ЭЛЕКТРОФИЗИЧЕСКИЕ ПАРАМЕТРЫ ГРАФЕНА НА КРЕМНИИ ПРИ ОБЛУЧЕНИИ СОЛНЕЧНЫМ СВЕТОМ

А. Г. Трафименко, А. Л. Данилюк

Белорусский государственный университет информатики и радиоэлектроники, ул. П. Бровки, 6, 220013, Минск, Беларусь, e-mail: evdokimovithi@gmail.com

Представлены результаты моделирования электрофизических параметров графена на кремнии *n*-типа при облучении солнечным светом: электрохимический потенциал, концентрация дырок, квантовая емкость. Показано, что электрохимический потенциал дырок в графене составляет 0.3–0.4 эВ, концентрация дырок в графене возрастает до 10^{13} см⁻², а его квантовая емкость составляет 9–14 мкФ/см². Получены закономерности влияния работы выхода графена и концентрации доноров в кремнии на электрофизические параметры графена.

Ключевые слова: графен; кремний; электрохимический потенциал; напряжение холостого хода; квантовая емкость; солнечный свет.

ELECTROPHYSICAL PARAMETERS OF GRAPHENE ON SILICON UNDER SUNLIGHT IRRADIATION

A. G. Trafimenko, A. L. Danilyuk

Belarusian State University of Informatics and Radioelectronics, Str. P. Brovki, 6, 220013, Minsk, Belarus, Corresponding author: A. G. Trafimenko (evdokimovithi@gmail.com)

The results of simulation of the electrophysical parameters of graphene (electrochemical potential, holes concentration, quantum capacity) on *n*-type silicon under sunlight irradiation are presented. The electrochemical potential of holes in graphene is shown to be 0.3-0.4 eV, the holes concentration increases up to 10^{13} cm^{-2} , and the quantum capacity of graphene is $9-14 \mu\text{F/cm}^2$. The regularities of the influence of the work function of graphene and the donor concentration in silicon on the electrophysical parameters of graphene have been established.

Key words: graphen; silicon; electrochemical potential; open circuit voltage; quantum capacitance; sunlight.

введение

Гетероструктуры графен/кремний представляют интерес для создания приборов фотовольтаики: фотодетекторов, солнечных элементов [1, 2]. В фотодетекторах графен используется не только как прозрачный контактный материал, но и как проводящий канал, повышающих чувствительность [3, 4]. Функционирование графеновых транзисторов достаточно подробно исследовано и разработаны соответствующие модели [5]. Менее разработаны вопросы, связанные с электропроводностью графена, находящегося на легированном кремнии. В этом случае из-за непосредственного контакта графена с полупроводником происходит возникновение барьера Шоттки и изменение электрофизических параметров графена в зависимости от типа проводи-

мости кремния и работы выхода графена. При этом меняется электрохимический потенциал графена, концентрации электронов и дырок, квантовая емкость, что оказывает влияние на токоперенос в графене.

Для моделирования характеристик фотодетекторов возникает необходимость исследовать влияние свойств кремния, на поверхности которого находится графен, на изменения электрофизических параметров графена. В данной работе рассмотрена гетероструктура графен/кремний п-типа при комнатной температуре при солнечном облучении и определены закономерности влияния параметров кремния (концентрации донорной примеси), а также работы выхода графена на концентрацию носителей заряда в графене, его электрохимический потенциал, квантовую емкость.

модель

Концентрация электронов n_e , дырок n_h и квантовая емкость C_Q графена определяются в виде [5]:

$$n_{e}(\mu) = \int_{0}^{+\infty} g_{2D}(\varepsilon) f(\varepsilon - \zeta - U) d\varepsilon , \qquad (1)$$

$$n_{h}(\mu) = \int_{-\infty}^{0} g_{2D}(\varepsilon) [1 - f(\varepsilon - \zeta - U)] d\varepsilon , \qquad (2)$$

$$C_{\varrho} = q \partial (n_e - n_h) / \partial \mu , \qquad (3)$$

где g_{2D} – плотность состояний графена, ζ – не зависящий от заряда химический потенциал графена, $U = -q\phi$ – электростатическая энергия, ϕ – электростатический потенциал, q – элементарный заряд.

