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A single-server queueing system with a marked Markovian arrival process of heterogeneous customers is considered.
Type-1 customers have limited preemptive priority over type-2 customers. There is an infinite buffer for type-2 customers
and no buffer for type-1 customers. There is also a finite buffer (stock) for consumable additional items (semi-products,
half-stocks, etc.) which arrive according to the Markovian arrival process. Service of a customer requires a fixed number
of consumable additional items depending on the type of the customer. The service time has a phase-type distribution
depending on the type of the customer. Customers in the buffer are impatient and may leave the system without service
after an exponentially distributed amount of waiting time. Aiming to minimize the loss probability of type-1 customers and
maximize throughput of the system, a threshold strategy of admission to service of type-2 customers is offered. Service
of type-2 customer can start only if the server is idle and the number of consumable additional items in the stock exceeds
the fixed threshold. Stationary distributions of the system states and the waiting time are computed. In the numerical ex-
ample, we show some interesting effects and illustrate a possibility of application of the presented results for solution of
optimization problems.
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1. Introduction

Queueing models are useful for solving problems
of capacity planning, performance evaluation and
optimization of a variety of real life systems, objects
and processes. Usually, it is assumed that the
service times of successive customers are defined by
a sequence of identically distributed random variables
that are independent of the arrival process and other
entities defining operation of the system. However,
sometimes in real life systems there is a dependence
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of the service process on the presence or absence of
some additional items (windows, tokens, permissions,
connections, threads, sessions, details, semi-finished
products, half-stocks, energy, etc.). The standard situation
in such systems is as follows. There is a finite stock of
additional items. The items are rented by the server from
this stock to provide service to a customer. After the
service completion, the rented item returns to the stock,
i.e., the items are reusable. If the stock is empty at a
customer arrival moment, its service is suspended. Such
a situation takes place, e.g., in the systems where it is
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necessary to regulate the speed of customers admission (in
telecommunication protocols like sliding window, leaky
bucket, etc.) or when service can be provided only with
help of some equipment.

Among the related papers, we can mention the paper
by Dudin and Klimenok (1996), where the additional item
is interpreted as a passive server, and the papers of Kim et
al. (2009; 2012) where the additional item is interpreted
as a token that is necessary to start service of a session in
communication network. Similar queueing models arise
in the analysis of so called queueing/inventory models,
(see Krishnamoorthy et al., 2016c; 2016b; 2016a).

In this paper, we also assume that service of a
customer requires the use of additional items, but the
items are not reusable, they are consumable. A definite
number of items permanently disappear from the stock
after beginning service of a customer. If during the service
completion epoch the stock does not contain the required
number of additional items for the next service, service
of customers is suspended. Service is resumed only after
the moment when the suitable number of additional items
arrives to the system.

We consider the system with two types of customers
having different service time distributions and different
numbers of additional items required for service.
Customers of type-1 have limited preemptive priority
over type-2 customers. This means the following. The
arrival of a type-1 customer during the epoch when the
server provides service to a type-2 customer implies
forced termination of service of the type-2 customer
and its loss only if the stock contains the required
number of additional items for service of this type-1
customer. Otherwise, service of the type-2 customer
is not interrupted and the arrived type-1 customer is
lost. Besides the evident inconvenience for the type-2
customer, the forced termination of its service leads to
the waste of items engaged into service of the terminated
type-2 customer. In turn, it may further imply the lack of
the items necessary for service of type-1 customers. Thus,
the problem of optimal management of admission of low
priority customers to the service arises.

In this paper, we consider the following strategy of
customers admission. The type-1 customer is always
admitted to service if the server is not busy with service of
a type-1 customer and there is a sufficient number of items
in the stock. Type-2 customers are always admitted to the
system. However, a type-2 customer is admitted to service
only if all type-2 customers, who arrived earlier than this
customer, left the system, the server is idle and the number
of items in the stock exceeds some fixed threshold, say,
N . Additionally, we assume that type-2 customers are
impatient and leave the system (are lost) after a random
amount of time. The goal of the paper is the analysis
of the dependence of the key performance measures of
the system on the value of the threshold. This creates an

opportunity to formulate and solve a problem of optimal
(with respect to some chosen economical criterion) choice
of the threshold N . This problem is not trivial. If N
is too small, type-2 customers have easy access to the
system, but many type-1 customers, whom we consider as
the priority customers probably needed urgent treatment,
will be lost due to the lack of required additional items.
If N is too large, type-1 customers have easy access to
the system, but many type-2 customers will be lost due
to the long waiting in the queue and the system will be
underutilised.

Examples of possible applications of the model under
consideration are as follows:
1. Optimization of operation of a node of a sen-
sor network. The sensor node collects information
about some object and generates information units that
have to be transmitted to a central node. There are
two types of information units. Type-1 corresponds to
emergency related information. Type-2 corresponds to
routine monitoring of the object parameters. The sensor
node has a battery of a small finite capacity and has
to harvest energy during its operation from outside (we
can mention solar cells, wind turbines, piezo electric
cells, radio frequency collectors, etc.). We assume
that the energy is slotted to energy units and several
energy units are required to transmit one information
units. To save energy, especially to have some reserve of
energy for transmission of emergency related information,
the node sometimes should switch off transmission of
information. The time when service is interrupted should
be long to earn enough energy units to battery for
future transmissions, but it should be pretty short due
to obsolescence of information collected by the sensor
node. If the waiting time of an information unit exceeds
some level, transmission of this information becomes
meaningless. The queueing model under study should
help to find some trade-off in this situation. Analogous
queueing models (but only for homogeneous customers)
were formulated, e.g., by Yang and Ulukus (2012b),
Sharma et al. (2010), Tutuncuoglu and Yener (2012) or
Yang and Ulukus (2012a), who gave more information
about quite extensive literature concerning the systems
with energy harvesting is presented. However, the
analysis was provided there in deterministic settings or
not in terms of queueing theory. Queueing analysis of a
similar system was recently done by Gelenbe (2015). But
it is assumed therein that flows of customers and energy
units are instantaneously synchronised, so the buffer or
(and) the stock should always be empty. In our model, we
consider a more a general situation in which the service
time is not equal to zero and it is possible that the buffer
and the stock may be not empty simultaneously.
2. Design, management and optimization of ware-
housing and inventory systems. (Manzini et al., 2015)
Inventory items arrive at random moments and are stored
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in a warehouse of a finite capacity. There are two types of
orders arriving to this warehouse. The orders of different
types are distinguished by the priority, the number of
demanded inventory items and the time required for
extracting these items from the warehouse.
3. Performance evaluation of operation of some
manufacturing line where some products are pro-
duced or repaired. Production of one unit of a
product requires several units of semi-finished product.
If this semi-finished product is absent at the stock, the
production is not possible. In this case, it makes sense to
stop a manufacturing line (to provide a vacation) during
some period of time and, then, to resume the work
after generation of sufficient number of semi-finished
products. Vacation may be used for the work related to
the manufacturing line maintenance or for power saving.
4. Capacity planning of some medical center where
the emerging and elective (scheduled) surgery should
be provided. (Cardoen et al., 2010) The server may be
interpreted as an operating room or a surgeon or a surgical
team. The additional item may be interpreted as a portion
of the amount of blood (drug, single-use equipment, etc)
necessary for the surgery. In this potential application,
a too small value of threshold N may imply refusal of
surgery to the critically ill patient and, probably, his/her
death. A too large value of threshold N may imply,
due to too long waiting, exodus of scheduled patients to
competitive medical centers. This leads to the low load of
the operating room or the surgical team and a low profit
of the medical center gained by providing this type of
medical care. Thus, the problem of the optimal choice
of the value of threshold N is quite important.

Here we provide analysis of the above described
queueing system. We assume that the arrival flows
of heterogeneous customers and additional items are
stochastic and the service times of customers are random.
We do not follow traditional assumptions in the queueing
literature that the arrival flows are stationary Poisson and
the service time distribution is exponential. We assume
that the arrival flows of customers and units are described
by a much more general marked Markovian arrival
process and a Markovian arrival process, respectively.
This allows us to catch possible correlation in the arrival
processes and a possibility to have time intervals when
customers or (and) additional items arrive rarely or
frequently. This is important from the point of view of
applications because, e.g., the speed of energy harvesting
in a sensor network may essentially vary depending on the
sun shine or the speed of the wind.

