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Abstract

The general theoretical description of the influence of oscillating horizontal magnetic and quasi-

magnetic fields on the spin evolution in storage rings is presented. Previous results are generalized

to the case when both of the horizontal components of the oscillating field are nonzero and the vec-

tor of this field circumscribes an ellipse. General equations describing a behavior of all components

of the polarization vector are derived and the case of an arbitrary initial polarization is considered.

The derivation is fulfilled in the case when the oscillation frequency is nonresonant. The general

spin evolution in storage rings conditioned by vertical betatron oscillations is calculated as an

example.
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I. INTRODUCTION

Particles and nuclei in accelerators and storage rings move in a main vertical magnetic

field. Additionally (or alternatively), one can use a radial electric field in bending sections.

Particle/nucleus beams are also governed by a radial magnetic or a vertical electric focusing

field. All fields not only influence the motion of particles and nuclei but also act on their

spins. In the present work, we confine ourselves to a description of spin effects. The spin

rotation about the vertical direction is perturbed by either magnetic, B‖, or quasimagnetic,

(v×E)‖, horizontal fields. The symbol ‖ means a horizontal projection for any vector (Fig.

1). Such fields are created by a focusing system and by rf devices placed into a storage ring.

Due to an oscillatory motion of a particle or a nucleus in the storage ring [1, 2], focusing

magnetic and quasimagnetic fields acting on a particle spin also oscillate. A spin motion in

storage rings in presence of resonant and nonresonant oscillatory horizontal fields has been

calculated in Ref. [3]. The results obtained in that work do not, however, cover important

cases when the two horizontal components of the oscillating field are nonzero. In particular,

the spin motion at vertical betatron oscillations (BOs) belongs to such cases. When the

phase difference between the two horizontal components is equal to ±π/2, the vector B‖ (or

(v ×E)‖) circumscribes an ellipse.

In the present work, we calculate an evolution of the spin in the general case when the

two horizontal components of the oscillating field are nonzero. We utilize the result obtained

for the general description of the spin motion in presence of vertical BOs.

We use the system of units ~ = 1, c = 1 in some cumbersome formulas.

II. SPIN DYNAMICS IN CONSTANT VERTICAL AND OSCILLATING HORI-

ZONTAL FIELDS

In this section, we use the approach elaborated in Ref. [3]. Let a spinning particle or

nucleus be placed into the constant vertical magnetic field B0 = B0ez (see Fig. 1) or into

the constant radial electric field and the angular velocity of the spin rotation in this field is

equal to ω0 = ω0ez. Additional fields are conditioned by magnetic or electric focusing. The

use of magnetic focusing brings a radial magnetic field and changes the vertical magnetic

field (Bz 6= B0). The particle spin is also affected by the oscillating horizontal magnetic
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or quasimagnetic field turning the spin about two horizontal axes. In this case, the spin-

dependent part of the classical Hamiltonian is given by

H = ω0 · ζ + [a1 cos (ωt+ χ)ex + a2 sin (ωt+ χ)ey] · ζ, (1)

where ζ is the spin (pseudo)vector. The quantities ω0, ω, a1, and a2 can be positive and

negative.

FIG. 1: The storage ring geometry when the cylindrical coordinate system is used. The figure

relates to the storage ring with the main magnetic field and magnetic focusing.

The angular velocity of the spin rotation is given by

Ω = ω0ez + a1 cos (ωt+ χ)ex + a2 sin (ωt+ χ)ey. (2)

The direction of the (pseudo)vector ω0 defines the orientation of the so-called stable spin

axis. In the absence of oscillating fields, the spin remains stable if it is initially aligned along

this direction. If the initial spin orientation is different, the spin describes a cone around the

direction of ω0. The stable spin axis is a static quantity defined in the absence of oscillating

fields.

Evidently, the horizontal field is the sum of two rotating fields whose amplitudes in

the counterclockwise and clockwise directions are equal to (a1 + a2)/2 and (a1 − a2)/2,

respectively. Resonance effects have been considered in detail in Ref. [3]. Therefore, we

focus our attention on the nonresonance case. This case has been investigated in Ref. [3]

only in the case of a2 = 0.