Гетероструктура графен/кремний характеризуется наличием барьера Шоттки, возникающего в кремнии из-за разности работ выхода этих материалов. При облучении светом, возникают разность электрохимических потенциалов для электронов и дырок. Для кремния *n*- типа в его обедненном слое электрохимический потенциал электронов практически равен его химическому потенциалу в объеме, а для дырок сдвигается на величину разности потенциалов, обусловленной освещением. При отсутствии тока в гетероструктуре его величина соответствует напряжению холостого хода V_{oc} (open circuit voltage). Для нахождения V_{oc} рассмотрим гетероструктуру при равенстве нулю суммарного тока электронов и дырок при освещении $J=J_n+J_p=0$ [6]:

$$J = q(n_0 + \Delta n)\mu_n E_g + q\Delta n\mu_n E_b + qD_n \frac{d\Delta n}{dx} + q(p_0 + \Delta p)\mu_p E_g + q\Delta p\mu_p E_b - qD_n \frac{d\Delta p}{dx} = 0,$$
(4)

где n_0 , p_0 – равновесные концентрации электронов и дырок, Δn , Δp – концентрации неравновесных электронов и дырок, E_b , E_g – напряженность электрического поля в кремнии, создаваемая равновесным и неравновесным распределением носителей заряда, μ_n , μ_p – подвижности электронов и дырок в кремнии, D_n , D_p – коэффициенты диффузии электронов и дырок в кремнии. В этом случае из уравнений непрерывности для стационарного случая следует, что $\Delta n = (\tau_n/\tau_p)\Delta p$ [6]. Здесь τ_n , τ_p – время жизни электронов и дырок. В этом случае величина V_{oc} определяется путем интегрирования $E_g(x)$ по толщине кремния L. Для обедненного слоя при учете только поверхностной рекомбинации неравновесных носителей заряда, что справедливо при условии меньшей протяженности обедненного слоя W по сравнению с длиной диффузии дырок L_p , уравнения непрерывности могут быть проинтегрированы. Исключая из полученных уравнений величину E_g и преобразуя, получим уравнение для расчета распределения неравновесных дырок в обедненном слое кремния

$$D_{p} \frac{d\Delta p}{dx} \left(n_{0} + \frac{\tau_{n}}{\tau_{p}} (p_{0} + 2\Delta p) \right) + \mu_{p} \Delta p E_{b}(x) \left(n_{0} - \frac{\tau_{n}}{\tau_{p}} p_{0} \right) = \left(n_{0} + \frac{\tau_{n}}{\tau_{p}} \Delta p \right) \left(\int_{0}^{x} G(x) dx + J_{p}(0) \right) + \left(\frac{\mu_{n}}{\mu_{p}} (p_{0} + \Delta p) \right) \left(\int_{0}^{x} G(x) dx - J_{n}(0) \right), \quad (5)$$

где G(x) – темп генерации электронно-дырочных пар, $J_n(0)$, $J_p(0)$ – плотности токов электронов и дырок на поверхности кремния при x = 0.

В нейтральной области кремния (W < x < L) существует только электрическое поле $E_g(x)$, связанное с генерацией электронно-дырочных пар при освещении. В этом случае определяя из уравнения (4) $E_g(x)$ и подставляя его в уравнение непрерывности для дырок в нейтральной области, получаем уравнение для расчета распределения дырок в ней при условии, что $N_d >> \Delta n$, Δp :

$$G(x) - (\Delta p / \tau_p) - \mu_p D' (\partial \Delta p / \partial x)^2 - (\mu_p D' \Delta p - D_p) (\partial^2 \Delta p / \partial x^2) = 0, \quad (6)$$

$$D' = [D_p - D_n(\tau_n / \tau_p)] / \mu_n N_d$$

где

Для определения V_{oc} находим распределения дырок в обедненном и нейтральном слоях кремния и сшиваем их на границе при x = W, используя условия непрерывности концентрации и первых производных для дырок, а также граничные условия при x=0 и x=L: $J_p(0)=qS_p\Delta p(0)$, $\Delta p(L)=0$. Здесь S_p – скорость поверхностной рекомбинации при x=0. Темп генерации электронно-дырочных пар:

$$G(x) = G_0 \exp(-\alpha x), \qquad (7)$$

где G_0 – множитель, зависящий от плотности мощности и коэффициента отражения солнечного света, α – коэффициент поглощения, зависящий от длины волны излучения. Величина электростатического потенциала φ , входящего в уравнения (1) и (2), определяем как часть напряжения холостого хода, приходящаяся на обеденный слой кремния.

