- 9. Абрамов И.И. Влияние параметров конструкции и материалов на вольт-амперные характеристики двухостровковых одноэлектронных цепочек / И.И. Абрамов [и др.] // Физика и техника полупроводников. 2002. Т. 36, №10. С. 1272–1277.
- Абрамов И.И. Модель многоостровковых одноэлектронных цепочек на основе метода Монте-Карло. / И.И. Абрамов [и др.] // Физика и техника полупроводников. – 2003. – Т.37, №5. – С. 583–587.
- 11. Абрамов, И.И. Система моделирования наноэлектронных приборов NANODEV / И.И. Абрамов [и др.] // Микроэлектроника. 2003. Т. 32, № 2. С. 124–133.
- 12. Abramov, I. I. A nanoelectronic device simulation software system NANODEV: New opportunities / I.I. Abramov [et al.] // Proc. of SPIE. 2010. V. 7521. P. 75211E-1–11.

ФАЗОВЫЙ ПЕРЕХОД В НАНОТРУБКАХ СИЛИЦИДА МАГНИЯ

А. Ю. Алексеев, А. Г. Черных, А. Б. Филонов, Д. Б. Мигас

Белорусский государственный университет информатики и радиоэлектроники, ул. П. Бровки, 6, 220013 Минск, Беларусь, e-mail: lucky.alexey94@gmail.com

В зависимости от диаметра, нанотрубки, свёрнутые из двумерного Mg_2Si , имеют различную структуру: в нанотрубках с диметром более 27-29 Å имеется искажение, аналогичное искажению динамически стабильной фазы Td двумерного Mg_2Si , тогда как нанотрубки с меньшим диаметром обладают более высокой симметрией и соответствуют нанотрубкам, свёрнутым из динамически нестабильной фазы T двумерного Mg_2Si . Зависимость энергии напряжения нанотрубок Mg_2Si от их диаметра содержит минимум, который приходится на нанотрубки (11,0) и (5,5) с диаметрами 15,7 и 12,5 Å, соответственно.

Ключевые слова: силицид; нанотрубка; наноструктура; отрицательная энергия напряжения; фазовый переход.

PHASE TRANSITION IN NANOTUBES OF MAGNESIUM SILICIDE

A. Yu. Alekseev, A. G. Chernykh, A. B. Filonov, D. B. Migas

Belarusian State University of Informatics and Radioelectronics, P. Browki str. 6, 220013 Minsk, Belarus Corresponding author: A. Yu. Alekseev (lucky.alexey94@gmail.com)

The structure of nanotubes, rolled up from the two-dimensional Mg_2Si , depends on their diameter: nanotubes with diameters more than 27-29 Å have a distortion similarly to the distortion of the dynamically stable Td phase of the two-dimensional Mg_2Si , while nanotubes with smaller diameters have a higher symmetry and correspond to nanotubes rolled up from the dynamical unstable T phase of the two-dimensional Mg_2Si . There is a minimum of strain energy of Mg_2Si nanotubes with respect to their diameter which occurs for (11,0) and (5,5) nanotubes with diameters of 15,7 and 12,5 Å, respectively.

Key words: silicide; nanotube; nanostructure; negative strain energy; phase transition.

ВВЕДЕНИЕ

Углеродные и неорганические нанотрубки (НТ) демонстрируют широкий спектр физических свойств в зависимости от размера и хиральности, благодаря чему они имеют большой потенциал использования во многих сферах, от наноэлектроники до трибологии [1,2]. Существенным препятствием на пути использования наноструктур в электронике является сложность экономически эффективного внедрения в хорошо отработанную кремниевую технологию, а также трудности при формирования однородных по свойствам наноструктур в промышленных масштабах. Известно, что силицен – двумерный (2D) материал, состоящий из атомов кремния, структура которого отличается от графена в связи с sp^3 гибридизацией связей — удаётся синтезировать только на металлических подложках из-за наличия оборванных связей, делающих структуру нестабильной [3]. Недавно, нами было представлено теоретическое предсказание 2D силицидов, германидов и станнидов щёлочноземельных металлов посредством моделирования их фононных спектров из первых принципов [4-6]. В этих 2D структурах атомы кремния не формируют поверхностные слои и заключены в октаэдры или искажённые октаэдры из атомов щёлочнозмельного металла, связанных с ними силами ионного типа, таким образом, что оборванные связи в структуре отсутствуют (так называемый эффект псевдопассивации) [4-6]. В данной работе представлено теоретическое исследование структуры HT Mg₂Si, специфика которых обусловлена наличием искажения в динамически стабильной фазе 2D Mg₂Si.

