percentages of small air holes in the graphene shiggtalready proved not affecting the

electromagnetic properties of graphéne.



3 Experimental details
3.1 Samples fabrication and quality control

On the experimental side, sandwich structures based omemapwith different grain size were
produced. The graphene was synthesized by chemical vapositien (CVD) at atmospheric
pressure. The copper foil (99.9 % purity; b thick; 1cm?) was first sonicated in acetone for 15
min, then in isopropanol for 15 min and finally deoxidized @e#ic acid (99.5 % purity) at 35C
for 10 min. Next, it was inserted into a quartz tube inside avaall furnace whose temperature
was set at 1050C. In order to provide different size of grains the graphen@A{deposition was

made in two regimes:

e Samples with small grains (about 20n) were produced as follows: (1) a 1-hour time an-
nealing of the Cu foil under argon (500 sccm, 99.9 % purity) Bydrogen (20 sccm, 99.9
% purity); (2) graphene growth by filling the chamber with Tmecof diluted methane (5 %

in argon) for 1 hour; (3) fast cooling of the sample in the s@ag mixture.

e The "large grain size” samples were grown identically as for he small-grain samples
with one difference in the Cu annealing step. For the first30 min, the annealing was
in argon flow (500 sccm), while during the following 30 mingthnnealing was with an
argon/hydrogen mixture (500/20 sccnihereby, during the first 30 min of the annealing,
the copper foil surface was slightly oxidized thanks todaal impurities in the argon flo@#,

the so-called oxidative annealing was appfeéf.

To determine the grain size, the synthesis of test samplestopped before graphene covered

the whole copper substrate. The morphology and structutbeographene domains were con-



Fig 2 SEM images of graphene hexagonal domains correspondin@ytm2GRA (a) and 40um-GRA (c) samples,
when the synthesis was stopped before graphene coveredhitie wopper substrate. (b), (d) optical images of
graphene samples after chemical treatment obtained angal technique proposed in Ref7. The disks drawn
with a thin dotted line in (b) and (d) indicate the graphenendms in case of small and large grain size samples,
respectively
trolled by Field Emission Scanning Electron Microscope-&EM, JEOL JSM-7500 F). As can
be seenin Fig2 a and c, the graphene domains have a hexagonal shape withnueiblor contrast
and average lateral size around;2@ (20 um-GRA) and 40Qum (400:m-GRA), respectively.
Additionally, after CVD deposition graphene grain boundanvere visualized by using a sim-
ple technique proposed by S. Yu et #l.basic permanganate solution was used as an oxidant
and graphene grain boundaries were observethésns of optical microscopy (MI-1, Planar,
Belarus, the measurements were done in the reflection mode ita with a 100x and 80x
objectives) Fig.2 b and d show typical images of graphene samples with domzena$i20m

and 400um, respectively. One can observe in Fig. 2 that images of thehgne grains provided

by optical microscope and SEM give the same size of the grapbrains.
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Fig 3 Raman maps of the intensity ratio of D- and G-bands ové0 a 40 um area of 20um-GRA (a) and 400
#m-GRA (d), respectively. Raman maps of the intensity rafi@@- and G-bands over &) x 40 um area of 20
umM-GRA (b) and 40Q:m-GRA (e), respectively. (c), (f) Raman spectra correspuntb the different regions marked
with dots in (b) and (e). Spectra labelled 1 in (c) and 3 in (8 gypical of graphene monolayer. All spectra were
normalized on the G band peak amplitude

Raman mapping was further used to analyze the quality andramtly of the graphene sheet.
For this purpose, graphene films were transferred onto Sereafith a 300 nm thick Si©na-
tive oxide overlayer using the conventional "PMMA-medgitéechnique?® Measurements were
performed using Raman spectrometer combined with a confoicabscope Nanonder High End
(Tokyo Instruments) with a 600 lines/mm grating and 532 nsetaxcitation. Spectra were col-
lected using a 580 objective and at low power (20 mW) to reduce sample degradgkm. 3).
From the analysis of Raman maps of the intensity ratio of 2B- %675 cm~! with the typical
FWHM value of 35-40 cni!) and G- ¢ 1581 cm™! with the typical FWHM value of 17-21

cm~!) bands, and Raman spectra from different points, it can beleded that the largest part of

both samples is graphene monolayer but small multilayands are also present on the surface.



The sandwich-like graphene/PMMA structures were produsssdg the procedure described
elsewheré? Briefly, the CVD graphene layer was spin coated with 100 nm-tlik PMMA
layer, after that, the Cu substrate was wet etched in ferric bloride and the obtained graphene
/ PMMA film was washed in distilled water and transferred onto a 053 mm-thick fused silica
substrate. In order to fabricate sandwich multilayers contining several graphene sheets
separated by PMMA layers, the same procedure was repeated seaetimes, each newly-
produced graphene/PMMA unit being deposited on top of the stacobtained at the previous
step

Itis worth noting thatlepending on the experimental conditiong! -7-layered graphene/PMMA
heterostructureeaches itsthe maximum possible 50 % absorbance in free space and wedeegu
geometry. Thereby, measurements on samples with threebagcaphene layers allow us to vi-
sualize the influence of the graphene crystalline size oEflMeshielding performance when the

number of layers is close to the optimal one.

