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Numerical simulation results of exchange coupling in the system of near-surface donor 

and quantum dot pairs are presented. Exchange energy under the effect of external external 
electric field has been calculated using Hartree-Fock method. Fourier transform and finite 
element methods have been used to solve the problem for the Poisson equation. The de-
pendences of exchange energy on external electric field have been obtained. Limits of ap-
plicability of electric field for the system control are discussed. The effect of donors posi-
tion has been investigated. 

Key words: qubit; two-electron system; nanogate; quantum dot; modeling. 
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INTRODUCTION 
The potential realization of solid-state elements of quantum information has attracted a 

lot of attention due to long coherence times [1], promise to scalability and compatibility 
with existing semiconductor technologies. Recent progress in fabrication semiconductor 
nanodevices has stimulated a large variety of theoretical studies dedicated to modeling of 
quantum information structures for quantum computing, quantum communication, quan-
tum sensing, etc. [2–3]. In particular, there are several proposals of quantum computer im-
plementations: based on donor electron or nuclear spins in silicon [4–5], superconducting 
nanocircuits [6], single electron spins in quantum dots and quantum wires of different con-
figurations [7–8]. 

One of the necessary elements for controlling spin-qubit operations for several quantum 
computing proposals is manipulating spin and exchange interaction between electrons by 
combining gate electrodes and magnetic field. Exchange splitting can be used for both two-
qubit [4, 7] and single-qubit operations [1]. For example, according to Kane's proposal [4], 
quantum calculations are realized using the nuclear spins of phosphorus donors in silicon. 
The bound electron of single donor is affected by the electric field of main control gate 
(A-gate), which provides the electron density relocation to semiconductor surface. Two-
qubit operations are implemented using the exchange interaction of two neighbouring elec-
trons, regulated by the electric field of additional (exchange) gate (J-gate), located between 
A-gates. Exchange interaction is extremely sensitive to external fluctuations, which im-
poses restrictions both on the parameters of the J-gate and on geometric parameters of the 
whole system [9]. 

When modeling the effect of electric on a donor or a quantum dot pair [10–17], simpli-
fied structures are usually studied. External electric field (J-gate field) is often considered 
homogeneous [12] or parabolic [15], as well as quantum dot confining potential [10, 11]. 
Such potential configurations have significant differences from the real potential of finite-
size gate. Another common simplification is considering bulk donors and quantum dots 
instead of near-surface structures. 

In this paper, we study the effect of the electric field of the disk-shaped additional 
J-gate on the value of exchange interaction for different geometrical parameters of the two-
qubit system. 

FORMULATION OF THE PROBLEM 
The stationary electronic states of the system under study are described by the Schrod-

inger equation 

 ( ) ( ) ( ) ( )(1) (1)
1 2 1 2 1 2

1 2

2ˆ ˆ , , ,H r H r r r E r r
r r

⎛ ⎞
+ + Ψ = Ψ⎜ ⎟⎜ ⎟−⎝ ⎠

  (1) 

 ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1

(1) 2ˆ ˆ ˆ ˆ ˆ ˆ ,A A D D JH r V r V r V r V r V r= −∇ + + + + +   (2) 

where ˆ
iAV , ˆ

iDV  are donor and A-gate potentials, ˆ
JV  is J-gate potential. Distances are ex-

pressed in effective Bohr radius a*, effective Rydberg Ry* is used as energy unit. For sili-
con, averaged units are a* = 2 nm and Ry* = 31.27 meV. Disk-shaped gates potentials are 
defined by analytical expression [18]. 