МАТЕРИАЛЫ И МЕТОДЫ

Полная оптимизация структур и расчёт полных энергий 2D Mg_2Si и HT Mg_2Si проводились в рамках метода присоединенных волн с использованием проекционных функций (код VASP) [7] с учетом обобщённого градиентного приближения PBE [8]. В расчетах энергия отсечки принималась равной 360 эВ. Интегрирование по зоне Бриллюэна проводилось на упорядоченном наборе точек в обратном пространстве $13 \times 13 \times 1$ и $1 \times 1 \times 13$ для 2D структур и HT, соответственно. Для предотвращения взаимодействия между соседними трансляциями 2D и HT структур дополнительно вводился вакуум толщиной 10 Å.

2D Mg₂Si является динамически стабильным в фазе Td [5], которая представляет собой искажённую структуру фазы T. Обе 2D структуры изображены в верхней части рис. 1. В работе исследуются HT, свёрнутые из обеих фаз 2D Mg₂Si. Для идентификации HT используется хиральный вектор $n \cdot \vec{a}_1 + m \cdot \vec{a}_2$ или (n,m), где \vec{a}_1 и \vec{a}_2 — вектора решётки 2D структуры (см. рис. 1). Внешний вид HT (28,0) и (16,16), свёрнутых из 2D Mg₂Si в фазе Td, также представлены в нижней части рис. 1. a_{\parallel} представляет собой параметр решетки вдоль оси HT.

Для исследования стабильности $HT\ Mg_2Si$ использовалась энергия напряжения, которая определяется как разность полной энергии HT и полной энергии соответствующей 2D структуры, рассчитанные на одну структурную единицу.

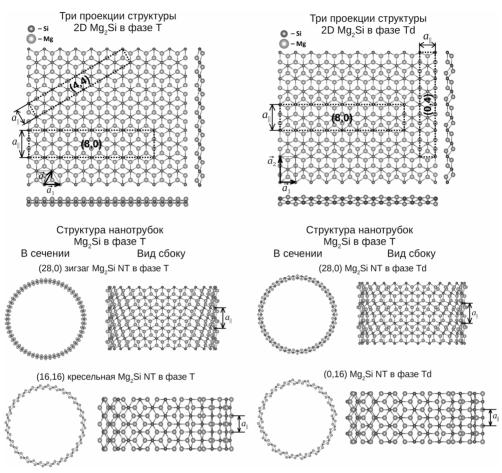


Рисунок 1. — Структуры 2D Mg₂Si в фазах T и Td и свёрнутых из них HT Mg₂Si. Векторы решётки \vec{a}_1 и \vec{a}_2 2D структур и параметр решётки HT a_{\parallel} также представлены. На 2D структурах пунктирной линией приведены примеры нанолент, необходимых для сворачивания HT с указанными хиральными векторами

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 2 представлена зависимость энергий напряжения HT Mg_2Si от их диаметра (d) (диаметр определяется, как средний диаметр трубки, образуемой атомами кремния). Поскольку в пределе бесконечного диаметра HT физически эквивалентна 2D структуре, при увеличении диаметра энергия напряжения HT стремиться к нулю. При уменьшении диаметра энергия напряжения HT Mg_2Si в фазе Td увеличивается, как это имеет место для углеродных HT [1] и HT дихалькогенидов тугоплавких металлов [9] в связи с увеличением напряжения в химических связях, которое вызвано кривизной стенки HT. Кроме того, обнаружено, что с уменьшением диаметра в HT Mg_2Si в фазе Td уменьшается искажение, отличающее их от соответствующих HT в фазе T. В связи с этим полная энергия HT Mg_2Si в фазе Td начинает стремиться к энергии HT в фазе T . Начиная с HT (14,0) и (0,6) происходит фазовый переход из Td

фазы в фазу Т. Этот фазовый переход обусловлен только силами, действующими на атомы, так как расчеты проводились при 0 К. Не исключено, что при увеличении температуры фазовый переход сдвинется в сторону больших диаметров.

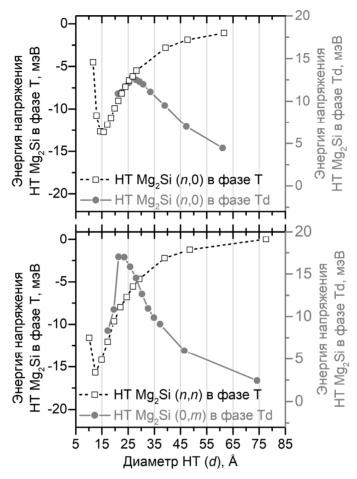


Рисунок 2. — Энергии напряжения HT Mg_2Si в зависимости от их диаметра (d). Представлены две шкалы энергии, которые сдвинуты друг относительно друга на величину разности полных энергий 2D Mg_2Si в фазе T и фазе Td. Линии, соединяющие точки, физического смысла не имеют