3.2 Electromagnetic response measurements

Microwave measurements in th€,-band (26-36 GHz) were made with a scalar network ana-
lyzer R2-408R (ELMIKA, Vilnius, Lithuania). The IEC 62431028(E) standard for reflectivity
measurements of EM materials was used. The EM response plesavas measured as ratios
of transmitted/input.{,;) and reflected/inputy;;) signals after insertion of the specimen into the
transmission line (rectangular waveguide) perpendidolavave propagation. The lateral dimen-

sions of the samples fitted precisely the waveguaidex 3.4 mn¥ cross section.



4 Experimental results and discussion

The measured results for graphene/polymer sandwich tsttectures (2Q:m-GRA and 40Q:m-
GRA) consisting of three and six graphene/PMMA units areqaesd in Fig4. As it was expected
and proved by theory the EM properties of samples produced fhe graphene of small and large
grain size are the same for both three- and six-layered gragfRMMA sandwiches. As it follows
from Fig. 4 b the total EM shielding effectivenes§ £ = —201og(5,;)) of graphene/polymer
sandwiches iri{,,-band varies in the range of 9 - 7 dB and 13 - 11 dB for 3 and 6 gnag@hayers,
respectively, which is in good agreement with the previously reported data>2%3° In par-
ticular, in Ref. 29, shielding effectiveness of graphene monolayer and muléier structures
has been investigated. It was shown that the SE of monolayeraphene is 2.27 dB and the
average SE values of double- and triple-layer graphene weré.13 dB and 6.91 dB, respec-
tively. In Ref. 30, it was demonstrate that the SE value of reduced graphene ok (RGO)
sheets interleaved between polyetherimide with the numbeof RGO layers to achieves 6.37
dB for double-PEI/RGO multilayer. It is important to note that each graphene/PMMA sandwich
is less than 1 micron thickhe overall thickness of samples with 3 and 6 graphene/PMMA
layers was 300-400 nm and 600-700 nm, respectivelg}ill the level of EM power attenuation is
similar to that observed for conventional polymer compssibaded with 5-10 wt. % of graphene
nanoplatelets or carbon nanotuble’d but with overall thickness of fraction of mm, namely a factor
of 1000 thicker.

Our experiments and theoretical findings in fkig microwave band correlate well with recent
results on the electrical properties of graphene at THakaqies. Specifically, Buron et al have

shown that graphene layer with lateral size of up to hundoéasicrons grown on single crystal
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Fig 4 (a) Frequency dependence$f; andS,; for graphene/polymer heterostructumessilica substrateconsisting
graphene with small and larggain size Measured.S;; and Sy, for pure silica substrate (0.5 mm thickness) are
shown inset. (b) The average SE of graphene/polymer hetertosctures as function of the number of graphene
layers at 30 GHz.

copper foil is electrically continuous at 1-15 Tk.

5 Conclusions

The reported weak sensitivity of the results to the grain sizef graphene togetherwith high
shielding effectiveness observed for graphene-basedbligettiin multilayers opens an avenue for
the development of a scalable protocol of cost-efficientipobion of ultra-light optically transpar-
ent EM shields. Shielding layers composed of inexpensiWcpgstalline CVD graphene consist-

ing of small graphene domains can be transferred to comaieqeplications.
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Graphene grain patchwork for small (2tn) (a) and large (40@m) (b) graphene
grains drawn from experiment and transposed to RCWA caloulgtio investigate
the effects of grain boundaries on the electromagneticapti@s of a graphene/PMMA
multilayer. The blue lines, 5.5 nm thick, have a dielectecrittivity of 1, the rest
has the permittivity of graphene. (c) Absorbaneg,(reflectance R) and trans-
mittance (") of graphene/PMMA sandwich structures composedvofiraphene
layers in case of graphene made of small (red lines) and (afge lines) grains.
SEM images of graphene hexagonal domains correspondi ton-GRA (a)
and 400:m-GRA (c) samples, when the synthesis was stopped beforéemnap
covered the whole copper substrate. (b), (d) optical imagesaphene samples
after chemical treatment obtained according to technigapgsed in Ref. 27. The
disks drawn with a thin dotted line in (b) and (d) indicate ¢glhaphene domains in
case of small and large grain size samples, respectively

Raman maps of the intensity ratio of D- and G-bands ovér a 40 um area of
20 um-GRA (a) and 40Q:m-GRA (d), respectively. Raman maps of the intensity
ratio of 2D- and G-bands over 4) x 40 um area of 20um-GRA (b) and 400
um-GRA (e), respectively. (c), (f) Raman spectra correspanttinthe different
regions marked with dots in (b) and (e). Spectra labelled (t)rand 3 in (f) are
typical of graphene monolayer. All spectra were normaliaedhe G band peak

amplitude
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(a) Frequency dependence &, and .Sy, for graphene/polymer heterostructures
on silica substrateconsisting graphene with small and larg&in size Mea-
sured S, and Sy, for pure silica substrate (0.5 mm thickness) are shown inset
(b) The average SE of graphene/polymer heterostructures asimction of the

number of graphene layers at 30 GHz.

19



	Introduction
	Modelling
	Experimental details
	Samples fabrication and quality control
	Electromagnetic response measurements

	Experimental results and discussion
	Conclusions

