Белорусский государственный университет

УТВЕРЖДАЮ

Проректор по учебной работе

А.Л.Толстик

(подпись) (И.О.Фамилия)

(дата утверждения)

Регистрационный No VIII—685 /уч.

Теория массового обслуживания

Учебная программа учреждения высшего образования по учебной дисциплине для специальности:

1-31 03 03 Прикладная математика (по направлениям) направления специальности
1-31 03 03-01 Прикладная математика (научно-производственная деятельность)

Учебная программа составлена на основе ОСВО 1-31 03 03-2013 и учебного плана УВО № G31-173/уч. 2013 г.

составители:

А.Н. Дудин, профессор кафедры теории вероятностей и математической статистики Белорусского государственного университета, доктор физикоматематических наук, профессор;

В.И. Клименок, профессор кафедры теории вероятностей и математической статистики Белорусского государственного университета, доктор физикоматематических наук, профессор

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой теории вероятностей и математической статистики Белорусского государственного университета * (протокол № 10 от 22.04.2015 г.);

Методической комиссией факультета прикладной математики и информатики Белорусского государственного университета (протокол № 6 от 12.05.2015 г.)

office

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Теория массового обслуживания (ТМО) является важной ветвью теории конструктивно задаваемых случайных процессов. Она является признанным математическим аппаратом для анализа и оптимизации стохастических процессов распределения ограниченного ресурса при случайном потоке запросов на этот ресурс в различных областях человеческой жизни. Наиболее впечатляющие приложения эта теория получила при проектировании и эксплуатации телекоммуникационных сетей. Не случайно зарождение ТМО связано с работами А.К. Эрланга по расчету телефонных сетей, а одним из создателей глобальной сети связи, прообраза сети Internet, является известный специалист в области ТМО Л. Клейнрок.

Данная специальная дисциплина охватывает основы теории массового обслуживания. Даются основы теории входящих потоков, включая детальное изучение простейшего потока, изучение рекуррентных потоков, их просеивания и суперпозиции. Вводится аппарат преобразований Лапласа-Стилтьеса и производящих функций и их вероятностная интерпретация. Приводятся краткие сведения из теории цепей Маркова с дискретным и непрерывным временем и процессов гибели и размножения. Изучаются однолинейные и многолинейные марковские системы массового обслуживания. Излагаются методы непосредственного составления уравнений Колмогорова (Δ_t -метод), фаз Эрланга, диаграмм интенсивностей переходов, вложенных цепей Маркова, дополнительных переменных и дополнительного события. Применение этих методов иллюстрируется на ряде полумарковских систем обслуживания.

Основой для изучения дисциплины являются учебные дисциплины «Теория вероятностей и математическая статистика», «Теория случайных процессов», «Дифференциальные уравнения», «Математический анализ». Сведения, излагаемые при изучении дисциплины «Теория массового обслуживания» являются полезными для лучшего усвоения студентами дисциплин «Компьютерные сети», «Исследование операций», «Имитационное и статистическое моделирование», а также при выполнении студентами курсовых и дипломных работ. Успешное усвоение материала дисциплины «Теория массового обслуживания» позволяет слушателю получить навык строить и анализировать стандартные системы массового обслуживания, описывающие реальные системы.

Целью изучения дисциплины является овладение основными методами построения и исследования математических моделей систем массового обслуживания в случаях, когда системы описываются специальными классами цепей Маркова с непрерывным и дискретным временем.

Основные задачи, решаемые при изучении учебной дисциплины «Теория массового обслуживания»:

- ознакомление студентов с основными математическими моделями случайных потоков событий и систем массового обслуживания, функционирование которых описывается цепями Маркова с непрерывным и дискретным временем, а также полумарковскими процессами;

- изучение основных методов теории массового обслуживания, применяемых при нахождении стационарного распределения и стационарных характеристик производительности систем массового обслуживания;
- развитие практических навыков создания, использования и анализа математических моделей систем массового обслуживания.