Similarly to that work, we analyze the spin motion in the primed coordinate system
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rotating with the angular velocity ω0:

e′
x = cos (ω0t)ex + sin (ω0t)ey,

e′
y = − sin (ω0t)ex + cos (ω0t)ey, e′

z = ez.
(3)

If we denote K = Ω‖ = a1 cos (ωt+ χ)ex + a2 sin (ωt+ χ)ey, the spin dynamics in the

primed frame is defined by

dζ ′

dt
= K

′ × ζ ′, K
′
x = a1 cos (ωt+ χ) cos (ω0t)

+a2 sin (ωt+ χ) sin (ω0t),

K
′
y = −a1 cos (ωt+ χ) sin (ω0t)

+a2 sin (ωt+ χ) cos (ω0t), K
′
z = 0.

(4)

Equivalently,

K
′
x =

a1 + a2
2

cos [(ω0 − ω)t− χ]

+
a1 − a2

2
cos [(ω0 + ω)t+ χ],

K
′
y = −

a1 + a2
2

sin [(ω0 − ω)t− χ]

−
a1 − a2

2
sin [(ω0 + ω)t+ χ], K

′
z = 0.

(5)

It is convenient to present the unit spin vector as a sum of two parts, ζ(t) = S(t) +η(t),

where S rotates with the angular velocity ω0 [3]. In this case, S ′ is constant, S ′ = ζ ′(0),

and η(0) = 0.

Equation (5) shows that the periodical perturbation of the spin by the horizontal field is

weak on condition that

|a1 + a2| ≪ |ω0 − ω|, |a1 − a2| ≪ |ω0 + ω|. (6)

We suppose that this condition is valid. In this case, |η| ≪ |S ′| and the following equation

can be used [3]:
dζ ′

dt
=
dη′

dt
= K

′ × S
′. (7)

In the general case, the initial spin direction is defined by the spherical angles θ and ψ:

Px(0)=sin θ cosψ, Py(0)=sin θ sinψ, Pz(0)=cos θ, (8)

where P = ζ/s is the polarization vector and s is the spin quantum number. Dynamics of

the vector S is given by

Sx(t) = s sin θ cos (ω0t+ ψ),

Sy(t) = s sin θ sin (ω0t+ ψ), Sz(t) = s cos θ.
(9)

An integration on time results in the following evolution of the polarization vector:
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Px(t) = sin θ cos (ω0t+ ψ) +
1

2

(

a1 − a2
ω0 + ω

{

cos (ωt+ χ) [1− cos (ω0 + ω)t]− sin (ωt+ χ) sin (ω0 + ω)t

}

+
a1 + a2
ω0 − ω

{

cos (ωt+ χ) [1− cos (ω0 − ω)t] + sin (ωt+ χ) sin (ω0 − ω)t

}

)

cos θ,

Py(t) = sin θ sin (ω0t + ψ) +
1

2

(

−
a1 − a2
ω0 + ω

{

sin (ωt+ χ) [1− cos (ω0 + ω)t] + cos (ωt+ χ) sin (ω0 + ω)t

}

+
a1 + a2
ω0 − ω

{

sin (ωt+ χ) [1− cos (ω0 − ω)t]− cos (ωt+ χ) sin (ω0 − ω)t

}

)

cos θ,

Pz(t) = cos θ +
1

2

(

a1 − a2
ω0 + ω

{

[1− cos (ω0 + ω)t] cos (ψ + χ) + sin (ω0 + ω)t sin (ψ + χ)

}

+
a1 + a2
ω0 − ω

{

[1− cos (ω0 − ω)t] cos (ψ − χ) + sin (ω0 − ω)t sin (ψ − χ)

}

)

sin θ.

(10)

Equation (10) can be reduced to the form

Px(t) = sin θ cos (ω0t+ ψ) +
1

2

{

A1

[

cos (ωt+ χ)− cos (ω0t− χ)

]

+ A2

[

cos (ωt+ χ)− cos (ω0t + χ)

]

}

cos θ,

Py(t) = sin θ sin (ω0t + ψ) +
1

2

{

−A1

[

sin (ωt+ χ) + sin (ω0t− χ)

]

+ A2

[

sin (ωt+ χ)− sin (ω0t+ χ)

]

}

cos θ,

Pz(t) = cos θ +
1

2

(

A1

{

cos (ψ + χ)− cos [(ω0 + ω)t+ ψ + χ]

}

+ A2

{

cos (ψ − χ)− cos [(ω0 − ω)t+ ψ − χ]

}

)

sin θ,

A1 =
a1 − a2
ω0 + ω

, A2 =
a1 + a2
ω0 − ω

.