Распределение потенциала, напряженности электрического поля и концентрации равновесных электронов и дырок в обедненном слое определяем численно с помощью известной модели [7]

$$E_b(x) = -(\partial \phi / \partial x) = \pm (\sqrt{2kT} / qL_D)F(\phi)$$
(8)

где $L_D = (kT \kappa \epsilon_0 / q N_d)^{1/2}$ – дебаевская длина, k – постоянная Больцмана, T – температура, к – относительная диэлектрическая проницаемость кремния, ϵ_0 – электрическая постоянная, функция

$$F(\phi) = \begin{bmatrix} (2N_V / \sqrt{\pi}N_d) \left(\int_0^{\phi} F_{1/2} [(E_V - E_F - q\phi) / kT] d\phi + \beta \phi \right) + \\ + \exp(\beta\phi) - \beta\phi - 1 \end{bmatrix}^{1/2}, \quad (9)$$

где N_V – эффективная плотность состояний в валентной зоне кремния, E_F – равновесный химический потенциал кремния (уровень Ферми в объеме), $F_{1/2}$ – интеграл Ферми-Дирака. В качестве граничного условия используется высота барьера Шоттки в кремнии: $q\phi_s = F_G - \chi - (E_c - E_F)$.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Для расчетов использовались следующие параметры: концентрация доноров $N_d = 10^{15}$ и 10^{17} см⁻³, работа выхода графена $F_G = 4,65-4,85$ эВ, электронное сродство для кремния $\chi = 4,05$ эВ, ширина запрещенной зоны кремния $\varepsilon_g = 1,12$ эВ, подвижность электронов в кремнии 800–1500 см²/(В с) и дырок 300–450 см²/(В с), собственная концентрация носителей $1,45 \, 10^{10}$ см⁻³, время жизни электронов 5–10 мкс и дырок 1-5 мкс, $G_0 = (1-2)10^{22}$ см⁻³/с, $\alpha = 10^4 - 10^5$ см⁻¹, $g_{2D} = 2\varepsilon/[\pi(\hbar v_0)^2]$. Здесь \hbar – постоянная Планка, v_0 – скорость Ферми в графене.

Рисунок 1. – Напряжение холостого хода гетероструктуры графен /кремний в условиях солнечного освещения ($N_d = 10^{15}$ см⁻³): $F_G = 4.65 \Rightarrow B(1), 4.7 \Rightarrow B(2), 4.8 \Rightarrow B(3), 4.85 \Rightarrow B(4)$ $F_G = 4.7 \Rightarrow B(1), 4.75 \Rightarrow B(2), 4.8 \Rightarrow B(3), 4.85 \Rightarrow B(4)$

Рисунок 3. – Концентрация дырок в графене при $N_d = 10^{15}$ см⁻³: $F_G = 4.7$ эВ (1), 4.75 эВ (2), 4.8 эВ (3), 4.85 эВ (4) Рисунок 4. – Концентрация дырок в графене при $N_d = 10^{15}$ см⁻³: $F_G = 4.7$ эВ (1), 4.7 эВ (2), 4.75 эВ (3), 4.8 эВ (4) 4.75 эВ (3), 4.8 эВ (5)

Результаты расчетов V_{oc} показали, что его величина составляет 0,36–0,58 В в зависимости от скорости поверхностной рекомбинации, работы выхода графена и концентрации доноров в кремнии, рис.1,2. Величина V_{oc} падает с ростом S_p . Наблюдается рост V_{oc} с увеличением работы выхода графена, а также концентрации доноров. Величина V_{oc} практически соответствует электростатическому потенциалу φ для графена, так как падением потенциала V_{oc} в объеме кремня можно пренебречь.

На рис. 3–6 представлены результаты расчетов концентрации дырок в графене и квантовой емкости при условии, что при отсутствии солнечного света химический потенциала графена $\zeta=0$. Концентрация дырок в графене увеличивается с ростом V_{oc} и снижается с ростом S_p . Квантовая емкость также падает с ростом S_p . Значения n_h составляют порядка $(1-2,5)10^{13}$ см⁻², а C_Q меняется в пределах 9–14 мк Φ /см².

Уменьшение V_{oc} с ростом скорости поверхностной рекомбинации очевидно и связано с падением концентрации неравновесных дырок на поверхности кремния. Рост V_{oc} с увеличением работы выхода графена связан с увеличением высоты барьера Шоттки, а ослабление падения V_{oc} с увеличением скорости поверхностной рекомбинации с увеличением концентрации доноров – с ростом положительного заряда обедненной области кремни. Эти закономерности носят самосогласованный характер. Этим также объясняется и закономерности изменения концентрации дырок и квантовой емкости графена, так как эти параметры определяются электрохимическим потенциалом графена.