For bound states, wave function vanishes at infinity: 
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1 21 2 1 2 1 2| | | |( , ) 0, ( , ) 0, 0, 0.r rr r r r z z→∞ →∞Ψ ⎯⎯⎯→ Ψ ⎯⎯⎯→ > >   (3) 

As we consider half-space problem, additional boundary conditions on the plane z = 0 
should be applied: 
 

1 2
1 2 2 1 2 10 0

( , ) 0, 0, ( , ) 0, 0.
z z

r r z r r z
= =

Ψ = > Ψ = >   (4) 

NUMERICAL METHOD 
To solve the problem (1)–(4), Hartree-Fock method based on variational approach has 

been used. Trial functions have been chosen in the form [19]: 
 ( ) ( )( )2 2(1) 2

0exp 2 ,ij i i jx R y z zϕ = −α ± − α − α −   (5) 

 ( )( )2(2) 2 2exp 2 ,ij i i jz x R y zϕ = −β ± − β − β   (6) 

 ( )(3) 2 2 2exp , , 1.. ,ij i i jz x y z i j Mϕ = −β −β −β =   (7) 
where R is the distance between donors (QDs' centers), z0 is the distance between donors 
and semiconductor surface. Parameters iα  have been chosen so that a linear combination 
of functions ( )2exp i r−α  deliver minimum value for ground state energy of the electron in 

the field of isolated donor, and ( ) 1 22i id −β = α  to scale on gate diameter. Trial functions 
(5)–(7) demonstrate good results for modeling of corresponding one-qubit problem. 

Calculation of exchange integrals has the greatest computational cost. To prevent such 
calculations on each iteration, we calculate integrals of the form 
 2 2 1 1 2 1

1 2

2( ) ( ) ( ) ( )i j k lr r r r dr dr
r r

χ χ χ χ
−∫∫   (8) 

preliminary and use it for all calculations with this basis. The inner integral (uij) is replaced 
by the problem for the Poisson equation. To approximate boundary conditions at infinity, 
asymptotic conditions have been used. This conditions are constructed under the assump-
tion that gate potential at large distances is close to the potential of effective point charge. 
Thus, the function uij at the boundary has been approximated with the function 

 ( )
( ) ( )2 22

, , ,qv x y z
x X y z Z

=
− + + −

  (10) 

where (X, 0, Z) are approximate coordinates of average position of effective charge (for all 
basis functions this position is placed on y-axis), q is overall charge. 

The problem for the Poisson equation has been reduced to two-dimensional problem us-
ing cosine Fourier transform on y direction. The resulting problem has been solved using 
the finite element method with linear triangular elements. 

APPROXIMATION OF THE GATE POTENTIAL 
To reduce calculation efforts, the integrals of donor potential are calculated analytically 

on y variable, and numerically on x and z variables. The integrals which include the gates 
potential can not be calculated analytically. Thus, to approximate the potential created by 
the thin disk-shaped gate, expressions of the form 
 ( )2ˆ expGV c a bz= − − ρ −   (11) 
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has been used. Potential of the form (11) is more preferable at large distances than usu-
ally used parabolic potential [15], as it vanishes at infinity and demonstrates good ap-
proximation for one-electron axis-symmetric systems. However, it distorts electric field 
with the distance from the gate center. 

Parameters a and b in Eq. (11) have been chosen in two ways. According to the first on, 
parameters have been chosen so that, the value of the critical potential (the potential at 
which the maximum electron density of the ground state passes from the donor to the gate) 
remains unchanged compared to the exact value of the potential. This condition is satisfied 
by infinite number of values. We chose such values of parameters a and b that the depend-
ence of ground state energy on gate potential Φ0 have been close to the dependence in the 
field created by a real disk-shaped metal gate and suppose c = Φ0. Then due to the fact that 
the whole system can be scaled on gate diameter and critical potential practically does not 
depend on the distance from the donors to the interface, a disk-shaped gate of diameter d 
corresponds to parameter values 21.098a d≈ , 1.268b d≈ . 

The second way to define parameters a and b is to minimize the difference between po-
tential values and electric field components for exact and approximate expressions at cer-
tain points. We have used gates centers and donors positions as such points. The drawback 
of this way to choose parameters is the necessity to find new parameters for different gate 
diameters and donor-interface distances. For z0 = 6a*, d = 2a*, we get a ≈ 0.154, b ≈ 0.61, 
c ≈ Φ0. 