(11)

Equations (10) and (11) give the general description of the spin motion in storage rings

in the presence of oscillating horizontal fields. These equations agree with the corresponding

equations obtained in Ref. [3] and their validity can be confirmed by calculating of the time

derivative dP /(dt) and checking its consistency with Eq. (2).

III. INFLUENCE OF VERTICAL BETATRON OSCILLATIONS ON SPIN EVO-

LUTION IN STORAGE RINGS

As an example of an application of the results obtained, we consider the spin evolution

in storage rings affected by vertical BOs also called pitch oscillations. To simplify a needed

derivation, we do not take into account an influence of radial betatron oscillations on spin

dynamics considered in Ref. [4].
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It is important that the general equations defining spin dynamics can be successfully

used not only for the Cartesian coordinates but also for the cylindrical and Frenet-Serret

coordinates characterizing the spin turn relative to the momentum direction. In these cases,

the external fields should also be expressed in the same coordinates. When the cylindrical

coordinate system is used, one characterizes a position of a moving particle by the azimuthal

angle φ. Let the angular velocity of the particle revolution be equal to ω. The connection be-

tween the angular velocities of the spin rotation in the cylindrical and Cartesian coordinates

is expressed by the equation [5, 6] Ω(cyl) = Ω(Car) − ωzez (ωz = φ̇). The corresponding con-

nection between the angular velocities of the spin rotation in the Frenet-Serret and Cartesian

coordinates is given by (see, e.g., Refs. [6, 7]) Ω(FS) = Ω(Car) − ω.

In Sec. II, we used the standard approach when the magnetic resonance (including

nonresonance frequencies) is caused by an oscillating magnetic field orthogonal to a constant

magnetic field and these fields are defined in the particle rest frame. When the Thomas

precession is taken into account and/or the particle possesses an electric dipole moment

(EDM), an electric field in the particle rest frame can also be important (see Ref. [8]).

However, the Thomas-Bargmann-Michel-Telegdi equation [9] and its extension involving

particles with the EDM (see Refs. [7, 8] and references therein) allow one to describe the

quasimagnetic resonance for moving particles. In this case, all fields are defined in the lab

frame while an existence of the quasimagnetic resonance is checked in the particle rest frame

[3, 10]. It is important that the rest frame fields can oscillate even if the lab frame fields are

constant. This situation takes place due to the BOs of the beam. All the lab frame fields

entering equations of motion are determined in a point defining a particle position in a given

moment of time. As a result, the BOs make these fields to be oscillatory.

In the present study, we consider both electric and magnetic focusing. Due to a cyclic

motion of particles and nuclei in storage rings, it is more convenient to use the cylindrical

coordinates instead of the Cartesian ones. The angular velocity of the spin rotation in the

cylindrical coordinate system is equal to [5]

Ω(cyl) = −
e

m

{

GB −
Gγ

γ + 1
β(β ·B)

+

(

1

γ2 − 1
−G

)

(β ×E) +
1

γ

[

B‖ −
1

β2
(β ×E)‖

]

+
η

2

(

E −
γ

γ + 1
β(β ·E) + β ×B

)}

,

(12)
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where β = v/c, G = (g − 2)/2, η = 2mcd/(es), γ is the Lorentz factor, and d is the EDM.

The vertical and horizontal components of the magnetic and quasimagnetic fields, B and

β ×E, enter into Eq. (12) with different factors. In accelerator physics, the Frenet-Serret

coordinate system is traditionally used [1, 11].

When the radial BOs are not taken into account, the momentum vector lies in the plane

formed by the vectors eφ and ez and makes the small angle ϑ = pz/p with the axis eφ. When

ϑ = 0, the spin rotates about the vertical axis with the angular frequency ω0. A focusing

field leads to the oscillation of the angle ϑ with the pitch frequency ω:

ϑ = ϑ0 sin (ωt+ χ).

The equation of the vertical BO in the focusing electric field is

dpz
dt

= eEz.

Since p = mβγ (c is omitted),

eEz = mβγωϑ0 cos (ωt+ χ). (13)

In the focusing magnetic field, this equation takes the form

dpz
dt

= −eλβBρ

or

eBρ = −λmγωϑ0 cos (ωt+ χ), (14)

where λ is equal to 1 and −1 for a particle with a negative charge moving counterclockwise

and for a particle with a positive charge moving clockwise, respectively.

