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A theoretical description of twisted (vortex) electrons interacting with electric and magnetic
fields is presented, based on Lorentz transformations. The general dynamical equations of motion
of a twisted electron with an intrinsic orbital angular momentum in an external field are derived.
Methods for the extraction of an electron vortex beam with a given orbital polarization and for the
manipulation of such a beam are developed.

The discovery of twisted (vortex) electron beams car-
rying intrinsic orbital angular momentum (OAM) [1] has
proven the existence of vortex states of a free electron.
Unlike corresponding light vortex beams (which have
been successfully used for 25 years [2]), electron beams
are charged. Therefore, they also possess significant or-
bital magnetic moments. Amazingly, a vortex electron
in vacuum can be described by the usual Dirac equation
for a free particle.

In the present work, the system of units ~ = 1, c = 1
is used. We include ~ and c explicitly when this inclusion
clarifies the problem. We use the weak-field approxima-
tion and neglect terms quadratic in external fields.

We give a detailed classical description of dynamics of a
twisted particle in external electromagnetic fields. There
exists the perfect agreement between relativistic equa-
tions of motion for the momentum and the spin in classi-
cal electrodynamics and quantum mechanics of spin-1/2
particles in electromagnetic fields (see Refs. [3–9] and ref-
erences therein). The wonderful agreement with the cor-
responding classical equations takes place for relativistic
spin-1/2 particles in gravity [10]. Relativistic equations
of motion for spin-0 [11] and spin-1 [12] particles also fully
agree with the corresponding classical equations. This
means that the use of an appropriate classical approach
for obtaining equations of motion is perfectly admissible.

From the viewpoint of quantum mechanics, a twisted
electron is a single pointlike particle. Its wave function
mirrors a density of a probability to find the electron in
a given point of the space. The standard classical model
of electron in an atom developed by founders of quan-
tum mechanics is an electron cloud [13] characterizing
a spatial distribution of an electron charge. When the
atomic electron has a nonzero OAM, the model of the
rotating charged cloud is used. We adopt this model to
the considered problem. A rotation of the charged elec-
tron cloud is a classical counterpart of a current operator
describing a motion of the electron about the direction
of the intrinsic OAM. In this simple classical picture, an

intrinsic OAM originating from the cloud rotation can be
parallel to the momentum direction and can be nonzero
for a particle at rest. So, the classical description should
use some intrinsic rotation which is not associated with
the electron momentum p. Besides the intrinsic rotation,
an extrinsic rotation of the electron can take place (for
example, in an external magnetic field). The latter rota-
tion depends on the electron momentum and is defined
by the extrinsic OAM r × p. Quantum mechanics uses
the single operator of the OAM defined by −i~r×∇. De-
spite the orthogonality of the classical quantities p and
r × p, the expectation values of the operators −i~∇ and
−i~r×∇ can be parallel to each other. The intrinsic and
extrinsic OAMs have been introduced in Ref. [14].
The simple classical model of the rotating charged

cloud was not previously used because precedent in-
vestigations followed the quantum-mechanical approach.
There are several quantum-mechanical descriptions of
electron vortex states as axially symmetric plane waves
(see reviews [14, 15]). A standard approach consists in
the use of the paraxial approximation [16]. In this ap-
proximation, |px| ≪ p, |py| ≪ p when a wave moves close
to the z axis. Another solution of the wave equation is
expressed in terms of the Bessel functions [14, 17]:

ψB
l ∼ J|l|(k⊥ρ) exp [i(lφ+ kzz)], k2⊥ + k2z = k2. (1)

Here Jl is the Bessel function of the first kind, l =
0,±1,±2, . . . is the azimuthal quantum number, kz =
pz/~ is the longitudinal wave number, k⊥ = p⊥/~ is the
transverse (radial) wave number, and k = p/~. One more
description results in the use of exponential wave packets
of Dirac electrons [18].
The wave function (1) is the most relevant to the goals

of the present study because the paraxial approximation
may become invalid after a Lorentz transformation. In-
deed, the free electron can be considered to be in its rest
frame. The Lorentz transformation of the OAM from
the lab frame (L = Lzez) to the rest frame results in
L(0) = L. The OAM in the frame moving with the ar-
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bitrary velocity V relative to the particle rest frame is
given by