As will be shown in the numerical results below,
correlation in the arrival processes drastically changes
the system characteristics compared with those in the
system with the stationary Poisson arrival processes
having the same mean arrival rate. Concerning
the service processes, we assume that the service

times of two types of customers have different PH
(phase-type) distributions which are much more general
than exponential distribution. This is also very important
from the point of view of potential applications. The
assumption that the service time has the exponential
distribution drastically simplifies analysis of the model,
but is not realistic in a majority of real world systems.
The probability density function of the exponential
distribution is maximal at zero. This means that the most
probable duration of service time is equal to zero, which
is hardly realistic.

Queueing systems similar to our model were
considered by Dudin et al. (2016) or Zhao and Lian
(2011). In the work of Dudin et al. (2016), the
energy harvesting model was analyzed with one class of
customers and the use of exactly one item for service of
any customer. Here we consider two classes of customers
with different priorities and requirements on the number
of items. The model with two classes of customers and
the necessity to use items for service provisioning was
considered recently in an interesting paper by Zhao and
Lian (2011) as a queueing-inventory model. An overview
of previous research was presented there. In particular, it
is noted there that only models with one class of customers
were analysed before, while two classes are assumed by
Zhao and Lian (2011).

Three main differences from the model considered
in our paper are as follows. We assume that high priority
customers are not queued. They have limited preemptive
priority over the low priority customers. In the work of
Zhao and Lian (2011), both types of customers are queued
and high priority customers have non-preemptive priority.
We assume that the items arrive at random moments,
while the well-known (r,Q) replenishment strategy was
assumed by Zhao and Lian (2011). Advantages of
that paper are the presentation of so called μb rule
for establishing the priorities, the proof of ergodicity
condition and the use of matrix analytical methods for
computation of the stationary distribution of the system
states. In some other aspects, our model is more general
than the one by Zhao and Lian (2011): we assume
more general arrival processes of customers and items;
we assume more general service time distributions; we
assume that service of a customer requires not only one,
but several items depending on the type of customer;
we assume that the low priority customers are impatient.
These generalizations essentially complicate the analysis
of the model. However, the presented numerical results
reveal great importance of these generalizations for
adequate modelling of the real world systems.

The rest of the paper consists of the following. In
Section 2, the mathematical model is described. In
Section 3, the process of the system states is completely
defined and the problem of computation of stationary
probabilities of the system states is touched. Formulas for
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computation of the performance measures of the system
are presented in Section 4. The problem of computation
of the stationary distribution of the waiting time of an
arbitrary type-2 customer is solved in Section 5. Quite
interesting numerical illustrations are given and briefly
discussed in Section 6. Section 7 concludes the paper.

2. Mathematical model

We consider a single-server queueing system with two
types of customers, no buffer for type-1 customers, an
infinite buffer for type-2 customers and a buffer (stock)
of capacity K for additional items. The structure of the
system under study is presented in Fig. 1.

K

PH ,PH1 2

�

MMAP

type 1

type 2

customers

MAP

additional items

Fig. 1. Queueing system under study.

Customers arrive at the system according to
the marked Markovian arrival process (MMAP). The
customers in the MMAP are heterogeneous and have
different types. The arrival of customers is directed
by a stochastic process νt, t ≥ 0, which is an
irreducible continuous-time Markov chain with state
space {0, 1, . . . ,W}. The sojourn time of this chain in
the state ν is exponentially distributed with a positive
finite parameter λ(ν). When the sojourn time in the state
ν expires, with probability p

(0)
ν,ν′ the process νt jumps to

the state ν′ without generation of a customer, ν, ν′ =

0,W, ν �= ν′, and with probability p
(l)
ν,ν′ the process νt

jumps to the state ν′ with a generation of type-l customer,
l = 1, 2, ν, ν′ = 0,W. Here and in the sequel the
notation like ν = 0,W means that the parameter ν takes
values from the set {0, 1, . . . ,W}.

The behavior of the MMAP is completely
characterized by the matrices Dl, l = 0, 1, 2, defined by
the entries (Dl)ν,ν′ = λ(ν)p

(l)
ν,ν′ , ν, ν′ = 0,W, l = 1, 2,

and (D0)ν,ν = −λ(ν), ν = 0,W , (D0)ν,ν′ =
λ(ν)p(0)

ν,ν′ , ν, ν′ = 0,W , ν �= ν′. The matrix
D(1) = D0 + D1 + D2 represents the generator of
the process νt, t ≥ 0.

The average total arrival intensity λ is defined by
λ = θ(D1 +D2)e, where θ is the invariant vector of the
stationary distribution of the Markov chain νt, t ≥ 0. The
vector θ is the unique solution to the system θD(1) =
0, θe = 1. Here e denotes a column vector consisting
of 1’s, and 0 is a zero row vector. The average arrival
intensity λl of type-l customers is defined by λl = θDle,
l = 1, 2.

The squared integral (without differentiating the
types of customers) coefficient of variation of intervals
between successive arrivals is given as cvar =
2λθ(−D0)

−1e−1. The squared coefficient of variation of

inter-arrival times of type-l customers is given as c(l)var =

2λlθ(−D0−D
(l̄)
1 )−1e−1, l̄ �= l, l̄, l = 1, 2. The integral

coefficient of correlation of two successive intervals
between arrivals is given as ccor = (λθ(−D0)

−1(D(1)−
D0)(−D0)

−1e − 1)/cvar. More information about the
MMAP and related research is given, e.g., by He (1996).

We assume that kl additional items are required for
service of each type-l customer, l = 1, 2. Consequently,
at the moment when a type-l customer is chosen for
service, the number of additional items in the stock
decreases by kl, l = 1, 2.

Type-1 customers are assumed to be priority
customers and have limited preemptive priority over
type-2 customers. An arriving type-1 customer is not
accepted for service (is lost) only if the server provides
service to another type-1 customer or the number of
additional items in the stock is less than k1. If the server
provides service to a type-2 customer at the moment of
the arrival of a type-1 customer, service of the type-2
customer is immediately terminated, it leaves the system
permanently (is lost) and the additional items engaged
into service are lost as well, provided there are at least
k1 additional items available. Different scenarios of
the system behavior during an arbitrary type-1 customer
arrival epoch are illustrated in Figs. 2–5:

• The server is busy with a type-1 customer, the
arriving customer is lost (see Fig. 2).

type 1

type 2

1

2

K

k1

Fig. 2. Arrival of a type-1 customer when the server is busy with
a type-1 customer.

• the number of additional items in the stock is less
than k1, the arriving customer is lost (see Fig. 3). If
at this moment the server provides service to a type-2
customer, the service is not terminated.
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Fig. 3. Arrival of a type-1 customer when the number of addi-
tional items in the stock is less than k1.
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• The number of additional items in the stock is greater
than or equal to k1 and the server is free, the arriving
customer occupies the server (see Fig. 4). The left
part of Fig. 4 illustrates the case k1 < k2 (therefore,
the server can be idle while several type-2 customers
are waiting in the buffer) and the right part illustrates
the case k1 ≥ k2.

type 1

k1

1

2

K

k1

type 1

k1

1

2

K

k1

Fig. 4. Arrival of a type-1 customer when the number of addi-
tional items in the stock is greater than or equal to k1 and
the server is free.

• The number of additional items in the stock is
greater than or equal to k1 and the server is busy
with a type-2 customer, the arriving type-1 customer
occupies the server. The type-2 customer, whose
service is terminated, is lost (see Fig. 5).

type 1

type 2

k
1

1

2

K

k1

Fig. 5. Arrival of a type-1 customer when the number of addi-
tional items in the stock is greater than or equal to k1 and
the server is busy with a type-2 customer.

