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Abstract. The influence of CVD graphene grain size on the electromagnetic (EM) shielding performance of
graphene/polymethyl methacrylate (PMMA) multilayers inKa-band was studied both experimentally and theoreti-
cally. We found that increasing the average graphene grain size from 20 to 400 microns does not change the EM
properties of heterostructures consisting of graphene layers sandwiched between sub-micron thick PMMA spacers.
The independence of EM interference shielding effectiveness on the graphene grain size between 20 to 400 microns
allows one to use cheaper (or more convenient regimes of CVD)graphene samples with low crystallinity and small
grain size in the development of new graphene-based passiveelectromagnetic devices operated at high frequencies.
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1 Introduction

The quality of wafer-size graphene is still remaining the major bottleneck in the fabrication and

mass production of novel photonic and optoelectronic devices relying on unique properties of

Dirac electrons.1–4 This is because the presence of defects, grain boundaries, multiple domains,

impurities and other irregularities in the graphene sheet inevitably affects the carriers mobility,

provoking thereby a deterioration of the electronic and optical properties. Among the variety

of graphene fabrication techniques, such as mechanical exfoliation of graphite,5 sublimation of

epitaxial SiC6 and catalyct-assisted chemical vapor deposition (CVD),2,7–10 the CVD is the most

promisingroute for scalable graphene fabrication. However, the polycrystalline character of CVD

graphene implies electron scattering on boundaries between adjacent crystallites that strongly in-

fluence the transport,11 thermal and electrical properties, as well as the contact resistance of the
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graphene/metal interface, thus reducing the performance of high-frequency graphene electronic

devices.12,13 In particular, it has been shown that grain boundaries result in prominent weak local-

ization effects indicative of inter-valley charge carrierscattering that impedes electrical transport

in CVD graphene.14 This makes it difficult to employ CVD graphene in practical electronic com-

ponents and devices capable to generate, detect and processelectromagnetic (EM) signals.

On the other hand, one may expect that the ability of graphenefor absorbing electromagnetic

radiations at high frequency be less sensitive (in comparison with transport properties) to the grain

size. Such an intuitive conclusion is based on the fact that under EM radiations with wavelength

of about 1 cm the micron-sized graphene grains are coupled not only electrically, but also electro-

magnetically.

Recently, we demonstrated that graphene/polymer (polymethyl methacrylate (PMMA)) mul-

tilayers can provide an efficient far-field shielding against microwave radiations, allowing one to

achieve up to 50 % absorption of the incident radiation.15 The goal of this paper is to investigate

both experimentally and theoretically the influence of CVD graphene grain size on the electromag-

netic shielding performance of such sandwich structures. In a broader sense, we aim at revealing

the effects of the CVD graphene quality on the electromagnetic properties of passive electromag-

netic devices.

2 Modelling

The Rigorous Coupled-Wave Analysis (RCWA) method16 has been applied to theoretically explore

the role of graphene grain sizes in the total high-frequencyelectromagnetic shielding performance

of graphene-based multilayers. This method is well adaptedto plane-stratified systems with a

periodic variation of dielectric permittivity in the lateral directions.17,18
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The frequency used in the calculations was 30 GHz (1 cm wavelength in vacuum), the

PMMA/graphene multilayer was treated as a stack of dielectricslabs (PMMA spacers, 100

nm thick, permittivity at the working frequency of 2.6 18), alternating with graphene layers

and deposited on a SiO2 substrate with permittivity 3.7.18 Each graphene layer was treated

as ultra-thin conducting medium (thicknessdgraph = 0.34nm) with complex bulk dielectric

function ǫ(ω) = 2.5+ i σ2D

ǫ0ωdgraph
. In that expression,σ2D is the sheet conductivity of graphene,

which for GHz frequency is dominated by intra-band transitions.19,20 For a given sample, the

sheet conductivity of graphene varies only weakly with frequency up to the THz regime.21,22

We took the valueσ2D/ǫ0c = 0.37 used in our previous works (Ref.17)

The electromagnetic modes were calculated in each layer of agraphene/PMMA heterostructure

and then analytically propagated through the system by applying appropriate boundary conditions

at each interface. Transmission (T ) and reflection (R) coefficients were retrieved from the Poynting

vector computed in both incidence and emergence media. The absorbance (A) followed from

A = 1− T −R.