If electric focusing is used,

−
e

m
GB = −

e

m
GBzez = ω0ez,

e

m
·
Gγ

γ + 1
β(β ·B) =

e

m
·
Gγ

γ + 1

(

β2
zBzez + λββzBzeφ

)

= −ω0
γ − 1

γ

[

ϑ20 sin
2 (ωt+ χ)ez + λϑ0 sin (ωt+ χ)eφ

]

,

e

m

(

G+
1

γ + 1

)

(β ×E)‖ = λ
e

m

(

G+
1

γ + 1

)

βEzeρ

= λfωϑ0 cos (ωt+ χ)eρ,

(15)
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where f is given by

f = 1 +Gγ −
1 +G

γ
= 1 +Gβ2γ −

1

γ
. (16)

The angular velocity of the spin rotation is equal to

Ω = ω0

[

1−
γ − 1

γ
ϑ20 sin

2 (ωt+ χ)

]

ez

−λ
γ − 1

γ
ω0ϑ0 sin (ωt+ χ)eφ

+λfωϑ0 cos (ωt+ χ)eρ.

(17)

If magnetic focusing is used,

B = Bzez +Bρeρ, −
e

m
GBzez = ω0ez,

e

m
·
Gγ

γ + 1
β(β ·B) =

e

m
·
Gγ

γ + 1

(

β2
zBzez

+λββzBzeφ) = −
γ − 1

γ
ω0

[

ϑ20 sin
2 (ωt+ χ)ez

+λϑ0 sin (ωt+ χ)eφ] ,

−
e

m

(

G +
1

γ

)

B‖ = −
e

mγ
fBρeρ

= λfωϑ0 cos (ωt+ χ)eρ,

where f is defined by the different equation:

f = 1 +Gγ. (18)

The term proportional to β · B(foc), where B(foc) is the focusing magnetic field, can be

neglected.

The angular velocity of the spin rotation is given by Eq. (17), where f is defined by Eq.

(18).

Taking into account radial BOs should bring some additional terms.

In Eq. (17), sin2 (ωt+ χ) =
(

1− cos [2(ωt+ χ)]
)

/2. The small term oscillating with the

angular frequency 2ω can be neglected. As a result, Eq. (17) takes the following final form:

Ω = ω0

(

1−
γ − 1

2γ
ϑ20

)

ez − λ
γ − 1

γ
ω0ϑ0 sin (ωt+ χ)eφ

+λfωϑ0 cos (ωt+ χ)eρ.

(19)

We should mention that the angular frequency of the spin rotation caused by the vertical

BOs has not only the transversal components but also the longitudinal one.
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Equations (17) – (19) relate to the case of the main magnetic field. However, these

equations can also be used when the bending radial electric field is applied together with

the vertical magnetic field or instead of it. In this case, the main term in the equation of

the spin motion takes the form

−
e

m

[

GB +

(

1

γ2 − 1
−G

)

(β ×E)

]

= −
e

m

[

GBz

−

(

1

γ2 − 1
−G

)

λβEρ

]

ez = ω0ez.
(20)

The angular velocity of the spin rotation is given by

Ω =

(

ω0 − ω′γ−1

2γ
ϑ20

)

ez − λ
γ−1

γ
ω′ϑ0 sin (ωt+ χ)eφ

+λfωϑ0 cos (ωt+ χ)eρ, ω′ = −
e

m
GBz,

(21)

where Bz is the magnetic field averaged over the ring circumference. When one uses only

the electric field in bending sections, Bz = 0 and ω′ = 0. The quantity ω0 is expressed by

Eq. (20).

Since Eq. (21) is a special case of Eq. (2), the influence of the vertical BOs on the spin

evolution in storage rings is exhaustively described by the general equations (10) and (11).

These equations also define spin dynamics affected by rf devices with fields circumscribing

ellipses.

IV. SUMMARY

In the present paper, the general theoretical description of the influence of oscillating

horizontal magnetic and quasimagnetic fields on the spin evolution in storage rings has been

given. Unlike Ref. [3], we have supposed that both of the horizontal components of the

oscillating field are nonzero and the vector of this field circumscribes an ellipse. We have

derived the general equations describing a behavior of all components of the polarization

vector and have considered the case of an arbitrary initial polarization. The derivation has

been fulfilled in the case when the condition (6) is satisfied and the oscillation frequency is

nonresonant. The general spin evolution in storage rings conditioned by the vertical BOs

has been calculated as an example. A precise calculation of a contribution of the BOs is

necessary for measurements of a spin tune carrying out in the framework of the storage-ring

EDM experiments [10, 12].
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