L =
ǫ

mc2
L(0) −

(L(0) · p)p

m(ǫ +mc2)
, ǫ =

mc2
√

1− V 2

c2

. (2)

The orbital helicity of the particle is equal to

horb ≡ L · e = L(0) · e, (3)

where e = p/p is the unit vector parallel to the momen-
tum direction.
Equations (2) and (3) prove that the mutual orien-

tation of the momentum and the OAM and the orbital
helicity of the vortex Dirac particle depend on a reference
frame. So, equation (1) for the Bessel wave is preferable.
In this case, the z axis can be attributed not only to the
momentum direction but also to any other direction.
To develop methods for the manipulation of electron

vortex beams, we need to determine the evolution of the
OAM in electromagnetic fields. This determination will
be based on Lorentz transformations. These transforma-
tions process several critical properties for the intrinsic
and extrinsic orbital angular momenta as compared with
the spin.
While the commutation relations and the Poisson

brackets for the OAM and the spin are very similar, there
is one big difference between the two quantities. The
OAM is formed by the spatial components of the anti-
symmetric tensor Lµν ≡ xµpν − xνpµ. Unlike the OAM,
the conventional spin ζ is defined by the spatial part of
the four-component spin pseudovector aµ in the particle
rest frame. The connection between the four-component
spin pseudovector and the antisymmetric spin tensor is
given by (see, e.g., Ref. [19]) aλ = −2eλµνρSµνuρ, where
eλµνρ is the four-dimensional completely antisymmetric
unit tensor (Levi-Civita tensor), uρ = pρ/m is the four-
velocity and aµuµ = 0. The spatial components of the
spin tensor Sµν form the three-component spatial pseu-
dovector S which is not equivalent to ζ.
The key reason for the decomposition of the OAM into

intrinsic and extrinsic parts is its nonzero value in the
particle rest frame (p = 0). This value defines the in-
trinsic OAM originating from the rotation of the charged
cloud. The extrinsic OAM is defined by the motion of
the center of charge of the electron. Evidently, we can
suppose this motion to be independent of the presence
of the intrinsic OAM. As a result, the dynamics of the
two parts of the electric dipole moment (EDM) can be
independently described.
We need to repeat that the contributions of the intrin-

sic and extrinsic parts of the OAM into the quantum-
mechanical Hamiltonian are described by a single opera-
tor, −i~r ×∇.
Another key point is the difference between dynam-

ics of the intrinsic OAM and the spin. This difference

is caused by different definitions of the two quantities.
Since the conventional three-component spin is defined
in the particle rest frame being accelerated in external
fields, the angular velocity of its precession includes the
correction for the Thomas effect. Contrary to this, the
OAM is defined via the antisymmetric tensor Lµν (see
above) and the angular velocity of its precession does
not include this correction. For a relativistic description,
it is convenient to consider the nonrotating instantaneous
inertial frame accompanying the particle. In this frame,
p = 0 at the given moment of time. The magnetic mo-
ment caused by the orbital motion of the charged cloud
is equal to

µ(0) =
e

2mc
L(0). (4)

The corresponding relativistic quantum-mechanical for-
mula has been derived in Ref. [20]. The angular velocity
of the precession of the intrinsic OAM in the nonrotat-
ing instantaneous inertial frame is defined by the Larmor
formula:

Ω
(0) = −

e

2mc
B(0). (5)

An interaction of the electric and magnetic dipole mo-
ments, d and µ, with the external fields is defined by the
general Hamiltonian

H = −d ·E − µ ·B, (6)

where all quantities are defined in the lab frame. Now we
can take into account that the quantities L(0) and µ(0)

are connected with the nonrotating instantaneous inertial
frame and can perform the relativistic transformation of
the dipole moments to the lab frame. It has the form [8]

d = β × µ(0), µ = µ(0) −
γ

γ + 1
β(β · µ(0)),

β =
v

c
, γ = (1− β2)−1/2 (7)

where we have used the fact d(0) = 0.
As a result, the Hamiltonian is given by

H = −
e

2mc

[

B · L(0) −
γ

γ + 1
(β ·B)(β · L(0))

−(β ×E) · L(0)
]

(8)

or, using Eq. (2),

H = −
e

2mcγ
[B · L− (β ×E) ·L] . (9)

The use of Poisson brackets allows us to derive the rela-
tivistic equation for the Larmor precession of the intrinsic
OAM:

dL

dt
= Ω×L, Ω = −

e

2mcγ
[B − β ×E] . (10)
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It should be added that the torque provided by the
electric field is nonzero only in the presence of the EDM
d, but it originates only from a motion of the magnetic
dipole moment.
We expect that the relativistic equation for the Larmor

precession of the extrinsic OAM is similar. When spin
effects are disregarded, the Hamiltonian of a particle in
a uniform magnetic field takes the form

H =
√

m2 + (p− eA)2, A =
1

2
B × r. (11)

In the weak-field approximation,

H =
√

m2 + p2 −
eB ·L(e)

2
√

m2 + p2
(12)

and the Larmor precession of the extrinsic OAM in the
uniform magnetic field is given by

dL(e)

dt
= Ω

(e) ×L(e),

Ω
(e) = −

eB

2
√

m2 + p2
= −

e

2mγ
B. (13)

This equation is similar to Eq. (10).
It is instructive to compare the results for the intrinsic

OAM and the spin. The use of the well-known Lorentz
transformations for the fields brings the lab frame Hamil-
tonian to the form

H = −
e

2mc
B(0) · L(0). (14)

The lab frame Hamiltonian for the spinning particle in
the absence of the EDM is given by (|ζ| = s) [8]

H = −
e

mc

(

gB(0)

2γ
+

β ×E(0)

γ + 1

)

· ζ, (15)

where g = 2mcµ/(es) and s is the spin quantum number.
Evidently, the main difference between Eqs. (14) and
(15) is the absence of Thomas precession for the intrinsic
OAM.
Our result for the dynamics of the intrinsic OAM in an

electric field differs from that presented (without deriva-
tion) in Refs. [14, 21]. The equation (2.27) in Ref. [14]
and the equation (8) in Ref. [21] cannot be correct be-
cause they predict an infinitely large angular velocity of
precession of the intrinsic OAM at p→ 0. Only the par-
ticle momentum direction shows such a behavior, see Ref.
[4].
The results obtained permit us to develop methods for

the manipulation of electron vortex beams. These meth-
ods are similar to those governing the spin while formulas
defining dynamics of the intrinsic OAM and the spin dif-
fer. We can specify manipulations of the electron vortex
beams and present their quantitative descriptions.

Separation of beams with opposite directions of the

OAM.— Such a separation can be achieved in a longi-
tudinal magnetic field. This field can be nonuniform [14]
and even uniform. The nonuniform longitudinal mag-
netic field leads to a force acting on the OAM. Because
of the one-to-one correspondence between the OAM and
the corresponding magnetic moment, the direction of this
force depends on that of the OAM. As a result, acceler-
ations of particles with oppositely directed OAMs have
different signs. This leads to different velocities of parti-
cles with the opposite directions of the OAMs. Therefore,
the beam with a given OAM direction can be extracted
(e.g., with the Wien filter).
Importantly, even a uniform longitudinal magnetic

field leads to a dependence of a particle velocity on the
OAM direction. If particles have equal energies beyond
the longitudinal magnetic field, their velocities in this
field satisfy the following equation:

v = v0 +
e

2m2c2β0γ40
B ·L, (16)

where v0 is the particle velocity beyond the field. This
effect either decreases or increases the beam separation
caused by the nonuniform longitudinal magnetic field.
The manipulations considered below allow one to ex-

tract a beam with a needed orbital polarization.
The use of a transversal magnetic field is less conve-

nient because this field can bring a lost of beam coherence
as a result of Larmor precession.
Freezing the intrinsic OAM in electromagnetic fields.—