В результате изучения учебной дисциплины студент должен

знать:

- определение и способы задания входящих потоков;
- основные классы входящих потоков;
- определение и свойства простейшего (стационарного пуассоновского)
 потока;
 - свойства производящих функций и преобразований Лапласа-Стилтьеса;
 - операции просеивания и суперпозиции потоков;
- стационарное распределение цепей Маркова и процессов гибели и размножения;
- простейшие марковские системы массового обслуживания. Способы их исследования;
- полумарковские системы массового обслуживания. Способы исследования полумарковских систем массового обслуживания. Система M/G/1;

уметь:

- строить математические модели простейших систем массового обслуживания на основе вербального описания процессов в реальных системах;
- составлять уравнения Чепмена-Колмогорова для стационарного распределения вероятностей состояний систем массового обслуживания;
- использовать метод производящих функций для решения систем уравнений равновесия;
- применять метод дополнительных переменных для исследования полумарковских систем массового обслуживания;
- применять метод дополнительного события для нахождения преобразования Лапласа-Стилтьеса распределений времени ожидания, времени пребывания и периода занятости в полумарковских системах массового обслуживания;

владеть:

- основными методами построения математических моделей систем массового обслуживания;
- основными методами исследования систем массового обслуживания, описываемых цепями Маркова с непрерывным и дискретным временем: методом непосредственного составления уравнений Колмогорова (Δ_t -метод), фаз Эрланга, диаграмм интенсивностей переходов, вложенных цепей Маркова, дополнительных переменных и дополнительного события, методом производящих функций и преобразования Лапласа-Стилтьеса.

Учебная программа рассчитана на 154 часа, из них 68 аудиторных часов, в том числе 34 лекционных часа, 26 часов лабораторных занятий и 8 часов управляемой самостоятельной работы.

Дисциплина изучается на третьем курсе в пятом семестре. Рекомендуемая форма текущей аттестации – экзамен. Форма получения высшего образования – очная.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Раздел I Предмет ТМО, ее цели, решаемые задачи. Классификация Кендалла.

Раздел II. Основные сведения теории входящих потоков

2.1 Случайные потоки, их свойства и классификация.

Определения и способы задания случайного потока. Классификация потоков. Типы случайных потоков. Стационарные потоки, их свойства и характеристики.

2.2. Простейший поток.

Свойства простейшего потока, эквивалентность стационарному пуассоновскому потоку и рекуррентному потоку с экспоненциальным распределением интервалов между моментами поступления. Групповые и нестационарные пуассоновские потоки.

2.3. Рекуррентные потоки.

Определение, свойства. Суперпозиция потоков. Просеивание потоков.

2.4. Групповой марковский поток (BMAP-Batch Markovian Arrival Process).

Раздел III. Производящие функции, преобразования Лапласа и Лапласа-Стилтьеса.

Основные свойства преобразований Лапласа и Лапласа-Стилтьеса и производящих функций и их вероятностная интерпретация в терминах потока катастроф и окраски запросов.

Раздел IV. Цепи Маркова с дискретным и непрерывным временем, процессы гибели и размножения.

Определения. Примеры. Классификация цепей и состояний. Эргодичность. Условия эргодичности и неэргодичности. Теоремы Мустафы и Феллера. Нахождение нестационарного и стационарного распределения.

Раздел V. Марковские системы массового обслуживания.

5.1. Методы исследования.

Методы непосредственного составления уравнений Колмогорова (delta t), фаз Эрланга, диаграмм интенсивностей переходов.

5.2. Система М/М/1.

Нахождение нестационарного распределения. Вычисление стационарного распределения и средних характеристик длины очереди. Вывод стационарного распределения времени ожидания и времени пребывания.

5.3. Системы M/M/n/0, M/M/n и M/E k/1.

Стационарное распределение числа запросов и времени ожидания. Вероятность отказов.

5.4. Система М/М/1 с повторными вызовами.

Производящие функции стационарного распределения. Стационарные вероятности. Альтернативное сечение графа интенсивностей переходов.

Раздел VI. Полумарковские системы массового обслуживания. 6.1. Система M/G/1.

Метод вложенных цепей Маркова. Стационарное распределение вероятностей состояний системы M/G/1 в моменты окончания обслуживания. Формулы Поллячека-Хинчина для распределения длины очереди, времени ожидания и времени пребывания. Формула Литтла. Метод дополнительных переменных, пример его применения для исследования распределение числа запросов в произвольный момент времени в системе обслуживания типа M/G/1. Метод введения дополнительного события. Вероятностная интерпретация преобразования Лапласа-Стилтьеса и производящей функции. Распределение периода занятости и числа запросов, обслуженных за период занятости в системе обслуживания типа M/G/1.

6.2. Системы GI/M/1 и GI/M/m.

Стационарное распределение вероятностей состояний в моменты поступления заявок. Стационарное распределение вероятностей состояний в произвольные моменты времени. