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Abstract

A new mathematical model for discrete time series is proposed: homogenous vector
Markov chain of the order s with partial connections. Conditional probability distribution
for this model is determined only by a few components of previous vector states. Prob-
abilistic properties of the model are given: ergodicity conditions and conditions under
which the stationary probability distribution is uniform. Consistent statistical estimators
for model parameters are constructed.

Keywords: vector Markov chain with partial connections, ergodicity conditions, statistical
estimation of parameters.

1. Introduction

Markov chain is a wide used mathematical model for discrete time series. It is applied in
economics (Kemeny and Snell 1963), biology (Waterman 1999), sociology (Bonacich 2003)
and in other fields. Markov chain of the order s (Doob 1953) is an adequate model for
description of high-depth dependences in data. In practice data is often represented in time-
indexed blocks, and it is reasonable to use vector Markov chains. The state space for such
models consists of m-vectors for some finite value m. Unfortunately, it is difficult to use s-
order Markov chain in practice, because the number of parameters D for this model increases
exponentially when s grows. That is why small-parametric (parsimonious) models are used in
applications (Kharin 2012). For such models D depends polynomially on s. Markov chain of
order s with r partial connections (MC(s, r)) is an example of a parsimonious model for the
univariate case m = 1. It was developed in Belarusian state university (Kharin and Petlitskii
2007). Conditional distribution for this model doesn’t depend on all s previous states but only
on r selected states. In this paper we propose a generalization of the MC(s, r) for high-order
vector Markov chain. Note in addition that parsimonious models are also useful in robust
statistical analysis (Kharin 2016; Kharin and Kishylau 2015; Kharin and Shlyk 2009; Kharin
and Zhuk 1998; Kharin 1997).
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2. Vector Markov chain with partial connections

2.1. Mathematical model

Introduce the notation: N is the set of positive integers; A = {0, 1, . . . , N − 1} is the discrete
set with N elements, 2 ≤ N < ∞; m ∈ N, Ji = (ji1, . . . , jim) ∈ Am, i = 1, 2, . . . , is an
m-dimensional vector; Jb

a = (Ja, . . . , Jb), a, b ∈ N, a ≤ b, is a sequence of b − a + 1 ordered
m-dimensional vectors;

xt = (xt1, . . . , xtm) ∈ Am, t ∈ N

is a homogeneous vector Markov chain of the order s (2 ≤ s < ∞) with the state space Am,
with some initial probability distribution

π
(0)
J1,...,Js

= P{x1 = J1, . . . , xs = Js}, (1)

and some (s+ 1)-dimensional matrix of transition probabilities:

P = (pJs
1 ,Js+1),

pJs
1 ,Js+1 = P{xt = Js+1|xt−1 = Js, . . . , xt−s = J1}, t = s+ 1, s+ 2, . . . .

(2)

We will denote this Markov chain VMC(s) (Vector Markov Chain of the order s).

The number of independent parameters for the VMC(s) is determined by formula:

Ds = Nms(Nm − 1). (3)

In Table 1 we present the number of parameters for the binary VMC(s) when m = 8 for
different values of s .

Table 1: The number of parameters for the binary VMC(s)

s 1 2 4 8 16

Ds 65 280 16 711 680 ≈ 1, 095 · 1012 ≈ 4, 704 · 1021 ≈ 8, 677 · 1040

Table 1 illustrates the “curse of dimensionality” for the s-order Markov chain. To overcome
this difficulty we construct a modification of the VMC(s) similarly to the paper (Kharin and
Petlitskii 2007).

We will use the notation:

Mr = {(k1, l1), (k2, l2), . . . , (kr, lr)} ⊆M∗ = {(k, l) : 1 ≤ k ≤ s, 1 ≤ l ≤ m} (4)

is an ordered set of 1 ≤ r ≤ sm pairs of indices, k1 = 1, which we will call a template-set; Mr

is a set of all possible template-sets;

SMr(Jt, . . . , Jt+s−1) = (jt+k1−1,l1 , . . . , jt+kr−1,lr), t = 1, 2, . . .

is a selector function, that associates s vectors with their r components: SMr : Ams → Ar;
Q = (q(i1,...,ir),Ir+1

) is a stochastic N r ×Nm matrix, i1, . . . , ir ∈ A, Ir+1 ∈ Am.