As in spin physics [22], it is important to consider a con-
dition which allows one to freeze the intrinsic OAM (i.e.,
to keep the orbital helicity constant) in electromagnetic
fields. These fields deflect the beam. We consider a po-
tential for a beam deflection without a change of horb
defined by Eq. (3). In this case, the angular velocity of
the relativistic Larmor precession (10) should be equal
to the angular velocity of the rotation of the momentum
direction N = p/p ≈ β/β [4]:

dN

dt
= ω ×N , ω = −

e

mcγ

(

B −
N ×E

β

)

. (17)

The standard geometry is E⊥B⊥β.
The condition ΩL = ω is satisfied when

B =

(

2

β2
− 1

)

β ×E. (18)

The device defined by Eq. (18) is a deflector of the elec-
tron vortex beams which freezes the OAM relative to the
momentum direction. It rotates the beam direction with
the angular velocity

ΩL = ω = −
eB

mcγ(γ2 + 1)
. (19)

For standard beams [23] with energy of the order of 102

keV, the deflection is rather effective.
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We should add that the use of the proposed beam de-
flector after or together with the longitudinal magnetic
field considered above allows one to separate out elec-
trons with oppositely directed OAMs.

Rotator of the intrinsic OAM.— An other important
beam manipulation is a rotation of the intrinsic OAM
relative to the momentum direction. This manipulation
is desirable and even necessary when the beam is confined
in a storage ring or trap. In this case, it is convenient
to direct the OAM of the beam vertically. The vertical
direction is preferable because it is not affected by the
main vertical magnetic field and this orbital polarization
can be conserved. In accelerator physics, one frequently
uses a Wien filter as a spin rotator. This device can also
be applied as a OAM rotator. In this case, E⊥B⊥β

and the Lorentz force acting on electrons is equal to zero
(E = −β ×B). Therefore, Eq. (10) for the relativistic
Larmor precession takes the form

Ω
(W ) = −

e

2mcγ3
B. (20)

When beams with oppositely directed OAMs have dif-
ferent velocities, a Wien filter allows one to extract elec-
trons with one of orbital polarizations.

Flipping the intrinsic OAM.— If an electron vortex
beam with a upward or a downward orbital polarization
is confined in a storage ring, the direction of the intrinsic
OAM can be flipped. A flip of the OAM is similar to
that of the spin and can be fulfilled by the method of
the magnetic resonance. A significant difference between
the flips of the OAM and the spin consists in different
dependences of the resonance frequencies on the electric
and magnetic fields. A spin flip frequency in a storage
ring is defined by the Thomas-Bargmann-Mishel-Telegdi
equation (see Ref. [9] for details) whose distinction from
Eq. (10) is evident. The OAM flip can be forced by a
longitudinal (azimuthal) magnetic field oscillating with
the resonance frequency. A Wien filter with a vertical
electric field and a radial magnetic field oscillating with
the resonance frequency [9, 24] can also be used for the
OAM flip.

In summary, we have presented the basic theoretical
description of dynamics of the vortex electrons in electro-
magnetic fields. Our derivations have been based on the
classical approach and Lorentz transformations. We have
shown that the orbital polarization of such electrons can
be managed and have developed basic methods for the
manipulation of electron vortex beams. We expect that
the results presented can be applied not only to electrons
but also to other particles. In particular, twisted positron
beams could also find important applications. We sup-
pose that they could be used for testing magnetic mate-
rials and for a formation of twisted positronium atoms.
For these purposes, a manipulation of twisted positron
beams (for example, their deceleration) is necessary.

We believe that the obtained theoretical results can
also be useful for high-energy physics.

In precedent theoretical investigations (see Refs. [14,
15, 17, 18, 21, 25–28] and references therein), the
quantum-mechanical approach was used. However,
it is very difficult to fulfill an appropriate quantum-
mechanical analysis for a twisted particle in general elec-
tromagnetic fields. As a result, previous publications fo-
cused an attention on magnetic or other specific interac-
tions. Otherwise, a consideration of only magnetic inter-
actions allows one neither obtaining a general relativistic
equation of motion for the intrinsic OAM nor developing
methods of a manipulation of twisted electron beams.
We should add that such a manipulation is impossible if
only the magnetic field is used. We present the solution
of the two problems. In our work, the general relativis-
tic equation of motion for the intrinsic OAM has been
obtained and the methods of a manipulation of twisted
electron beams have been developed for the first time.
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