The arriving type-2 customer can start service only
if the server is idle and the number of additional items
in the stock is greater than some preassigned threshold
N, N ≥ k2. Otherwise, this customer joins the buffer.
Different scenarios of the system behavior at an arbitrary
type-2 customer arrival epoch are illustrated in Figs. 6 and
7:

• The number of additional items in the stock is greater
than N, k2 − 1 ≤ N < K, and the server is free, the
arriving customer occupies the server and the number
of additional items decreases by k2 (see Fig. 6).

type 2
k2

1

2

K

N

Fig. 6. Arrival of a type-2 customer when the number of addi-
tional items in the stock is greater than N and the server
is free.

• The number of additional items in the stock is less
than or equal to N or the server is busy, the arriving
type-2 customer is placed into the buffer (see Fig. 7).

1
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1

2
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type 2 type 2

Fig. 7. Arrival of a type-2 customer when the number of addi-
tional items in the stock is less than or equal to N or the
server is busy.

Type-2 customers are picked up from the queue
according to the first in–first out discipline. The type-2
customer from the buffer can start service at an arbitrary
service completion moment only if it is the first in the
buffer and there are at least N additional items in the
stock.

Additional items arrive at the system according to a
Markovian arrival process (MAP). Arrivals in the MAP
are directed by an irreducible continuous time Markov
chain ζt, t ≥ 0, with the finite state space {0, 1, . . . , V }.
The MAP is defined by the matrices H0 and H1. Let us
denote as λe the average intensity of the MAP. For more
information about the MAP, ( see, e.g., Chakravarthy,
2001). If at the arrival epoch of additional item, the stock
of items is full, then the arriving item is lost.

The service time of an arbitrary type-l customer
has a PH distribution with an irreducible representation
(βl, Sl), l = 1, 2. This service time can be interpreted as
a time until the underlying Markov process η

(l)
t , t ≥ 0,

with a finite state space {1, . . . ,Ml,Ml + 1} reaches the
single absorbing state Ml + 1 conditioned on the fact
that the initial state of this process is selected among the
transient states {1, . . . ,Ml} according to the probabilistic

row vector βl = (β
(l)
1 , . . . , β

(l)
Ml

). The transition rates of

the process η
(l)
t within the set {1, . . . ,Ml} are defined

by the sub-generator Sl, and the transition rates into the
absorbing state (what leads to service completion) are
given by the entries of the column vector s(l)0 = −Sle.
The mean service time of type-l customer is calculated
by b

(l)
1 = βl(−Sl)

−1e, l = 1, 2. The squared coefficient

of variation is given by c
(l)
var = b

(l)
2 /(b

(l)
1 )2 − 1 where

b
(l)
2 = 2βl(−Sl)

−2e. For more information about the PH
distribution and its usefulness, see, e.g., the work of Neuts
(1981).

Type-2 customers in the buffer are impatient,
i.e., customers leave the buffer after an exponentially
distributed time with the parameter α, 0 < α < ∞, after
arrival due to a lack of service.

For the reader’s convenience, we summarize the
main notation that characterizes the system in Table 1.
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3. Process of the system states

It is easy to see that the behavior of the system under study
is described in terms of the following regular irreducible
continuous-time Markov chain

ξt = {it, rt, kt, νt, ζt, ηt}, t ≥ 0,

where, during the epoch t, t ≥ 0,

• it is the number of type-2 customers in the buffer,
it ≥ 0;

• rt is an indicator of the status of the server: rt = 0 if
the server is free, rt = r if the server serves type-r
customer, r = 1, 2;

• kt is the number of additional items, kt = 0,K;

• νt is the state of the underlying process of the
MMAP, νt = 0,W ;

• ζt is the state of the underlying process of the MAP,
ζt = 0, V ;

• ηt is the state of the PH service process, with ηt =
1, δrt=1M1 + δrt=2M2.

Here we write

δ[condition] =

{
1 if the condition holds true,
0 otherwise.

Table 1. Notation.
K the capacity of buffer (stock) for additional

items

Dl,
l = 0, 1, 2

the square matrices of size W + 1 that charac-
terize the MMAP arrival flow of customers

λl,
l = 1, 2

the average arrival intensity of type-l customers

Hl,
l = 0, 1

the square matrices of size V + 1 that charac-
terize the MAP arrival flow of additional items

λe the average arrival intensity of additional items
kl,
l = 1, 2

the number of additional items required for ser-
vice of one type-l customer

N the threshold of type-2 customers admission
control

(βl, Sl),
l = 1, 2

an irreducible representation of the type-l cus-
tomer service time distribution

Ml,
l = 1, 2

the number transient states of the PH service
process of type-l customer

s
(l)
0 ,
l = 1, 2

the transition intensities to the absorbing state
of the PH service process of type-l customer

α the intensity of impatience of type-2 customers
from the buffer

The Markov chain ξt, t ≥ 0, has the following state
space:

(
{0, 0, k, ν, ζ}, k = 0,K

)

∪
(
{i, 0, k, ν, ζ}, i > 0, k = 0, N

)

∪
(
{i, r, k, ν, ζ, η}, i ≥ 0, r = 1, 2, k = 0,K

)
,

ν = 0,W, ζ = 0, V , η = 1, δr=1M1 + δr=2M2.

For further use throughout this paper, we introduce
the following notation:

• I is the identity matrix, and O is the zero matrix of
the appropriate dimension;

• ⊗ and⊕ indicate the symbols of Kronecker’s product
and sum of matrices, respectively;

• W̄ = W + 1, V̄ = V + 1;

• diag{A1, . . . , Al} is a block-diagonal matrix with
the diagonal blocks A1, . . . , Al;

• E+
N is the square matrix of size N + 1 with all zero

entries except the entries (E+
N )l,l+1, l = 0, N − 1,

which are equal to 1;

• E+
K is the square matrix of size K + 1 with all zero

entries except the entries (E+
K)l,l+1, l = 0,K − 1,

and (E+
K)K,K which are equal to 1;

• E−
n,k, n = N,K, k = k1, k2, is the (n + 1) ×

(K+1) matrix with all zero entries except the entries
(E−

n,k)l,l−k, l = k, n, which are equal to 1;

• Ẽ is the (N+1)×(K+1) matrix with all zero entries
except the entry (Ẽ)N,N−k2+1 which is equal to 1;

• Ē is the square matrix of size K + 1 with all zero
entries except the entries (Ē)l,l−k2 , l = N + 1,K,
which are equal to 1;

• Īn,k, n = N,K, k = k1, k2, is the square matrix
of size n + 1 with all zero entries except the entries
(Īn,k)l,l, l = 0,min{k − 1, n}, which are equal to
1;

• Ik,j , k, j ≥ 0, is the (k + 1) × (j + 1) matrix with
all zero entries except for the entries (Ik,j)l,l, l =

0,min{k, j}, which are equal to 1.

Let us enumerate the states of the Markov chain
ξt, t ≥ 0, in the direct lexicographic order of the
components r, k, ν, ζ, η and refer to the set of the
states of the chain having values (i, r) of the first two
components of the Markov chain as a macro-state (i, r).
Let Q be the generator of the Markov chain ξt, t ≥ 0,
consisting of the blocks Qi,j , which, in turn, consist of the
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matrices Q(r,r′)
i,j of the transition rates of this chain from

the macro-state (i, r) to the macro-state (j, r′), r, r′ =
0, 1, 2. The diagonal entries of the matrices Qi,i are
negative, and the modulus of the diagonal entry of the
blocks Q

(r,r)
i,i defines the total intensity of leaving the

corresponding state of the Markov chain ξt, t ≥ 0.

Lemma 1. The infinitesimal generator Q = (Qi,j)i,j≥0
of the Markov chain ξt, t ≥ 0, has a block-tridiagonal
structure:

Q =

⎛
⎜⎜⎜⎝

Q0,0 Q0,1 O O . . .
Q1,0 Q1,1 Q1,2 O . . .
O Q2,1 Q2,2 Q2,3 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎠ .

The non-zero blocks Qi,j , i, j ≥ 0, have the following
form:

Qi,i =

⎛
⎜⎝

Q
(0,0)
i,i Q

(0,1)
i,i Q

(0,2)
i,i

Q
(1,0)
i,i Q

(1,1)
i,i O

Q
(2,0)
i,i Q

(2,1)
i,i Q

(2,2)
i,i

⎞
⎟⎠ , i ≥ 0, (1)

Q
(0,0)
i,i = Iδi=0K+δi>0N+1 ⊗ (D0 ⊕H0)

+ E+
δi=0K+δi>0N

⊗ IW̄ ⊗H1 − iαI

+ Īδi=0K+δi>0N,k1 ⊗D1 ⊗ IV̄ , i ≥ 0,

Q
(0,1)
i,i = E−

δi=0K+δi>0N,k1
⊗D1 ⊗ IV̄ ⊗ β1, i ≥ 0,

Q
(0,2)
i,i =

{
Ē ⊗D2 ⊗ IV̄ ⊗ β2, i = 0,

O, i > 0,

Q
(r,r)
i,i = IK+1 ⊗ (D0 ⊕H0 ⊕ Sr)

+ E+
K ⊗ IW̄ ⊗H1 ⊗ IMr

− iαI + (δr=2ĪK,k1 + δr=1IK+1)

⊗D1 ⊗ IV̄ Mr
, r = 1, 2,

Q
(2,1)
i,i = (E−

K,k1
⊗D1 ⊗ IV̄ )⊗ eM2β1,

Q
(r,0)
i,i =

{
I(K+1)W̄ V̄ ⊗ s

(r)
0 , i = 0,

IK,N ⊗ IW̄ V̄ ⊗ s
(r)
0 , i > 0,

Qi,i+1 = diag{Q(r,r)
i,i+1, r = 0, 2}, i ≥ 0, (2)

Q
(0,0)
i,i+1 =

{
IK,N ⊗D2 ⊗ IV̄ , i = 0,

IN+1 ⊗D2 ⊗ IV̄ , i > 0,

Q
(r,r)
i,i+1 = IK+1 ⊗D2 ⊗ IV̄ Mr

, r = 1, 2,

Qi,i−1 =

⎛
⎜⎝

Q
(0,0)
i,i−1 O Q

(0,2)
i,i−1

O Q
(1,1)
i,i−1 Q

(1,2)
i,i−1

O O Q
(2,2)
i,i−1

⎞
⎟⎠ , i ≥ 1, (3)

Q
(r,r)
i,i−1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

iαIN,K ⊗ IW̄ V̄ , r = 0, i = 1,

iαI(N+1)W̄ V̄ , r = 0, i > 1,

iαI(K+1)W̄ V̄ M1
, r = 1, i > 0,

iαI(K+1)W̄ V̄ M2

+Ē ⊗ IW̄ V̄ ⊗ s
(2)
0 β2, r = 2, i > 0,

Q
(0,2)
i,i−1 = Ẽ ⊗ IW̄ ⊗H1 ⊗ β2,

Q
(1,2)
i,i−1 = Ē ⊗ IW̄ V̄ ⊗ s

(1)
0 β2.

Proof. To give insight into derivation of the generator of a
multi-dimensional Markov chain for the model considered
and give a possibility to an interested reader to analyze
possible modifications of our model, we present a brief
explanation of the form of the generator and its blocks.

The generator Q has a block-tridiagonal structure
(Qi,j = O if |i − j| > 1) because the probability
of two or more arrivals or departures (as well as the
simultaneous arrival and departure) during the small
interval is negligible. All non-zero matrices Qi,j consist
of nine blocks (Qi,j)

(r,r′), r, r′ = 0, 1, 2, containing
the intensities of transition of the Markov chain from
the macro-state (i, r) to the macro-state (j, r′), r, r′ =
0, 1, 2.

In particular, this implies that the matrix Qi,i, i ≥ 0,
can be presented in the form (1). The zero block in (1)
appears since there is no transition from the macro-state
(i, 1) to the macro-state (i, 2) because service of the
priority customer cannot be terminated by a non-priority
customer. The negative diagonal entries of the matrices
(Qi,i)

(r,r), r = 0, 1, 2, define, up to the sign, the
intensities of the exit of the Markov chain ξt from the
macro-state (i, r). Such an exit can happen due to a
change in the state of the underlying processes of the
MMAP or the MAP arrival processes, a customer service
completion if r = 1 and r = 2 and the departure
of a customer from the buffer due to impatience. The
non-diagonal entries of the matrices (Qi,i)

(r,r), r =
0, 1, 2, define the intensities of transition of the Markov
chain ξt that do not lead to the change in the macro-state
(i, r): the change in the state of the underlying process
of the MAP arrivals of additional items, which does not
cause the start of service of the waiting type-2 customer,
the change in the state of the underlying process of
the MMAP arrival of customers that does not lead to a
customer generation (non-diagonal entries of the matrix
D0), the change in the state of the PH service process that
does not lead to the service completion in case r = 1
and r = 2 (non-diagonal entries of the matrix Sr) and the
arrival and rejection of a priority customer.

The matrices (Qi,i)
(0,r), r = 1, 2, define the

intensities of admission of the type-r customer for service
upon arrival. In this case, the corresponding number
of additional items disappears and the service process is
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started. The matrices (Qi,i)
(r,0), r = 1, 2, define the

intensities of the event when a type-r customer completes
service and new service does not start. The matrix
(Qi,i)

(2,1) defines the intensities of the event when service
of type-2 customer is terminated by the arrival of a priority
customer.

The matrix Qi,i+1, i ≥ 0, defines the intensities of
the events that lead to an increase in the number of type-2
customers in the buffer and has form (2). The diagonal
form of (2) is explained by the fact that the events that lead
to an increase in the number of type-2 customers in the
buffer do not change the state of the server. Accordingly,
the non-diagonal blocks of the matrix Qi,i+1, i ≥ 0, have

all zero entries. The block Q
(r,r)
i,i+1, i ≥ 0, r = 0, 1, 2,

defines the intensities of type-2 customer arrival when this
customer cannot immediately start service due to the lack
of additional items or server business.

The matrix Qi,i−1, i ≥ 1, defines the intensities
of the events that lead to a decrease in the number of
type-2 customers in the buffer and has form (3). The
blocks Q

(0,1)
i,i−1, Q

(1,0)
i,i−1, Q

(2,0)
i,i−1, and Q

(2,1)
i,i−1, are equal to

zero matrices because the corresponding changes in the
state of the server are impossible when the number of
type-2 customers in the buffer decreases. The blocks
(Qi,i−1)

(r,r), r = 0, 1, 2, define the intensities of type-2
customers leaving the buffer due to impatience. Also
the block (Qi,i−1)

(2,2) defines the intensity of the event
that service of a type-2 customer is finished and a type-2
customer from the buffer is chosen for service. The block
(Qi,i−1)

(0,2) defines the intensity of the event that an
item arrives to the system when there are N items in the
buffer and type-2 customer from the buffer is admitted for
service. The block (Qi,i−1)

(1,2) defines the intensity of
the event that service of a type-1 customer is finished and
a type-2 customer from the buffer starts service. �

Remark 1. As was already mentioned above, the
understanding of the generator gives an opportunity
to analyze possible modifications of our model. For
example, for some applications the loss of a type-2
customer in the case of the arrival of a type-1 customer
may be unrealistic. Modification of the generator to the
case when the customer whose service is interrupted is
not lost but returns to the queue can be easily performed
using our results. To this end, it is necessary to make the
following two modifications: (i) the block Q

(2,1)
i,i of the

matrix Qi,i should be zero block; (ii) the block Q
(2,1)
i,i+1

of the matrix Qi,i+1 should be given by the formula

Q
(2,1)
i,i+1 = (E−

K,k1
⊗D1 ⊗ IV̄ )⊗ eM2β1.

Remark 2. The Markov chain ξt, t ≥ 0, belongs to
the class of continuous-time asymptotically quasi-Toeplitz
Markov chains (AQTMC) (see Klimenok and Dudin,
2006).

Let us analyze the properties of this Markov chain.
This analysis should include derivation of conditions,
which should be imposed on the system parameters to
guarantee existence of a stationary distribution of the
states of the chain (the ergodicity condition), and a
procedure for computation of the stationary probabilities
of the states.

It follows from the work of Klimenok and Dudin
(2006) that a sufficient condition for the existence of a
stationary distribution of AQTMC ξt, t ≥ 0, can be
expressed in terms of the matrices Y0, Y1 and Y2 defined
as follows:

Y0 = lim
i→∞

R−1
i Qi,i−1,

Y1 = lim
i→∞

R−1
i Qi,i + I,

Y2 = lim
i→∞

R−1
i Qi,i+1,

where the matrix Ri is the diagonal matrix with the
diagonal entries which are defined as the moduli of the
corresponding diagonal entries of the matrix Qi,i, i ≥ 0.

It is easy to verify that in the case considered the
matrices Y0, Y1 and Y2 have the following form:

Y0 = I, Y1 = O, Y2 = O,

and, as it follows from the work of Klimenok and Dudin
(2006), a sufficient condition for the ergodicity of Markov
chain ξt, t ≥ 0, is the fulfillment of the inequality

yY0e > yY2e,

where the vector y is the unique solution to the system

y(Y0 + Y1 + Y2) = y, ye = 1.

It is easy to see that here the ergodicity condition is given
by the inequality 1 > 0 which is true for all possible
values of the system parameters. The intuitive explanation
of this fact is clear. Because the customers in the buffer
are impatient and leave the system after an exponentially
distributed amount of time, the number of customers in
the buffer never approaches infinity.

Accordingly, the stationary probabilities of the
system states π(i, r, k, ν, ζ, η), i ≥ 0, r = 0, 2, k = 0,K,
ν = 0,W, ζ = 0, V , η = 1,Mr, always exist. Let
us form the row vectors π(i, r, k) of these probabilities
enumerated in the lexicographic order of the components
ν, ζ, η. Then let us form the row vectors

π(0, 0) = (π(0, 0, 0),π(0, 0, 1), . . . ,π(0, 0,K)),

π(i, 0) = (π(i, 0, 0),π(i, 0, 1), . . . ,π(i, 0, N)),

i ≥ 1,
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π(i, r) = (π(i, r, 0),π(i, r, 1), . . . ,π(i, r,K)),

r = 1, 2,

πi = (π(i, 0),π(i, 1),π(i, 2)), i ≥ 0.

It is well known that the probability vectors πi, i ≥
0, satisfy the following system of linear algebraic
equations:

(π0,π1,π2, . . . )Q = 0,

(π0,π1,π2, . . . )e = 1,
(4)

where Q is the infinitesimal generator of the Markov
chain ξt. The system of equations (4) is infinite and the
problem of its solution is quite difficult. However, it
can be successfully solved using the numerically stable
algorithm that takes into account that the matrix Q has a
block-tridiagonal structure and the limits Yk, k = 0, 1, 2,
exist, which is presented by Dudina et al. (2013).

For convenience, we present this algorithm taking
into account the features of the generator Q (see
Algorithm 1).

4. Performance measures

As soon as the vectors πi, i ≥ 0, have been calculated,
we are able to find various performance measures of the
system.

The probability P serv
1 that at an arbitrary epoch the

server is busy by a type-1 customer is computed by

P serv
1 =

∞∑
i=0

π(i, 1)e.

Remark 3. The formulas for computing the main
performance of the system contain infinite sums. The
question about calculation of such sums arises. Note
that the Markov chain that describes the system behavior
is ergodic; therefore, the stationary probability vectors
πi converge in norm to a zero vector as i approaches
infinity. Thus, the computation of some infinite sum may
be terminated if the norm of the summand becomes less
than a preassigned value ε (e.g., ε = 10−10).

The probability P serv
2 that at an arbitrary epoch the

server is busy by a type-2 customer is computed by

P serv
2 =

∞∑
i=0

π(i, 2)e.

The average number N buffer
customers of customers in the buffer

is computed by

N buffer
customers =

∞∑
i=1

iπie.

Algorithm 1.
Step 1. Calculate the stochastic matrices Gi using the
recursion

Gi = −(Qi+1,i+1 +Qi+1,i+2Gi+1)
−1Qi+1,i, i ≥ 0.

Note that this recursion is backwards and for computing
the matrix Gi it is necessary to obtain all matrices
Gl, l > i, i ≥ 0. It can be proven that in the case
considered the sequence of the matrices Gi converges to
the identity matrix, when i approaches infinity. Thus, for
any predefined small positive number εG there exists a
value i0 such that the norm of the matrix Gi − I is less
than εG for all l, l ≥ i0. Thus, we can set in the backward
recursion Gl = I for l, l ≥ i0.

Step 2. Calculate the matrices Fi using the recursion

Fi = −Fi−1Qi−1,i(Qi,i +Qi,i+1Gi)
−1, i ≥ 1,

with the initial condition F0 = I.

Note that the norm of the matrix Fi tends to zero when i
approaches infinity. Thus, the calculation of the matrices
Fi can be terminated if the norm of the matrix Fi becomes
less than some preassigned positive value.

Step 3. Calculate the vector π0 as the unique solution to
the system of the linear algebraic equations

π0(Q0,0 +Q0,1G0) = 0, π0

∞∑
i=0

Fie = 1.

Step 4. Calculate the stationary probabilities vectors
πi, i ≥ 1, as

πi = π0Fi, i ≥ 1.

The average numberN stock
item of additional items in the stock

is computed by

N stock
item =

K∑
k=1

kπ(0, 0, k)e+

∞∑
i=1

N∑
k=1

kπ(i, 0, k)e

+

∞∑
i=0

2∑
r=1

K∑
k=1

kπ(i, r, k)e.

The average intensity λout
l of flow of type-l customers who

receive service is computed by

λout
l =

∞∑
i=0

π(i, l)(e(K+1)W̄ V̄ ⊗ s
(l)
0 ), l = 1, 2.

The probability P loss
l that an arbitrary type-l

customer will be lost is computed by

P loss
l = 1− λout

l

λl
, l = 1, 2.
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The probability P server-busy
1 of an arbitrary arriving type-1

customer loss because the server is busy with a type-1
customer is computed as

P server-busy
1 =

1

λ1

∞∑
i=0

π(i, 1)(IK+1 ⊗D1 ⊗ IV̄ M1
)e.

The probability P item-lack
1 of an arbitrary arriving type-1

customer loss due to the lack of additional items is
computed as

P item-lack
1

=
1

λ1

[
k1−1∑
k=0

π(0, 0, k)(D1 ⊗ IV̄ )e

+

∞∑
i=1

min{k1−1,N}∑
k=0

π(i, 0, k)(D1 ⊗ IV̄ )e

+

∞∑
i=0

k1−1∑
k=0

π(i, 2, k)(D1 ⊗ IV̄ M2
)e

]
.

The probability P term that service of an arbitrary
type-2 customer is terminated by an arriving type-1
customer is computed as

P term =
1

λ2

∞∑
i=0

K∑
k=k1

π(i, 2, k)(D1 ⊗ IV̄ M2
)e.

The probability P imp that an arbitrary type-2 customer
leaves the system due to impatience is computed as

P imp = P loss
2 − P term.

The probability P loss
item that an arbitrary additional item will

be lost is computed by

P loss
item =

1

λe

[ ∞∑
i=1

2∑
r=1

π(i, r,K)(IW̄ ⊗H1 ⊗ IMr )e

+π(0, 0,K)(IW̄ ⊗H1)e

]
.

The probabilityP imm
1 that an arbitrary arriving type-1

customer occupies the server is computed as

P imm
1 =

1

λ1

∞∑
i=0

[
δi=0K+δi>0N∑

k=k1

π(i, 0, k)(D1 ⊗ IV̄ )e

+
K∑

k=k1

π(i, 2, k)(D1 ⊗ IV̄ M2
)e

]
.

The probability P imm
2 that at an arbitrary type-2

customer occupies the server upon arrival is computed as

P imm
2 =

1

λ2

K∑
k=N+1

π(0, 0, k)(D2 ⊗ IV̄ )e.

5. Distribution of the waiting time in the
system of an arbitrary non-priority
customer

We will derive the distribution of an arbitrary type-2
customer’s waiting time in terms of the Laplace–Stieltjes
transform (LST ). Let v(s) be the LST of the distribution
of an arbitrary type-2 customer’s waiting time. To
derive the expression for this LST, we use the method
of collective marks (method of additional event, method
of catastrophes) (for references, see, e.g., Kesten and
Runnenburg, 1956; Dantzig, 1955). To this end, we
interpret the variable s as the intensity of some virtual
stationary Poisson flow of catastrophes. In consequence,
v(s) has the meaning of the probability that no catastrophe
happens during the waiting time of an arbitrary type-2
customer. Let us tag an arbitrary type-2 customer and keep
track of its staying in the system. Accordingly, v(s) has
the meaning of the probability that the catastrophe does
not arrive during the waiting time of the tagged type-2
customer.

Let v(s, l, r, k, ν, ζ, η) be the probability that a
catastrophe will not arrive during the rest of the tagged
type-2 customer’s waiting time in the system conditioned
on the fact that at the given moment the position of the
tagged customer in the buffer is l, l ≥ 1, the state of the
server is r, r = 0, 2, the number of additional items in the
stock is equal to k, k = 0,K, the states of the processes
νt, ζt and ηt are ν, ζ and η respectively, t ≥ 0.

Let us enumerate the probabilities v(s, l, r, k, ν, ζ, η)
in the lexicographic order of the components k, ν, ζ, η
and form the column vectors v(s, l, r) from these
probabilities.

To compute the unknown vectors v(s, l, r), r =
0, 1, 2, l ≥ 1, let us introduce the column vectors

v(s, l) = (vT (s, l, 0),vT (s, l, 1),vT (s, l, 2))T , l ≥ 1.

Theorem 1. The vectors v(s, l), l ≥ 1, can be computed
from the following recursion:

v(s, 1) = ((s+ α)I − V1)
−1(a+ αe), (5)

v(s, l) = ((s+ lα)I − V1)
−1((V2 + (l − 1)αI)

× v(s, l − 1) + αe), l > 1, (6)

where the matrices V1 and V2 and the vector a are defined
as follows:

V1 =

⎛
⎜⎝

V
(0,0)
1 V

(0,1)
1 O

V
(1,0)
1 V

(1,1)
1 O

V
(2,0)
1 V

(2,1)
1 V

(2,2)
1

⎞
⎟⎠ ,

V
(0,0)
1 = IN+1 ⊗ ((D0 +D2)⊕H0)

+ E+
N ⊗ IW̄ ⊗H1 + ĪN,k1 ⊗D1 ⊗ IV̄ ,
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V
(0,1)
1 = E−

N,k1
⊗D1 ⊗ IV̄ ⊗ β1,

V
(r,r)
1 = IK+1 ⊗ ((D0 +D2)⊕H0 ⊕ Sr)

+ E+
K ⊗ IW̄ ⊗H1 ⊗ IMr

+ (δr=2ĪK,k1 + δr=1IK+1)

⊗D1 ⊗ IV̄ Mr
, r = 1, 2,

V
(2,1)
1 = (E−

K,k1
⊗D1 ⊗ IV̄ )⊗ eM2β1,

V
(r,0)
1 = IK,N ⊗ IW̄ V̄ ⊗ s

(r)
0 , r = 1, 2,

V2 =

⎛
⎜⎝

O O V
(0,2)
2

O O V
(1,2)
2

O O V
(2,2)
2

⎞
⎟⎠ ,

V
(0,2)
2 = Ẽ ⊗ IW̄ ⊗H1 ⊗ β2,

V
(r,2)
2 = Ē ⊗ IW̄ V̄ ⊗ (s

(r)
0 β2), r = 1, 2,

a = (((Ẽ ⊗ IW̄ ⊗H1)e)
T , (Ē ⊗ IW̄ V̄ ⊗ s

(1)
0 )e)T ,

((Ē ⊗ IW̄ V̄ ⊗ s
(2)
0 )e)T )T .

Proof. Through on analysis of all possible transitions
of the components l, r, k, ν, ζ, η during the infinitesimally
small time interval and using the formula of total
probability, it can be shown that the vectors v(s, l, r) can
be found from the following system of linear algebraic
equations:

v(s, l, 0)

=

[
(s+ lα)I − IN+1 ⊗ (D0 ⊕H0)

]−1

×
(
δl>1Ẽ ⊗ IW̄ ⊗H1 ⊗ β2v(s, l − 1, 2)

+ δl=1Ẽ ⊗ IW̄ ⊗H1e+ (IN+1 ⊗D2 ⊗ IV̄

+ ĪN,k1 ⊗D1 ⊗ IV̄ + E+
N ⊗ IW̄ ⊗H1)v(s, l, 0)

+ E−
N,k1 ⊗D1 ⊗ IV̄ ⊗ β1v(s, l, 1)

+ (l − 1)αv(s, l − 1, 0) + αe

)
,

(7)

v(s, l, r)

=

[
(s+ lα)I − IN+1 ⊗ (D0 ⊕H0 ⊕ Sr)

]−1

×
(
(((δr=1IK+1 + δr=2ĪK,k1)⊗D1

+ IK+1 ⊗D2)⊗ IV̄ Mr

+ E+
K ⊗ IW̄ ⊗H1 ⊗ IMr )v(s, l, r)

+ δl>1Ē ⊗ IW̄ V̄ ⊗ s
(r)
0 β2v(s, l − 1, 2)

+ δl=1(Ē ⊗ IW̄ V̄ ⊗ s
(r)
0 )e

+ δr=2E
−
K,k1

⊗D1 ⊗ IV̄ ⊗ β1v(s, l, 1)

+ (l − 1)αv(s, l − 1, r) + αe

+ IK,N ⊗ IW̄ V̄ ⊗ s
(r)
0 v(s, l, 0)

)
, r = 1, 2, l ≥ 1.

(8)

Let us briefly explain (7). The term in the square
bracket of the right-hand side of (7) defines the total
intensity of the events which can happen after an arbitrary
time moment: a catastrophe arrival, the transition of the
MMAP arrival process of customers, the transition of
the MAP arrival process of additional items, a type-2
customer leaving from the buffer. Note that in the case
considered the server is free (r = 0). Therefore the
transitions of the service process are impossible. The first
term in the round brackets in (7) corresponds to the case
when the tagged customer is not the first in the queue,
the number of additional items in the buffer is N − 1
and the new additional item arrives to the system. In
this situation, the first type-2 customer from the queue
starts service and the position of the tagged customer
in the buffer decreases by one. Thus, the conditional
probability that a catastrophe will not arrive during the rest
of the tagged type-2 customer’s waiting time is defined
as the corresponding entry of the vector v(s, l − 1, 2).
The second term corresponds to the situation when the
tagged customer is the first in the queue, the number of
additional items in the buffer is N−1 and a new additional
item arrives to the system. In this situation, the tagged
customer starts service. In this case, the waiting time
of the tagged customer is finished and the conditional
probability that a catastrophe will not arrive is defined as
the corresponding entry of the vector e.

The third term in the square bracket corresponds to
the situation when a new type-2 customer arrives to the
system. The fourth term corresponds to the situation
when the number of additional items in the buffer is
less than k1 and a new type-1 customer arrives, it is not
admitted to the system and leaves it forever. The fifth term
corresponds to the case when the number of additional
items in the buffer is less than N − 1, a new additional
item arrives and joins the buffer. In the third, fourth and
fifth situations the position of the tagged customer and the
state of the server are not changed. Thus, the conditional
probability that a catastrophe will not arrive during the
rest of the tagged customer’s waiting time is defined as
the corresponding entry of the vector v(s, l, 0). The sixth
term corresponds to the situation when the number of
additional items in the buffer is greater than or equal to k1
and a new type-1 customer arrives. This customer starts
service and the conditional probability that a catastrophe
will not arrive during the rest of the tagged customer’s
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waiting time is defined as the corresponding entry of
the vector v(s, l, 1). The seventh term corresponds to
the case when some non-tagged type-2 customer leaves
the buffer due to impatience. In this case, the position
of the tagged customer in the buffer decreases by one
and the probability that a catastrophe will not arrive
during the rest of the tagged type-2 customer’s waiting
time is defined as the corresponding entry of the vector
v(s, l − 1, 0). Eventually, the eighth term corresponds
to the situation when the tagged customer leaves the
buffer due to impatience. The waiting time of the tagged
customer is finished and the probability that a catastrophe
will not arrive is defined as the corresponding entry of the
vector e.