The Markov chain {xt ∈ Am : t ∈ N} is called the vector Markov chain of the order s with r
partial connections if its transition probabilities have the following form:

pJs
1 ,Js+1 = qSMr (J1,...,Js),Js+1

= q(jk1,l1 ,...,jkr,lr ),Js+1
, J1, . . . , Js, Js+1 ∈ Am. (5)

We will denote this model VMC(s, r). The m-dimensional VMC(s, r) is determined by the
following parameters:

• s ≥ 1 is the order of the Markov chain;
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• r ∈ {1, . . . , sm} is the number of connections;

• Mr is the template-set of connections;

• Q = (q(i1,...,ir),Ir+1
) is a stochastic N r ×Nm-matrix, (i1, . . . , ir) ∈ Ar, Ir+1 ∈ Am.

The definition (5) of the VMC(s, r) means that the probability distribution of time series xt
at time point t depends not on all ms components of s previous states, but it depends only
on r selected components determined by the template-set Mr. If r = sm, then Mr = M∗ and
we have fully-connected s-order Markov chain: VMC(s,ms) ≡ VMC(s). If m = 1, then the
VMC(s, r) transforms into the Markov chain with partial connections (Kharin and Petlitskii
2007).

The number of independent parameters for the VMC(s, r) is determined by formula:

d = N r(Nm − 1) + 2r − 1. (6)

In Table 2 we present the number of parameters for the binary VMC(s, r) when N = 2, m = 8
for different values of s and r .

Table 2: The number of parameters for the binary VMC(s, r)

(s, r) (1, 2) (2, 4) (4, 6) (8, 8) (16, 10) (32, 16 )

d 1 023 4 087 16 331 65 295 261 139 16 711 711

From comparison of Table 1 and Table 2 we can see sufficient gain in the number of parameters
of the VMC(s, r)-model comparing to the VMC(s)-model.

2.2. Ergodicity conditions

Let us give now ergodicity conditions for the Markov chain of conditional order.

Theorem 1. Homogenous vector Markov chain with partial connections VMC(s, r) is ergodic
if and only if there exists a number c ∈ N, such that the following inequality holds:

min
Js
1 ,J

c+s
c+1∈Ams

∑
Jc
s+1∈Am(c−s)

c∏
t=1

qSMr
(Jt, . . . , Jt+s−1), Jt+s > 0. (7)

Proof. Consider the first-order Markov chain with extended state space, which is equivalent
to xt:

x̄t = (xt,1, . . . , xt,m, xt+1,1, . . . , xt+1,m, . . . , xt+s−1,1, . . . , xt+1,m) ∈ Ams,

Transition matrix for x̄t has the following form:

P̄ = (p̄Is1 ,Js
1
), p̄Is1 ,Js

1
= I{Is2 = Js−1

1 }pIs1 ,Js , (8)

where I{C} is the indicator function of the event C, pIs1 ,Js is determined by (5). Ergodicity
of xt is equivalent to ergodicity of x̄t. According to (Kemeny and Snell 1963) x̄t is ergodic if
and only if there exists a number c ∈ N, such that the following inequality holds:

min
Js
1 ,J

c+s
c+1∈Ams

p̄
(c)

Js
1 ,J

c+s
c+1

> 0,

where p̄
(c)

Js
1 ,J

c+s
c+1

is the c-step transition probability from Js
1 to Jc+s

c+1 for the Markov chain x̄t.

In (Kharin and Maltsew 2011) the following representation for this probability was obtained:

p̄
(c)

Js
1 ,J

c+s
c+1

=
∑

Jc
s+1∈Am(c−s)

c∏
t=1

pJt+s−1
t ,Jt+s

.
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Using this result and equation (5) we come to the criterion (7). Theorem is proved.

Corollary 1. If all elements of matrix Q are positive, then the VMC(s, r) is ergodic.

If the VMC(s, r) is ergodic one, then the stationary probability distribution exists (Doob
1953). We will denote it (πJs

1
), Js

1 ∈ Ams, and its marginal distributions will be denoted as

πMr
s (i1, . . . , ir) = P{SMr(xt, . . . , xt+s−1) = (i1, . . . , ir)},

πMr
s+1(i1, . . . , ir, Ir+1) = P{SMr(xt, . . . , xt+s−1) = (i1, . . . , ir), xt+s = Ir+1} =

= πMr
s (i1, . . . , ir)q(i1,...,ir),Ir+1

.

3. Statistical estimators for VMC(s, r) parameters

3.1. Likelihood function

Let us construct now statistical estimators for VMC(s, r) parameters. At first, we need to
construct the likelihood function.

Introduce the notation: X(n) ∈ Amn is the observed vector time series of length n;

νMr
s+1(i1, . . . , ir, Ir+1) =

n−s∑
t=1

I{SMr(xt, . . . , xt+s−1) = (i1, . . . , ir), xt+s = Ir+1}, (9)

νMr
s (i1, . . . , ir) =

∑
Ir+1∈Am

νMr
s+1(i1, . . . , ir, Ir+1), (i1, . . . , ir) ∈ Ar, Ir+1 ∈ Am, (10)

are frequency statistics for the VMC(s, r) based on X(n).

Lemma 1. If the true values s, r and Mr, are known, then the likelihood function for the
VMC(s, r) has the following form:

Ln(X(n), Q) = π(0)x1,...,xs

n−1∏
t=s

qSMr (xt−s+1,...,xt),xt+1
. (11)

Proof. Equation (11) follows from the expression for the n-dimensional probability distribu-
tion that we get using theorem on compound probabilities, the Markov property and definition
of the VMC(s, r):

P{x1 = j1, x2 = j2, . . . , xn = jn} =

= P{Xs
1 = Js

1}
n−1∏
t=s

P{xt+1 = Jt+1|Xt
1 = J t

1} = π
(0)
J1,...,Js

n−1∏
t=s

qSMr (Jt−s+1,...,Jt),Jt+1
.

Lemma is proved.

Corollary 2. The loglikelihood function for the VMC(s, r) has the following form:

ln(X(n), Q) = lnπ
(0)
J1,...,Js

+
∑

i1,...,ir∈A

∑
Ir+1∈Am

νMr
s+1(i1, . . . , ir, Ir+1) ln q(i1,...,ir),Ir+1

. (12)

3.2. Estimators for transition probabilities

Construct now maximum likelihood estimators (MLE) for the matrix Q of one-step transition
probabilities.
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Theorem 2. If the true values s, r and the template-set Mr are known, then the maximum
likelihood estimators for the one-step transition probabilities (5) are

q̂(i1,...,ir),Ir+1
=


νMr
s+1(i1, . . . , ir, Ir+1)

νMr
s (i1, . . . , ir)

, if νMr
s (i1, . . . , ir) > 0,

1
Nm , if νMr

s (i1, . . . , ir) = 0.

(13)

Proof. In order to construct the MLE we need to solve the following conditional extremum
problem: 

ln(X(n), Q)→ max
Q
,∑

Ir+1∈Am

q(i1,...,ir),Ir+1
= 1, i1, . . . , ir ∈ A.

This problem splits into N r subproblems for each set (i1, . . . , ir):
∑

Ir+1∈Am

νMr
s+1(i1, . . . , ir, Ir+1) ln q(i1,...,ir),Ir+1

→ max
q(i1,...,ir),Ir+1

,∑
Ir+1∈Am

q(i1,...,ir),Ir+1
= 1.

Using the Lagrange multipliers method for solving these subproblems we get estimators (13).
Theorem is proved.

Consistency of estimators (13) follows from the next theorem.

Theorem 3. If the VMC(s, r) is stationary Markov chain, then MLE (13) are consistent
estimators as n→∞:

q̂(i1,...,ir),Ir+1

P−→ q(i1,...,ir),Ir+1
, i1, . . . , ir ∈ A, Ir+1 ∈ Am. (14)

Proof. Normalized frequencies of the states for the s-order Markov chain tend to the sta-
tionary probability distribution as n→∞ (Kharin and Maltsew 2011):

π̂Js+1
1

=
1

n− s

n−s∑
t=1

I{xt = J1, . . . , xt+s = Js+1}
P−→ πJs+1

1
= πJs

1
pJs

1 ,Js+1 .

Since frequencies νMr
s+1(i1, . . . , ir, Ir+1), ν

Mr
s (i1, . . . , ir) are sums of the frequencies of the (s+1)-

tuples, we have convergence property for n→∞:

π̂Mr
s (i1, . . . , ir) =

1

n− s
νMr
s (i1, . . . , ir)

P−→ πMr
s (i1, . . . , ir), (15)

π̂Mr
s+1(i1, . . . , ir, Ir+1) =

1

n− s
νMr
s+1(i1, . . . , ir, Ir+1)

P−→

P−→ πMr
s+1(i1, . . . , ir, Ir+1) = πMr

s (i1, . . . , ir)q(i1,...,ir),Ir+1
. (16)

Using (15), (16) and theorem on functional transformations of convergent random sequences
from (Borovkov 1998), we come to (14). Theorem is proved.

3.3. Estimators for the template-set

To construct estimators for the template-set Mr we will also use the maximum likelihood
method. Let

H(Mr) =
∑

i1,...,ir∈A

∑
Ir+1∈Am

νMr
s+1(i1, . . . , ir, Ir+1) ln

νMr
s+1(i1, . . . , ir, Ir+1)

νMr
s (i1, . . . , ir)

(17)
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be the plug-in statistical estimator for the Shannon conditional information on the future
vector xt+1.

Theorem 4. If the order s and the number of connections r are a priori known, then the
MLE for the template-set Mr is

M̂r = arg max
Mr∈Mr

H(Mr). (18)

Proof. Formula (18) follows from (17) and from the representation of the loglikelihood
function (12) for the VMC(s, r).

Computational complexity of the exhaustive search in the formula (18) isO(nmN r+m(sm)r−1),
that is why we can use it only for small values of m and r. Therefore we developed a spe-
cial algorithm for calculation of estimators (18) to reduce computational complexity. This
algorithm is based on step-by-step extension of the initial template-set.

Let M+
r (Mr−1) be the set of templates built by extension of the template Mr−1 by one element

from the set M∗ \Mr−1, r = 2, 3, . . . . At the first step of the algorithm we find the initial
template M̂r− , r− ≥ 1, using the exhaustive search in (18). Then we find sequentially the
estimators:

M̂r−+1, M̂r−+2, . . . , M̂r. (19)

Estimator M̂r′ , r
′ = r− + 1, r− + 2, . . . , r, is constructed as follows:

M̂r′ = arg max
Mr′∈Mr′ (Mr′−1)

H(Mr′), (20)

i. e. we extend the template-set M̂r′−1 by one additional element.

3.4. Estimators for the order and the number of connections

In order to estimate the order s and the number of connections r we use the Bayesian infor-
mation criterion (BIC) (Csiszar and Shields 1999), that has the following expression for our
model:

(ŝ, r̂) = arg min
2≤s′≤s+, 1≤r′≤r+

BIC(s′, r′),

BIC(s′, r′) = −ln(X(n), Q,Mr) + 2d ln(n− s′) =

= −
∑

i1,...,ir′∈A

∑
Ir′+1∈Am

ν
Mr′
s′+1(i1, . . . , ir′ , Ir′+1) ln

ν
Mr′
s′+1(i1, . . . , ir′ , Ir′+1)

ν
Mr′
s′ (i1, . . . , ir′)

+ 2d ln(n− s′),

where s+ ≥ 1, 1 ≤ r+ ≤ ms+ are maximal admissible values of s and r respectively, d is the
number of independent parameters of the VMC(s, r) determined by formula (6).