The polycrystalline character of CVD graphene introduces boundaries between adjacent grains.

The width of those grain boundaries is estimated to be 3 - 5 nm.23 In the present simulations,

random grains were created with average size of 20µm (Fig.1 a) and 400µm (Fig.1 b). The grain

boundaries between adjacent grains were implemented with awidth of approximately 5.5 nm

and a dielectric permittivity of 1. This stands for the worse possible electrical situation, since

the grain boundaries are therefore not made of a conducting material anymore.

The modeling results for absorption, transmission and reflection provided by graphene/PMMA

sandwiches consisting of graphene with different grain size are presented in Fig.1c. The curves

obtained for the two kinds of graphene can barely be distinguished, demonstrating that the electro-
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Fig 1 Graphene grain patchwork for small (20µm) (a) and large (400µm) (b) graphene grains drawn from experiment

and transposed to RCWA calculations to investigate the effects of grain boundaries on the electromagnetic properties

of a graphene/PMMA multilayer. The blue lines, 5.5 nm thick,have a dielectric permittivity of 1, the rest has the

permittivity of graphene. (c) Absorbance (A), reflectance (R) and transmittance (T ) of graphene/PMMA sandwich

structures composed ofN graphene layers in case of graphene made of small (red lines)and large (blue lines) grains.

magnetic response is not sensitive to the grain size. In bothcase, the grain size are smaller than the

incident wavelengthof 1 cm in vacuumm, which becomes 0.63 cm (a factor of1/
√
2.6 smaller)

in the heterostructure and an effective medium theory can be used to describe the graphene di-

electric permittivity with different grain size. As long asthe total area occupied by the boundaries

remains negligible compared to the total area occupied by the grains, the grain boundaries have no

effects on the electromagnetic properties of graphene. Those results can be compared with those

for a few percentages of small air holes in the graphene sheets that already proved not affecting the

electromagnetic properties of graphene.17
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3 Experimental details

3.1 Samples fabrication and quality control

On the experimental side, sandwich structures based on graphene with different grain size were

produced. The graphene was synthesized by chemical vapor deposition (CVD) at atmospheric

pressure. The copper foil (99.9 % purity; 50µm thick; 1cm2) was first sonicated in acetone for 15

min, then in isopropanol for 15 min and finally deoxidized in acetic acid (99.5 % purity) at 35◦C

for 10 min. Next, it was inserted into a quartz tube inside a hot-wall furnace whose temperature

was set at 1050◦C. In order to provide different size of grains the graphene (GRA) deposition was

made in two regimes:

• Samples with small grains (about 20µm) were produced as follows: (1) a 1-hour time an-

nealing of the Cu foil under argon (500 sccm, 99.9 % purity) andhydrogen (20 sccm, 99.9

% purity); (2) graphene growth by filling the chamber with 1 sccm of diluted methane (5 %

in argon) for 1 hour; (3) fast cooling of the sample in the samegas mixture.

• The ”large grain size” samples were grown identically as for the small-grain samples

with one difference in the Cu annealing step. For the first30 min, the annealing was

in argon flow (500 sccm), while during the following 30 min, the annealing was with an

argon/hydrogen mixture (500/20 sccm).Thereby, during the first 30 min of the annealing,

the copper foil surface was slightly oxidized thanks to residual impurities in the argon flow,24

the so-called oxidative annealing was applied.25,26

To determine the grain size, the synthesis of test samples was stopped before graphene covered

the whole copper substrate. The morphology and structure ofthe graphene domains were con-
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Fig 2 SEM images of graphene hexagonal domains corresponding to 20 µm-GRA (a) and 400µm-GRA (c) samples,

when the synthesis was stopped before graphene covered the whole copper substrate. (b), (d) optical images of

graphene samples after chemical treatment obtained according to technique proposed in Ref.27. The disks drawn

with a thin dotted line in (b) and (d) indicate the graphene domains in case of small and large grain size samples,

respectively

trolled by Field Emission Scanning Electron Microscope (FE-SEM, JEOL JSM-7500 F). As can

be seen in Fig.2 a and c, the graphene domains have a hexagonal shape with uniform color contrast

and average lateral size around 20µm (20µm-GRA) and 400µm (400µm-GRA), respectively.

