МОДЕЛИРОВАНИЕ ПРИБОРНЫХ СТРУКТУР НА ГРАФЕНЕ С ПРИМЕНЕНИЕМ СИСТЕМЫ NANODEV

И. И. Абрамов, В. А. Лабунов, Н. В. Коломейцева, И. А. Романова, И. Ю. Щербакова

Белорусский государственный университет информатики и радиоэлектроники, П. Бровки, 6, 220013 Минск, Беларусь, e-mail: nanodev@bsuir.edu.by

В докладе описаны комбинированные модели полевых графеновых транзисторов (ПГТ) и многобарьерных резонансно-туннельных диодов (РТД) на основе графена, включенные в систему моделирования наноэлектронных приборов и устройств NANODEV. Проведены расчеты характеристик указанных приборных структур. Получено хорошее согласование с экспериментальными данными для выходных характеристик двухзатворного ПГТ. Исследовано влияние ширин барьеров и квантовых ям на вольт-амперные характеристики (ВАХ) четырехбарьерных РТД на основе графена на подложках гексагонального нитрида бора (h-BN) и диоксида кремния (SiO₂).

Ключевые слова: графен; комбинированные модели; полевой транзистор; моделирование; резонансно-туннельный диод; вольт-амперная характеристика.

SIMULATION OF DEVICE STRUCTURES BASED ON GRAPHENE USING NANODEV SYSTEM

I. I. Abramov, V. A. Labunov, N. V. Kolomejtseva, I. A. Romanova, I. Y. Shcherbakova

Belarusian State University of Informatics and Radioelectronics, P. Brovki str. 6, 220013 Minsk, Belarus, Corresponding author: I. I. Abramov (nanodev@bsuir.edu.by)

The paper describes the combined models of field-effect graphene transistors (GFETs) and multi-barrier resonant tunneling diodes (RTDs) based on graphene, which are included in the NANODEV nanoelectronic devices simulation system. A good agreement with experimental data have been obtained for output IV-characteristics of two gate graphene field-effect transistor. The influence of the widths of barriers and quantum wells on the IV-characteristics of four-barrier RTDs based on graphene on substrates of hexagonal boron nitride (h-BN) and silicon dioxide (SiO₂) is studied.

Key words: graphene; combined models; field-effect transistor; simulation; resonant tunneling diode; IV-characteristic.

введение

Графен обладает рядом уникальных свойств, позволяющих создавать устройства значительно превосходящие традиционные по быстродействию [1]. К таким устройствам относятся полевые графеновые транзисторы и резонансно-туннельные диоды с областями, содержащими графен, которые могут использоваться в качестве активных элементов сверхбыстродействующих логических вентилей и высокочастотных генераторов. В работе рассмотрено моделирование этих приборов с использованием разработанных моделей с применением системы NANODEV.

модели

Предложенная модель ПГТ является комбинированной, так как согласно классификации [2] является комбинацией физико-топологической и электрической моделей. Модель ПГТ [3] позволяет рассчитывать самосогласованный потенциал в канале, скорость насыщения с учетом рассеяния, квантовую емкость, эффективную подвижность носителей заряда, выходные и передаточные ВАХ одно- и двухзатворных ΠΓΤ.

Для проведения расчетов характеристик многобарьерных РТД на основе графена использовалась разработанная комбинированная самосогласованная модель [4,5] на основе формализма волновых функций [2, 6]. Модель сочетает в себе применение квантовомаханического и полуклассического подходов [2, 6] для описания разного вила областей.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Моделировался двухзатворный ПГТ с длиной канала 18 мкм на подложке SiO₂/Si [7]. Графеновый канал находится между диэлектриками h-BN и Al₂O₃. В расчетах h-BN пренебрегаем из-за малой толщины, а диэлектриком нижнего затвора является SiO₂ толщиной 285 нм, верхнего затвора – Al₂O₃ толщиной 26 нм. Расчеты проведены при температуре окружающей среды 300 К, энергии оптических фононов для Al₂O₃ на графене 55 мэВ. Другие данные приведены в [7].

На рис. 1 приведены результаты расчета выходных ВАХ ПГТ при постоянном напряжении на нижнем затворе 40 В и при различных напряжениях на верхнем затворе V_{tg} в сравнении с экспериментальными данными. Кривая 1 соответствует $V_{tg} = 8$ В, кривая 2 – 6 B, кривая 3 – 4 B, кривая 4 – 2 B, кривая 5 – 0 B, кривая 6 – экспериментальные данные, соответствующие различным напряжениям на верхнем затворе V_{tg} [7].