The results of using these two kinds of potential approximation for two-donor system is 
presented in Fig. 1. The difference between two types of approximation potentials is con-
siderable, and the result can differ by two times. To find more accurate results, we have 
also used another function 
 ( ) ( )2 2

1 1 1 2 2 2
ˆ exp exp ,GV c a b z c a b z= − − ρ − − − ρ −  (12) 

with fitting parameters on the potential and field values at donors and gates centers. With 
approximation (12), we have gotten error in exchange energy of about 10%, although 
singlet and triplet energies separately are less accurate. 

Expressions (11)–(12) can be considered not only as approximations of the potential of 
disk-shaped gate, but also as the potential of electrodes with another configuration. In such 
way, different gate configurations can be regarded as additional control parameter of the 
system. 

To verify the calculation procedure, we have used asymptotic expression for the de-
pendence of exchange energy on inter-donor distance for two bulk donors: 

 
5 22

* * *
0

21.64 exp .e R RK
a a a

⎛ ⎞ ⎛ ⎞≈ −⎜ ⎟ ⎜ ⎟εε ⎝ ⎠ ⎝ ⎠
  (13) 

We have compared exchange energy (13) with the values for two-donor system posi-
tioned at the distance z0 = 6a* from semiconductor interface. The surface effects at such 
distances can be neglected. For inter-donor distances from 6a* to 10a*, calculations get 
results which are in good agreement with Eq. (13). 

CALCULATION RESULTS AND DISCUSSION 
Calculations shows that J-gate potential does not have great effect on exchange interac-

tion in two-donor systems, in contrast to uniform electric field. For example, in Ref. [15] 
exchange energy changes by several order of magnitude without electron density reloca-
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tion, whereas J-gate potential of diameter d = 2a* only doubles it. This difference arises due 
to the rapid decrease in electric field in the case of a finite size gate. For larger d, exchange 
energy varies over a wider range, but the gate diameter can not be used for improving the 
system efficiently, as its value is limited with the distance between neighbouring qubits. 

Exchange energy becomes more sensitive to change of the J-gate potential with de-
creasing z0, which means that switching spin exchange coupling between neighbouring 
qubits can be performed more efficiently for smaller z0. 

A-gate potential has also slight effect on exchange interaction, as its range is limited by 
electron density relocation as well as J-gate potential. It can be used for increasing ex-
change energy by several times due to electron wave function deformation. 

In the case of a quantum dot pair, the dependence of exchange energy on J-gate poten-
tial is more prominent, than in two-donor state. Such a difference can be explained by the 
less distance between the gates, than between donors and J-gate. At the same time, ex-
change energy is more sensitive to the A-gate potential, than to the J-gate potential (Fig. 2). 
This means that A-gate potential can also be used more tuning exchange interaction for 
two-QD system. 
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Figure 1. – The dependence of exchange energy 

on J-gate potential for two-donor system, 
 J-gate diameter d = 2a*, distance between do-

nors R = 8a*. Curves 1 and 2 corresponds 
 to J-gate potential approximated with Eq. (11) 

using fitting on critical potential and field values 
at several points, respectively. Curve 3 corre-

sponds to approximation (12). Values with exact 
potential are denoted as 4 

Figure 2. – The dependence of exchange energy 
on J-gate potential for two-QD system;  

curves 1 correspond to gates diameter d = 2a*, 
curves 2 – d = 4a*,   

distance between gate centers R = 8a* 

CONCLUSIONS 
In conclusion, the system of near-surface donors and quantum dots induced by electric 

field of nanosized gate has significant differences with the bulk case. For near-surface do-
nors, the use of electric field for exchange coupling control is limited with electron density 
relocation, which takes place for large enough gate potentials. On the other hand, position-
ing donors closer to semiconductor surface can widen the range of the gate potentials that 
can be used for exchange coupling manipulation. For in two quantum dot system manipula-
tion of exchange splitting can be implemented more effectively using the gates, which in-
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duce quantum dots, rather than the external exchange gate. Based on the calculation results, 
optimal system configurations can be proposed for more efficient exchange energy control. 