Additionally, after CVD deposition graphene grain boundaries were visualized by using a sim-

ple technique proposed by S. Yu et al.:27 basic permanganate solution was used as an oxidant

and graphene grain boundaries were observed bymeans of optical microscopy (MI-1, Planar,

Belarus, the measurements were done in the reflection mode with a with a 100× and 80×

objectives). Fig. 2 b and d show typical images of graphene samples with domain size of 20µm

and 400µm, respectively. One can observe in Fig. 2 that images of the graphene grains provided

by optical microscope and SEM give the same size of the graphene grains.
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Fig 3 Raman maps of the intensity ratio of D- and G-bands over a40 × 40 µm area of 20µm-GRA (a) and 400

µm-GRA (d), respectively. Raman maps of the intensity ratio of 2D- and G-bands over a40 × 40 µm area of 20

µm-GRA (b) and 400µm-GRA (e), respectively. (c), (f) Raman spectra corresponding to the different regions marked

with dots in (b) and (e). Spectra labelled 1 in (c) and 3 in (f) are typical of graphene monolayer. All spectra were

normalized on the G band peak amplitude

Raman mapping was further used to analyze the quality and uniformity of the graphene sheet.

For this purpose, graphene films were transferred onto Si wafers with a 300 nm thick SiO2 na-

tive oxide overlayer using the conventional ”PMMA-mediated” technique.28 Measurements were

performed using Raman spectrometer combined with a confocalmicroscope Nanonder High End

(Tokyo Instruments) with a 600 lines/mm grating and 532 nm laser excitation. Spectra were col-

lected using a 50× objective and at low power (20 mW) to reduce sample degradation (Fig. 3).

From the analysis of Raman maps of the intensity ratio of 2D- (∼ 2675 cm−1 with the typical

FWHM value of 35-40 cm−1) and G- (∼ 1581 cm−1 with the typical FWHM value of 17-21

cm−1) bands, and Raman spectra from different points, it can be concluded that the largest part of

both samples is graphene monolayer but small multilayer islands are also present on the surface.
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The sandwich-like graphene/PMMA structures were producedusing the procedure described

elsewhere.15 Briefly, the CVD graphene layer was spin coated with 100 nm-thick PMMA

layer, after that, the Cu substrate was wet etched in ferric chloride and the obtained graphene

/ PMMA film was washed in distilled water and transferred onto a 0.53 mm-thick fused silica

substrate. In order to fabricate sandwich multilayers containing several graphene sheets

separated by PMMA layers, the same procedure was repeated several times, each newly-

produced graphene/PMMA unit being deposited on top of the stack obtained at the previous

step

It is worth noting thatdepending on the experimental conditions4 -7-layered graphene/PMMA

heterostructurereaches itsthe maximum possible 50 % absorbance in free space and waveguide

geometry. Thereby, measurements on samples with three and six graphene layers allow us to vi-

sualize the influence of the graphene crystalline size of theEM shielding performance when the

number of layers is close to the optimal one.

3.2 Electromagnetic response measurements

Microwave measurements in theKa-band (26-36 GHz) were made with a scalar network ana-

lyzer R2-408R (ELMIKA, Vilnius, Lithuania). The IEC 62431:2008(E) standard for reflectivity

measurements of EM materials was used. The EM response of sample was measured as ratios

of transmitted/input (S21) and reflected/input (S11) signals after insertion of the specimen into the

transmission line (rectangular waveguide) perpendicularto wave propagation. The lateral dimen-

sions of the samples fitted precisely the waveguide7.2× 3.4 mm2 cross section.
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4 Experimental results and discussion

The measured results for graphene/polymer sandwich heterostructures (20µm-GRA and 400µm-