4. Results of computer experiments

4.1. Simulated data

Estimation of the matrix Q

Let us illustrate the properties of the constructed statistical estimators by computer simula-
tion. Binary vector Markov chain with the following values of parameters:

m = 4, s = 4, r = 6, M6 = {(1, 1), (2, 2), (2, 4), (3, 1), (3, 2), (4, 3)} (21)

was simulated. Matrix Q has dimension 26 × 24, its elements were generated as random
variables with the uniform probability distribution in the interval [0, 1].
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We generated 100 independent realizations of VMC(s, r), each realization consisted of n bi-
nary m-vectors, n ∈ {105, 2 · 105, . . . , 100 · 105}. Statistical estimators for transition proba-
bilities were constructed according to formula (13), and the mean square estimation error for
estimation of Q was calculated:

∆n =
∑

i1,...,i6∈{0,1}

∑
I∈{0,1}4

(
q(i1,...,i6),I − q̂(i1,...,i6),I

)2
.

Figure 1 represents dependence of ∆n on the time series length n and illustrates the consis-
tency property of statistical estimators (13).

Figure 1: Estimation error of Q

Estimation of the template-set Mr

Let us analyze now properties of the estimators M̂r built by the extension algorithm pre-
sented in the subsection 3.3. In computer experiments we simulated VMC(s, r) with pa-
rameters (21) for the time series length n = 1000, 10000, 20000, . . . , 150000. For each n we
simulated U = 1000 independent realizations. For each realization the template-set estima-
tor M̂r was computed with the extension algorithm. Then we calculate the frequency estimate
of true decision:

δn =
1

U

U∑
u=1

I{M̂ (u)
r = Mr}, (22)

where M̂
(u)
r is the estimator for the template-set obtained for the u-th realization.

Results presented in Table 3 illustrate the consistency property of the estimator M̂r.

Table 3: Error of estimating Mr

n 1000 10000 20000 30000 50000 60000 80000 100000 120000 150000

δn 0.001 0.341 0.609 0.762 0.914 0.943 0.979 0.993 0.998 1

4.2. Real data

In conclusion let us present results of experiments on real genetic data. We tested genetic
DNA sequence LN589993 (https://www.ncbi.nlm.nih.gov/nuccore) which consists of four nu-
cleotides (A, C, G, T). Detection of dependences in DNA sequences is an important problem
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in bioinformatics (Waterman 1999; Voloshko, Medved, and Kharin 2016), and we constructed
stochastic model for the observed sequence using VMC(s, r).

We recoded the sequence to binary form: “A” corresponds to 00, “C” corresponds to 10,
“G” corresponds to 01, “T” corresponds to 11. The sequence was splitted on n = 5708
nonoverlapping triplets and represented as 6-variate (m = 6) time series. Using step-by-step
extension algorithm we estimated the template-set, and using (13) we estimated the transition
probabilities and the mean square deviation of matrix Q from uniform distribution

∆ = max
i1,...,ir∈{0,1}, I∈{0,1}m

|q̂(i1,...,ir),I − 1/64|. (23)

For s = 3, r = 7 we get the following results:

M̂ = {(1, 3), (1, 4), (2, 1), (2, 2), (3, 2), (3, 3), (3, 4)}, ∆ = 0.175.

As we can see deviation of matrix Q̂ from the case of “pure randomness” is quite significant,
and constructed VMC(3, 7) model detects stochastic dependences in the analyzed genetic
sequence.
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