REFERENCES 

1. J.R. Petta, A.C. Johnson, J.M. Taylor, E.A. Laird, A. Yacoby, M.D. Lukin, C.M. Marcus, 
M.P. Hanson, and A.C. Gossard, Science 309, 2180 (2005). 

2. P. Michler, Quantum dots for quantum information technologies (Berlin, Springer, 2017), vol. 237. 
3. A.L. Saraiva, A. Baena, M.J. Calderon, B. Koiller, Journ. of Phys.: Condens. Matt. 27 (15), 154208 (2015). 
4. B.E. Kane, Nature (London) 393, 133–137 (1998). 
5. Y. He, S.K. Gorman, K. Keith, L. Kranz, J.G. Keizer, and M.Y. Simmons, Nature 571, 371–375 (2019). 
6. Y. Makhlin, G. Schon, and A. Shnirman, Rev. Mod. Phys. 73, 357–400 (2001). 
7. D. Loss, and D.P. DiVincenzo, Phys. Rev. A 57, 120 (1998). 
8. J. Levy, Phys. Rev. Lett. 89 (14), 147902 (2002). 
9. X. Hu, and S.D. Sarma, Phys. Rev. Lett. 96, 100501 (2006). 

10. F. Baruffa, P. Stano, and J. Fabian, Phys. Rev. B 82 (4), 045311 (2010). 
11. D.V. Melnikov, J. Kim, L.X. Zhang, and J.P. Leburton, IEE Proceedings – Circuits, Devices and Sys-

tems 152 (4), 377–384 (2005). 
12. M.J. Calderon, A. Saraiva, B. Koiller, and S. Das Sarma, Journ. of Appl. Phys. 105, 122410 (2009). 
13. G. Pica, B.W. Lovett, R.N. Bhatt, and S.A. Lyon, Phys. Rev. B 89 (23), 235306 (2014). 
14. A. Kwasniowski, and J. Adamowski, Journ. of Phys.: Cond. Matt. 21 (23), 235601 (2009). 
15. A. Fang, Phys. Rev. B 66, 155331 (2002). 
16. Y. Wang, A. Tankasala, L.C. Hollenberg, G. Klimeck, M.Y. Simmons, and R. Rahman, Quantum In-

formation 2, 16008 (2016). 
17. Q. Li, L. Cywinski, D. Culcer, X. Hu, and S.D. Sarma, Phys. Rev. B 81, 085313 (2010). 
18. W.B. Smythe, Static and dynamic electricity (Taylor & Francis, 1989), p. 124. 
19. G.D.J. Smit, S. Rogge, J. Caro, and T.M. Klapwijk, Phys. Rev. B 68, 193302 (2003). 

 
 

LINEAR  MAGNETORESISTANCE  IN  GRAPHENE 
FORMED  ON  SILICON  CARBIDE:  

TWO  DIMENSIONAL  MAGNETOTRANSPORT 
 

N. A. Poklonski1, V. A. Samuilov1, 2 
__________________________________________________________________________________________ 

1) Belarusian State University, Nezavisimosti av. 4, 220030 Minsk, Belarus  
2) State University of New York, Department of Materials Science and Chemical Engineering 

Stony Brook, NY1179 
Corresponding author: V. A. Samuilov (e-mail: vladimir.samuilov@stonybrook.edu) 

 
In this study we have tested the magnetoresistance (MR) and Hall-effect in graphene 

formed on semi-insulating 4H-SiC substrate by thermal decomposition of its silicon face 
(0001) in Ar ambient at a high temperature of 1800–2000 °C over the large areas of SiC 
without any passivation for checking a possibility for sensor applications. Testing was done 
in a relatively low magnetic fields (up to 3 T) in the temperature range from 300 to 4.2 K. 
A large (up to 10%) and linear magnetoresistance was observed at 300 K, which is distinc-
tively different from the other carbon nanomaterials. Furthermore, negative magnetoresis-
tance behavior at a low field regime for low temperatures is recognized as a weak localiza-
tion in graphene. This study suggests the potential of utilizing graphene formed on semi-
insulating 4H-SiC for room temperature magneto-electronic device applications and for the 
sensors of first order phase transitions ice–water. 