GRA) consisting of three and six graphene/PMMA units are presented in Fig.4. As it was expected

and proved by theory the EM properties of samples produced from the graphene of small and large

grain size are the same for both three- and six-layered graphene/PMMA sandwiches. As it follows

from Fig. 4 b the total EM shielding effectiveness (SE = −20 log(S21)) of graphene/polymer

sandwiches inKa-band varies in the range of 9 - 7 dB and 13 - 11 dB for 3 and 6 graphene layers,

respectively, which is in good agreement with the previously reported data.15,29,30 In par-

ticular, in Ref. 29, shielding effectiveness of graphene monolayer and multilayer structures

has been investigated. It was shown that the SE of monolayer graphene is 2.27 dB and the

average SE values of double- and triple-layer graphene were4.13 dB and 6.91 dB, respec-

tively. In Ref. 30, it was demonstrate that the SE value of reduced graphene oxide (RGO)

sheets interleaved between polyetherimide with the numberof RGO layers to achieves 6.37

dB for double-PEI/RGO multilayer. It is important to note that each graphene/PMMA sandwich

is less than 1 micron thick(the overall thickness of samples with 3 and 6 graphene/PMMA

layers was 300-400 nm and 600-700 nm, respectively), still the level of EM power attenuation is

similar to that observed for conventional polymer composites loaded with 5-10 wt. % of graphene

nanoplatelets or carbon nanotubes31,32 but with overall thickness of fraction of mm, namely a factor

of 1000 thicker.

Our experiments and theoretical findings in theKa microwave band correlate well with recent

results on the electrical properties of graphene at THz frequencies. Specifically, Buron et al have

shown that graphene layer with lateral size of up to hundredsof microns grown on single crystal
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(a) (b)

Fig 4 (a) Frequency dependence ofS11 andS21 for graphene/polymer heterostructureson silica substrateconsisting

graphene with small and largegrain size. MeasuredS11 and S21 for pure silica substrate (0.5 mm thickness) are

shown inset. (b) The average SE of graphene/polymer heterostructures as function of the number of graphene

layers at 30 GHz.

copper foil is electrically continuous at 1-15 THz.22

5 Conclusions

The reported weak sensitivity of the results to the grain sizeof graphene togetherwith high

shielding effectiveness observed for graphene-based flexible thin multilayers opens an avenue for

the development of a scalable protocol of cost-efficient production of ultra-light optically transpar-

ent EM shields. Shielding layers composed of inexpensive polycrystalline CVD graphene consist-

ing of small graphene domains can be transferred to commercial applications.
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layers in case of graphene made of small (red lines) and large(blue lines) grains.

2 SEM images of graphene hexagonal domains corresponding to20 µm-GRA (a)

and 400µm-GRA (c) samples, when the synthesis was stopped before graphene

covered the whole copper substrate. (b), (d) optical imagesof graphene samples

after chemical treatment obtained according to technique proposed in Ref. 27. The

disks drawn with a thin dotted line in (b) and (d) indicate thegraphene domains in

case of small and large grain size samples, respectively

3 Raman maps of the intensity ratio of D- and G-bands over a40 × 40 µm area of

20µm-GRA (a) and 400µm-GRA (d), respectively. Raman maps of the intensity

ratio of 2D- and G-bands over a40 × 40 µm area of 20µm-GRA (b) and 400

µm-GRA (e), respectively. (c), (f) Raman spectra corresponding to the different

regions marked with dots in (b) and (e). Spectra labelled 1 in(c) and 3 in (f) are

typical of graphene monolayer. All spectra were normalizedon the G band peak

amplitude
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4 (a) Frequency dependence ofS11 andS21 for graphene/polymer heterostructures

on silica substrateconsisting graphene with small and largegrain size. Mea-

suredS11 andS21 for pure silica substrate (0.5 mm thickness) are shown inset.

(b) The average SE of graphene/polymer heterostructures as function of the

number of graphene layers at 30 GHz.

19


	Introduction
	Modelling
	Experimental details
	Samples fabrication and quality control
	Electromagnetic response measurements

	Experimental results and discussion
	Conclusions