Рисунок 1. – Сравнение результатов модели- Рисунок 2. – Сравнение результатов моделирования ВАХ ПГТ при постоянном напряже- рования ВАХ ПГТ при постоянном напряжении на нижнем затворе 40В с экспериментальными данными [7]

нии на нижнем затворе 70 В с экспериментальными данными [7]

Наилучшее согласование с экспериментальными данными получено при следующих параметрах: сопротивления стока и истока – 90 Ом, параметр m = 1,0 В². Для кривых 1, 2, 3, 4 согласующий параметр h = 0,165 м²/В·с, для кривой 5 – (при $V_{tg} = 0$ В) h = 0,135 м²/В·с.

На рис. 2 приведены выходные ВАХ ПГТ при напряжении на нижнем затворе 70 В и при различных V_{tg} . Кривая 1 соответствует $V_{tg} = 8$ В, кривая 2 – 6 В, кривая 3 – 4 В, кривая 4 – 2 В, кривая 5 – 0 В, кривая 6 – 2 В, кривая 7 – экспериментальные данные взяты из [7]. Наилучшее согласование с экспериментальными данными получено при следующих параметрах: сопротивления стока и истока – 69 Ом, параметр m = 1,0 В². Для кривых 1, 2, 3, 4 согласующий параметр h = 0,165 м²/В·с, для кривой 5 – (при $V_{tg} = 0$ В) h = 0,145 м²/В·с, для кривой 6 – (при $V_{tg} = -2$ В) h = 0,115 м²/В·с.

С применением разработанной численной комбинированной модели исследовались ВАХ РТД на основе графена на подложках h-BN и SiO₂ в зависимости от ширин барьеров и квантовых ям. В качестве примера на рис. 3 показано влияние ширин барьеров на ВАХ (точнее плотности тока от напряжения) четырехбарьерных РТД на двухслойном графене на подложке h-BN для трех случаев, когда ширины барьеров равны 1,2 нм (кривая 1), 1,3 нм (кривая 2) и 1,4 нм (кривая 3).

Рисунок 3. – ВАХ четырехбарьерных РТД для разных ширин барьеров

Рисунок 4. – ВАХ четырехбарьерных РТД для разных ширин квантовых ям

Моделирование проводилось для РТД, в котором высоты потенциальных барьеров задавались равными 3,137 эВ, ширины квантовых ям – 3,4 нм, ширины приконтактных областей – 17 нм, концентрация примеси в приконтактных областях $7,5\cdot 10^{16}$ м⁻², а температура окружающей среды – 300 К. Как следует из рис. 3, увеличение ширин барьеров четырехбарьерных структур на основе графена на подложке h-BN приводит к уменьшению плотностей пиковых токов для первого пика, но при этом для второго и третьего пиков значения плотностей токов увеличиваются. Это согласуется с результатами, полученными для четырехбарьерного РТД на основе графена на подложке SiO₂.

На рис. 4 проиллюстрировано влияние ширин квантовых ям на ВАХ четырехбарьерных РТД на двухслойном графене на подложке h-BN для трех случаев, когда ширины ям равны 3,0 нм (кривая 1), 3,4 нм (кривая 2) и 4,0 нм (кривая 3). При этом ширины потенциальных барьеров задавались равными 1,3 нм, а остальные параметры соответствуют приведенным выше. Установлено, что при увеличении ширины квантовых ям наблюдается уменьшение значений плотностей пиковых токов, а также уменьшение значений соответствующих им пиковых напряжений.

ЗАКЛЮЧЕНИЕ

В докладе рассмотрено моделирование двухзатворного ПГТ с помощью комбинированной самосогласованной модели основанной на уравнении квантовой диффузионно-дрейфовой модели. С ее применением исследованы выходные ВАХ ПГТ в зависимости от приложенных смещений. Проиллюстрировано хорошее согласование результатов расчетов с использованием предложенной модели с экспериментальными данными, что подтверждает адекватность модели.

Представлены результаты исследования с использованием разработанной комбинированной самосогласованной модели четырехбарьерных РТД на основе двухслойного графена. Получены зависимости плотностей токов от напряжения таких РТД на подложках h-BN и SiO₂ для различных значений ширин потенциальных барьеров и квантовых ям.

Заметим, что наш опыт исследования многоостровковых одноэлектронных структур [2, 8–10] показывает, что подобный подход может использоваться и для построения элементов на основе многобарьерных структур на графене.

Программы, реализующие разработанные модели ПГТ и РТД на графене, включены в систему моделирования наноэлектронных приборных структур и устройств NANODEV [11, 12], разрабатываемую в БГУИР с 1995 года для ПЭВМ.

Работа выполнена в рамках Государственных программ научных исследований Республики Беларусь "Конвергенция" и "Функциональные и композиционные материалы, наноматериалы" ("Нанотех").

БИБЛИОГРАФИЧЕСКИЕ ССЫЛКИ

- 1. Beyond CMOS. International Roadmap for Devices and Systems. 2018, https://irds.ieee.org/images/files/pdf/2017/ 2017IRDS_BC.pdf
- 2. Абрамов, И.И. Основы моделирования элементов микро- и наноэлектроники / Абрамов И. И. LAP LAMBERT Academic Publishing, Saarbrücken, Germany, 2016. 444 с.
- 3. Абрамов, И.И. Моделирование полевых графеновых транзисторов с одним и двумя затворами в различных режимах функционирования / И. И. Абрамов [и др.] // Нанотехнологии, разработка, применение: XXI век. – 2018. – № 3. – С. 16–24.
- Абрамов, И.И. Численная комбинированная модель резонансно-туннельного диода / И.И. Абрамов, И.А. Гончаренко // Электромагнитные волны и электронные системы. 2002. Т.7, № 3. С. 54–60.
- 5. Абрамов, И.И. Моделирование резонансно-туннельных приборных структур на основе углеродных наноматериалов / И.И. Абрамов [и др.] // Нанотехнологии, разработка, применение: XXI век. 2017. Т. 9, № 3. С. 3–11.
- Абрамов И.И. Проблемы и принципы физики и моделирования приборных структур микро- и наноэлектроники. І. Основные положения / И. И. Абрамов // Нано- и микросистемная техника. – 2006. – № 8. – С. 34–37.
- Scaling of graphene field-effect transistors supported on hexagonal boron nitride: radio-frequency stability as a limiting factor / P. C. Feijoo [et al.] // Nanotechnology. – 2017. – V. 28. – P. 485203-1–10.
- Абрамов И.И. Характеристики металлических одноэлектронных транзисторов на различных материалах / И.И. Абрамов, Е.Г. Новик // Физика и техника полупроводников. – 2000. – Т. 34, №8. – С. 1014–1019.

- Абрамов И.И. Влияние параметров конструкции и материалов на вольт-амперные характеристики двухостровковых одноэлектронных цепочек / И.И. Абрамов [и др.] // Физика и техника полупроводников. – 2002. – Т. 36, №10. – С. 1272–1277.
- Абрамов И.И. Модель многоостровковых одноэлектронных цепочек на основе метода Монте-Карло. / И.И. Абрамов [и др.] // Физика и техника полупроводников. – 2003. – Т.37, №5. – С. 583–587.
- 11. Абрамов, И.И. Система моделирования наноэлектронных приборов NANODEV / И.И. Абрамов [и др.] // Микроэлектроника. 2003. Т. 32, № 2. С. 124–133.
- Abramov, I. I. A nanoelectronic device simulation software system NANODEV: New opportunities / I.I. Abramov [et al.] // Proc. of SPIE. – 2010. – V. 7521. – P. 75211E-1–11.

ФАЗОВЫЙ ПЕРЕХОД В НАНОТРУБКАХ СИЛИЦИДА МАГНИЯ

А. Ю. Алексеев, А. Г. Черных, А. Б. Филонов, Д. Б. Мигас

Белорусский государственный университет информатики и радиоэлектроники, ул. П. Бровки, 6, 220013 Минск, Беларусь, e-mail: lucky.alexey94@gmail.com

В зависимости от диаметра, нанотрубки, свёрнутые из двумерного Mg_2Si , имеют различную структуру: в нанотрубках с диметром более 27 - 29 Å имеется искажение, аналогичное искажению динамически стабильной фазы Td двумерного Mg_2Si , тогда как нанотрубки с меньшим диаметром обладают более высокой симметрией и соответствуют нанотрубкам, свёрнутым из динамически нестабильной фазы T двумерного Mg_2Si . Зависимость энергии напряжения нанотрубок Mg_2Si от их диаметра содержит минимум, который приходится на нанотрубки (11,0) и (5,5) с диаметрами 15,7 и 12,5 Å, соответственно.

Ключевые слова: силицид; нанотрубка; наноструктура; отрицательная энергия напряжения; фазовый переход.

PHASE TRANSITION IN NANOTUBES OF MAGNESIUM SILICIDE

A. Yu. Alekseev, A. G. Chernykh, A. B. Filonov, D. B. Migas

Belarusian State University of Informatics and Radioelectronics, P. Browki str. 6, 220013 Minsk, Belarus Corresponding author: A. Yu. Alekseev (lucky.alexey94@gmail.com)

The structure of nanotubes, rolled up from the two-dimensional Mg₂Si, depends on their diameter: nanotubes with diameters more than 27 - 29 Å have a distortion similarly to the distortion of the dynamically stable Td phase of the two-dimensional Mg₂Si, while nanotubes with smaller diameters have a higher symmetry and correspond to nanotubes rolled up from the dynamical unstable T phase of the two-dimensional Mg₂Si. There is a minimum of strain energy of Mg₂Si nanotubes with respect to their diameter which occurs for (11,0) and (5,5) nanotubes with diameters of 15,7 and 12,5 Å, respectively.

Key words: silicide; nanotube; nanostructure; negative strain energy; phase transition.