С другой стороны, энергия напряжения HT Mg_2Si в фазе T, напротив, уменьшается при уменьшении диаметра, несмотря на вводимые кривизной стенки HT напряжения в химических связях. Начиная с (19,0) и (12,12) HT Mg_2Si в фазе T (d=26.8 и 29.3 Å, соответственно) обнаружено, что они имеют меньшую полную энергию, чем HT в фазе Td. С дальнейшим уменьшением диаметра на графике энергии напряжения наблюдается минимум, который приходиться на HT Mg_2Si в фазе T (11,0) (d=15,7 Å) и (5,5) (d=12,5 Å). Расстояние двумя минимумами энергии напряжения для HT различных хиральностей пренебрежимо мало (\sim 3 мэВ). При сильном уменьшении радиуса HT наблюдается резкий подъём энергии напряжения в связи с чрезмерным изменением угла между Mg_-Si-Mg связями, вызванным кривизной стенки

НТ, или в связи с нежелательным взаимодействием между атомами, в результате уменьшения расстояний между ними.

Так как не проводился расчет фононного спектра HT Mg_2Si с целью определения их динамической стабильности из-за необходимости слишком больших вычислительных и временных ресурсов, по поводу стабильности HT Mg_2Si можно сказать следующее. Аналогично тому, как из двух близких 2D структур Mg_2Si (отличающихся друг от друга некоторым искажением) динамически стабильной оказывается только та, которая обладает меньшей полной энергией (нулевых колебаний атомов достаточно, чтобы исказить фазу T в фазу Td), можно предположить, что динамически стабильными являются только те T0 T1 T2 T3, которые обладают меньшей полной энергией.

ЗАКЛЮЧЕНИЕ

Результаты теоретического исследования нанотрубок Mg_2Si показали, что 2D Mg_2Si в фазе T может стабилизироваться не только посредством искажения структуры в фазу Td, но посредством сворачивания двумерной структуры в HT, благодаря увеличивающейся кривизне структуры. Было обнаружено, что HT Mg_2Si с диаметром более 27-29 Å стабильны в фазе Td, тогда как при уменьшении диаметра наблюдается фазовый переход в фазу T.

На зависимости энергии напряжения HT Mg_2Si от диаметра имеется минимум. Известно, что наличие такого минимума приводит к монодисперсности синтезированных на эксперименте HT по отношению к их диаметру [10], что является очевидным преимуществом исследуемых HT Mg_2Si . Результаты работы также предсказывают отсутствие монодисперсности синтезируемых HT Mg_2Si по их хиральности.

Дальнейшее исследование физических свойств $HT\ Mg_2Si$ позволит оценить перспективы их использования в устройствах наноэлектроники нового поколения.

БИБЛИОГРАФИЧЕСКИЕ ССЫЛКИ

- Dresselhaus, G. Physical properties of carbon nanotubes / G. Dresselhaus, M. S. Dresselhaus, R. Saito. – London: Imperial College Press, 1998. – 259 p.
- 2. Rao, C. N. R. Inorganic nanotubes / C. N. R. Rao, M. Nath // Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences. 2004. Vol. 362, № 1823. P. 2099–2125.
- 3. Rise of silicene: A competitive 2D material / J. Zhao [et al.] // Prog. Mater. Sci. -2016. Vol. 83. P. 24-151.
- 4. Quasi-2D silicon structures based on ultrathin Me_2Si (Me = Mg, Ca, Sr, Ba) films / D. B. Migas [et al.] // Surface Science. -2018. -Vol. 670. -P. 51-57.
- Stability of 2D Alkaline-Earth Metal Silicides, Germanides and Stannides / A. Yu. Alekseev [et al.] //
 International Journal of Nanoscience. 2019. Vol. 18, № 03n04. P. 1940013.
- 6. Structural stability and electronic properties of 2D alkaline-earth metal silicides, germanides, and stannides / A. Y. Alekseev [et al.] // Japanese Journal of Applied Physics. 2020. Vol. 59. P. SF0801.
- 7. Kresse, G. Efficiency of *ab-initio* total energy calculations for metals and semiconductors using a plane-wave basis set / G. Kresse, J. Furthmьller // Computational Materials Science. − 1996. − Vol. 6, № 1. − P. 15–50.
- 8. Perdew, J. P. Generalized gradient approximation made simple / J. P. Perdew, K. Burke, M. Ernzerhof // Physical review letters. − 1996. − Vol. 77, № 18. − P. 3865.
- 9. Seifert, G. Stability of metal chalcogenide nanotubes / G. Seifert, T. Köhler, R. Tenne // The Journal of Physical Chemistry B. -2002. Vol. 106, N 0 10. P. 2497–2501.
- 10. Origin of the strain energy minimum in imogolite nanotubes / S. U. Lee [et al.] // The Journal of Physical Chemistry C. 2011. Vol. 115, № 13. P. 5226–5231.