The formula (8) is explained analogously. The only
difference is that the server is not free. Therefore, the
transitions of the service process should be taken into
account.

To find the solution to the system (7) and (8), rewrite
it in matrix form as

(−(s+ lα)I + V1)v(s, l)

+ δl>1(V2 + (l − 1)αI)v(s, l − 1)

+ δl=1a+ αe = 0T , l ≥ 1. (9)

The recursion (6) with the initial condition (5)
evidently follows from (9). �

Theorem 2. The LST v(s) of the distribution of an arbi-
trary type-2 customer’s waiting time in the system is

v(s)

= P imm
2 + λ−1

2

[ N∑
k=0

π(0, 0, k)(D2 ⊗ IV̄ )v(s, 1, 0)

+

∞∑
i=1

π(i, 0)(IN+1 ⊗D2 ⊗ IV̄ )v(s, i + 1, 0)

+

∞∑
i=0

2∑
r=1

π(i, r)(IK+1 ⊗D2 ⊗ IV̄ Mr
)v(s, i + 1, r)

]
.

Proof. Let us consider all possible situations at the arrival
epoch of the tagged customer:

• The tagged customer starts service upon arrival. The
probability of this event is P imm

2 . In this case, the
probability that no catastrophe arrives during the
waiting time is equal to one.

• The tagged customer arrives to the empty system,
but the number of additional items is not sufficient
to start service. The probability of this event is
λ−1
2

∑N
k=0 π(0, 0, k)(D2 ⊗ IV̄ )e. In this case, the

conditional probability that no catastrophe arrives
during the waiting time is equal to the corresponding
entry of the vector v(s, 1, 0).

• The tagged customer arrives to the system when
there are other type-2 customers in the system, but
the server is free because the number of additional
items is less than or equal to N . The probability
of this event is λ−1

2

∑∞
i=1 π(i, 0)(IN+1 ⊗ D2 ⊗

IV̄ )e. In this case, the conditional probability that no
catastrophe arrives during the waiting time is equal to
the corresponding entry of the vector v(s, i + 1, 0).

• The tagged customer arrives to the system when
the server serves type-r customer. Its probability is
λ−1
2

∑∞
i=0 π(i, r)(IK+1⊗D2⊗IV̄ Mr

)e. In this case,
the conditional probability that no catastrophe arrives
during the waiting time is equal to the corresponding
entry of the vector v(s, i + 1, r).

The assertion of the theorem evidently follows from the
above considerations and the law of total probability. �

Corollary 1. The average waiting time V wait of an arbi-
trary type-2 customer is

V wait

= −λ−1
2

[ N∑
k=0

π(0, 0, k)(D2 ⊗ IV̄ )v
′(s, 1, 0, k)|s=0

+

∞∑
i=1

π(i, 0)(IN+1 ⊗D2 ⊗ IV̄ )v
′(s, i + 1, 0)|s=0

+

∞∑
i=0

2∑
r=1

π(i, r)(IK+1 ⊗D2 ⊗ IV̄ Mr
)

× v′(s, i+ 1, r)|s=0

]
.

Here the column vectors v′(s, l, r)|s=0 and
v′(s, l, r, k)|s=0 are calculated as the blocks of the
vector v′(s, l)|s=0 which can be calculated recursively as
follows:

v′(s, 1)|s=0 = −(αI − V1)
−2(a+ αe),

v′(s, l)|s=0

= (lαI − V1)
−1(−e+ (V2 + (l − 1)αI)

× v′(s, l − 1)|s=0), l > 1.

Proof. The formula for calculation of the average
waiting time of an arbitrary tagged customer is based on
the definition V wait = −v′(s)|s=0. �

On the analogy of Theorems 1 and 2, we can obtain
the following assertion.

Theorem 3. The LST w(s) of the distribution of the
waiting time of an arbitrary type-2 customer in the system
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that does not leave the system due to impatience is

w(s)

= ((1 − P imp)λ2)
−1

×
[

N∑
k=0

π(0, 0, k)(D2 ⊗ IV̄ )w(s, 1, 0, k)

+

∞∑
i=1

π(i, 0)(IN+1 ⊗D2 ⊗ IV̄ )w(s, i + 1, 0)

+

∞∑
i=0

2∑
r=1

π(i, r)(IK+1 ⊗D2 ⊗ IV̄ Mr
)w(s, i + 1, r)

]
,

where the column vectors w(s, l, r, k) and w(s, l, r) are
calculated as the blocks of the vector w(s, l) which can
be determined from the following recursion:

w(s, 1) = ((s+ α)I − V1)
−1a,

w(s, l) = ((s+ lα)I − V1)
−1

× (V2 + (l − 1)αI)w(s, l − 1), l > 1.

Corollary 2. The average waiting time V wait-patient of an
arbitrary type-2 customer that does not leave the system
due to impatience is

V wait-patient

= −((1− P imp)λ2)
−1

×
[ N∑
k=0

π(0, 0, k)(D2 ⊗ IV̄ )w
′(s, 1, 0, k)|s=0

+

∞∑
i=1

π(i, 0)(IN+1 ⊗D2 ⊗ IV̄ )w
′(s, i+ 1, 0)|s=0

+

∞∑
i=0

2∑
r=1

π(i, r)(IK+1 ⊗D2 ⊗ IV̄ Mr
)

×w′(s, i+ 1, r)|s=0

]
.

6. Numerical examples

Our numerical experiment has two goals. The first one
is to show an effect of variation in the threshold N that
defines the discipline of type-2 customers accepting to
service. The second goal is to demonstrate the necessity
of taking account of correlation in the arrival processes of
customers and additional items.

We assume that the buffer of additional items
(stock) has a capacity of K = 20, the intensity of
impatience of type-2 customers α = 0.015, the number
of additional items required for service of one type-1
customer k1 = 5 and the number of additional items
required for service of one type-2 customer k2 = 2.
The motivation for the choice k1 > k2 stems from

the interpretation that a type-1 customer represents an
emergency information unit, while a type-2 customer
represents a routine information unit. Because the
probability of the successful transmission of emergency
information should be higher, this transmission should use
a stronger signal, which requires more units of energy.

We assume that the PH service process of type-1
customers is characterized by the vector β1 = (1, 0) and
the matrix

S1 =

( −5 5
0 −5

)
.

The mean service time b
(1)
1 is equal to 0.4, the coefficient

of variation is equal to 0.5. The PH service process of
type-2 customers is characterized by the vector β2 =
(1, 0) and the matrix

S2 =

( −3 3
0 −3

)
.

The mean service time b
(2)
1 is equal to 2/3, coefficient

of variation is equal to 0.5. We fixed b
(2)
1 > b

(1)
1

assuming that emergency information is shorter than
routine information about the object state.

Aiming to demonstrate the effect of correlation, we
introduce two MMAP arrival flows of customers and two
MAP arrival flows of additional items. As is described
above, the MMAP arrival flows of customers are defined
by the matrices D0, D1 and D2. We fix two MMAPs
coded as MMAP0 and MMAP0.4. Both these MMAPs
have the same average total arrival rate λ = 1, the average
intensity of priority customers λ1 = 0.1, and the average
intensity of non-priority customers λ2 = 0.9, but different
coefficients of correlation of successive inter-arrival times
and variation. The MMAP0 is defined by the matrices
D0 = −1, D1 = 0.1 and D2 = 0.9. It has the coefficient
of correlation ccor = 0 and the coefficient of variation
cvar = 1. The MMAP0.4 is defined by the matrices

D0 =

( −3.3977 0
0.001 −0.1102

)
,

D1 =

(
0.3362 0.0035
0.0012 0.0097

)
,

D2 =

(
3.026 0.032
0.0109 0.0874

)
.

It has the coefficient of correlation ccor = 0.4, and the
coefficient of variation cvar = 12.39.