Рисунок 5. – Квантовая емкость в графене при $N_d = 10^{15}$ см⁻³: $F_G = 4.7$ эВ (1), 4.75 эВ (2), 4.8 эВ (3), 4.85 эВ (4)

Рисунок 6. – Концентрация дырок в графене при $N_d = 10^{17}$ см⁻³: $F_G = 4.65$ эВ (1), 4.7 эВ (2), 4.75 эВ (3), 4.8 эВ (4), 4.8 эВ (5)

Барьер для дырок между потолком валентной зоной кремния и химическим потенциалом графена составляет ε_{g} -(F_{G} - χ) и в данном случае меняется от 0,3 до 0,55 эВ (F_{G} =4.65-4.85 эВ). Поэтому прямое перетекание дырок из кремния в графен затруднено. При освещении электрохимический потенциал дырок смещается от положения равновесного химического потенциала на величину qV_{oc} , что и ведет к смещению электрохимического потенциала графена в область дырочной проводимости, что согласуется с экспериментальными данными.

ЗАКЛЮЧЕНИЕ

Проведенное моделирование напряжения холостого хода для гетероструктуры графен/кремни *n*-типа, а также концентрации дырок и квантовой емкости графена на кремнии при освещении солнечным светом показало, что происходит существенное изменение электрофизических параметров графена на кремнии. Концентрация дырок в нем взрастает до 10^{13} см⁻², а квантовая емкость – до 10-12 мкФ/см². Этот эффект может быть использован при разработке приборов фотовольтаики, например, для создания высокочувствительных фотодетекторов.

БИБЛИОГРАФИЧЕСКИЕ ССЫЛКИ

- 1. Spectral sensitivity of graphene/silicon heterojunction photodetectors / S. Riazimehr [et al.] // Solid State Electronics. -2016. V. 115, Part B. P. 207-212.
- High performance, self-powered photodetectors based on graphene/silicon Schottky junction diode / D. Periyanagounder [et al.] // J. Mater. Chem. C. – 2018. – V. 6. – P. 9545–9551.
- Femtosecond light pulse response of photodetectors based on Graphene/n-Si heterojunctions / M. Scagliotti [et al.] // Carbon. - 2019. - V. 152. - P.643-651.
- 2D Carbon Material/Silicon Heterojunctions for Fast Response Self-Powered Photodetector / M. Scagliotti [et al.] // International Journal of Nanoscience. – 2019. – V. 18. – N. 3 & 4. – 1940088.
- 5. G.I. Zebrev. Graphene Field Effect Transistors: Diffusion-Drift Theory/ 23 Chapter in Physics and Applications of Graphene-Theory / ed. by S. Mikhailov.-InTech, 2011.-P.476-498.
- 6. Opencircuit voltage of a Schottkybarrier solar cell / P. K. Dubey [et al.] // Journal of Applied Physics. 1977. V. 48. N.1. P.324-328.
- 7. Физика полупроводниковых приборов: в 2-х кн. / под ред. С. Зи. М. : Мир, 1984. Кн. 1. –456 с.

ПОСЛЕДОВАТЕЛЬНОЕ ХИМИЧЕСКОЕ ОСАЖДЕНИЕ СУЛЬФИДА ОЛОВА НА НАНОТЕКСТУРИРОВАННУЮ ПОДЛОЖКУ АЛЮМИНИЯ ДЛЯ ФОТОПРЕОБРАЗОВАТЕЛЕЙ СОЛНЕЧНОГО ИЗЛУЧЕНИЯ

Е. А. Уткина¹, М. В. Меледина¹, А. А. Ходин²

 Белорусский государственный университет информатики и радиоэлектроники, ул. П. Бровки 6, 220013 Минск, Беларусь, e-mail: outkina@bsuir.by
 ²⁾ ГНПО «Оптика, оптоэлектроника и лазерная техника», Логойский тракт 22, 220090 Минск, Беларусь, e-mail: alhodin@oelt.basnet.by

Рассмотрены основные электрофизические характеристики и методы получения тонких пленок и наночастиц сульфида олова SnS из раствора для применения в солнечных элементах и других электронных приборах. Методом послойного осаждения SILAR из растворов прекурсоров на наноструктурированные темплат-подложки Al получены наноструктурированные слои SnS. Представлена схема процесса послойного осаждения на темплат-подложку с наноостриями Al.

Ключевые слова: сульфид олова; SILAR процесс; наноструктурированная темплат-подложка.

SEQUENTIONAL CHEMICAL DEPOSITION OF TIN SULPHIDE ONTO NANOTEXTURED ALUMINUM SURFACE FOR SOLAR LIGHT PHOTOELECTRIC CONVERTERS

E. A. Outkina¹, M. V. Meledina¹, A. A. Khodin²

 ¹⁾ Belarusian State University of Informatics and Radioelectronics, P.Brovky str. 4, 220013 Minsk, Belarus,
 ²⁾ "Optics, Optoelectronics and Laser Techniques" SSPA, Logoisky trakt 22, 220090 Minsk, Belarus

Corresponding author: A. A. Khodin (alhodin@oelt.basnet.by)