We also fix two MAP arrival flows of additional items
defined by the matrices H0 and H1. Both these MAPs
have the same average total arrival rate λe = 2.5, but
different coefficients of correlation. The arrival process of
the first items coded as MAP0 is defined by the matrices
H0 = −2.5 and H1 = 2.5. It has the coefficient
of correlation ccor = 0 and the coefficient of variation
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cvar = 1. The second process of items arrivals coded as
MAP0.4 is defined by the matrices

H0 =

( −8.4942 0
0.0025 −0.2755

)
,

H1 =

(
8.4057 0.0885
0.0303 0.2427

)
.

It has the coefficient of correlation ccor = 0.4, and the
coefficient of variation cvar = 12.39.

Let us vary the threshold N in the interval [k2 −
1,K − 1]. Figure 8 illustrates the dependence of the loss
probability P loss

1 of an arbitrary type-1 customer and the
loss probability P loss

item of an arbitrary additional item on
the threshold N .

It can be observed in this figure that the loss
probability P loss

item is almost constant and only slightly
increases when N grows. The increase is easily explained
by the fact that when N is large, the non-priority
customers have low chances to reach the server. Many
non-priority customers are lost due to impatience. This
implies smaller consumption of additional items and,
as a consequence, the overflow of the stock and the
loss of arriving items. It is worth noticing that P loss

item
essentially depends on correlation in the arrival processes
of customers and additional items. The absence of
correlation implies a more uniform arrival of customers
and additional items. High correlation causes alternation
of periods when the customers and (or) items arrive
frequently with periods when the customers and (or) items
arrive rarely. This has negative impact on the value of
P loss

item.
The behavior of P loss

1 is quite complicated. Some
dependencies are not monotone. The probability P loss

1

is pretty high for N ≤ 5. When N > 5, this loss
probability essentially decreases. This phenomenon is
easily explained as follows. Because a type-1 customer
may be accepted for service only with the presence of
at least k1 = 5 additional items, while any type-2
customer requires for service k2 = 2 additional items,
in the situation when N ≤ 5 type-2 customers have
good conditions for access to service and permanently
expend the additional items. Accordingly, it is difficult
to have k1 = 5 additional items in the stock and type-1
customers rarely reach the server. As in case of P loss

item, we
observe again strong dependence of the loss probability
on correlation in the arrival processes.

Since there are two reasons of the loss of type-1
customers: a loss due the lack of additional items and
a loss due the competition between type-1 customers, it
seems interesting to look at the probabilities P item-lack

1

of a type-1 customer loss due to the lack of additional
items and P server-busy

1 of a type-1 customer loss because
the server provides service to another type-1 customer
separately.

Figure 9 illustrates the dependence of the loss
probabilities P item-lack

1 and P
server-busy
1 on the threshold

N . It is seen from Fig. 9 that, under the fixed values
of the system parameters, the main reason of a type-1
customer loss is the lack of additional items. The
probability P item-lack

1 decreases when N increases due to
the reason explained above. P

server-busy
1 increases when

N grows. This is clear because fewer type-1 customers
are rejected at the entrance to the system with growth
of N and the chance for a type-1 customer to meet the
server occupied by another type-1 customer increases.
It is interesting to note that the worst combination of
arrival flows for P server-busy

1 is MMAP0.4+MAP0 while
for other performance measures, as a rule, the worst
combination was MMAP0.4+MAP 0.4. This is obvious
because the zero correlation in the additional items’ arrival
process implies a more uniform arrival of additional items,
relatively low loss of additional items and good conditions
for service of type-1 customers. But high correlation in
arrivals of type-1 customers essentially deteriorates this
favorable situation due to an irregularity in arrivals and,
consequently, competition between type-1 customers.

Figure 10 illustrates the dependence of the
probability P imp that an arbitrary type-2 customer
leaves the system due to impatience and the probability
P term that service of an arbitrary type-2 customer
is terminated by an arriving type-1 customer on the
threshold N .

It is evidently seen from these figures that the
probability P imp drastically changes depending on
correlation in the arrival processes. For combination of
two flows with zero correlation, this probability is less
than 0.02 for small N while it is more than 0.5 for
combination MMAP0.4+MAP 0.4. Dependencies of the
probability of forced termination P term on the threshold
N look quite unpredictable. First of all, in contrast
to other loss probabilities, the worst case (the maximal
loss probability) is achieved here for a combination of
two flows with zero correlation, not for correlated flows.
This fact can be explained taking into account the curves
for P imp. For a combination of two flows with zero
correlation, the probability P imp is small. This implies
that most customers are not lost during the waiting time in
the buffer and start service. Therefore, the probability of
service termination is high. The second interesting feature
of the curves for P term is that this probability grows when
N increases from 1 to 7 and it becomes smaller when
N increases from 7 to 19. This feature is explained as
follows. As evidenced in Fig. 8, the probability of type-1
customer loss is high for small values of N. Thus, these
customers rarely terminate service of type-2 customers.
When N grows, the probability P loss

1 decreases and the
probabilityP term grows. However, when N becomes large
(N > 7 in this example), the probability P imp essentially
increases, a lot of type-2 customers leave the system
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without service, and therefore, the termination probability
decreases.

Figure 11 illustrates the dependence of the average
number N buffer

customers of customers in the buffer and the
average number N stock

item of additional items in the stock
on the threshold N . Figure 12 shows the dependence
of the average waiting time V wait of an arbitrary type-2
customer and the average waiting time V wait-patient of an
arbitrary type-2 customer that does not leave the system
due to impatience in the system on the threshold N .

It is again seen from Figs. 11 and 12 that
the performance measures N buffer

customers, N stock
item , V wait and

V wait-patient strongly depend on correlation in the arrival
processes.

It is worth noticing that the results of a large number
of numerical experiments show that famous Little’s
formula holds for the system under study, i.e.,

V wait = λ2
−1N buffer

customers (10)

as well as the formula

V wait = α−1P imp. (11)

The formula (11) can be derived from (10) as
follows. Let us analyse the fraction N buffer

customersα/λ2.
The value N buffer

customersα defines the intensity of type-2
customers’ leaving the buffer due to impatience. Thus,
this fraction defines the probability of an arbitrary type-2
customer’s loss due to impatience, i.e.,

P imp =
N buffer

customersα

λ2
.

The formula (11) immediately follows from this formula
and (10).

7. Conclusion

We analysed the priority queueing system with two types
of customers having different requirements on the service
time and the number of additional items which should be
spent on service. Items arrive at the system at random
moments and are accumulated in the stock of a finite
capacity. Service of customers is suspended if the stock
does not contain a sufficient number of items. To provide
better conditions for priority customers, we proposed a
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thresholding strategy of access of non-priority customers
to the server. Under a fixed value of the threshold, N,
we computed the steady state distribution of the state
inhomogeneous Markov process describing the system
dynamics, the distribution of the waiting time and derived
expressions for various performance measures of the
system.

Results of numerical experiment, are presented.
They show the influence of the threshold on the value
of the most important performance measures of the
system. Having the presented dependencies, numerous
optimization problems can be formulated and solved,
e.g., the problem of choosing the value of the threshold
providing the minimal waiting time of a non-priority
customer conditioned on the fact that the loss probability
of the priority customer does not exceed a predefined
value. Results of numerical experiments show that the
dependence of performance measures on the threshold
N is quite complicated, especially when the number of
additional items, which should be spent on service of a
priority customer, is in the neighborhood of N .

It is difficult to offer some “rule of thumb” for

solution of optimization problems. This makes the
obtained results important, which allows us to easily and
exactly solve various optimization problems. Results
of numerical experiments also demonstrate that the
ignorance of correlation in the arrival processes of
customers and items, which takes place if these processes
are assumed to be stationary Poisson, may lead to huge
errors in the performance evaluation of the system. It is
worth noticing that we analysed the behavior of the system
under a fixed arrival flow of additional items and the stock
capacity.

However, the presented results can be used in an
evident way also for solving the corresponding inventory
problem. How large should the capacity of the stock and
the speed of additional items delivering be? The results
are planned to be extended to the case of the discrete time
system similar to the one by Atencia (2014), the batch
arrivals and more complicated strategies of control as in
the work Gaidamaka et al. (2014), the system operating in
the random environment (Kim et al., 2014).
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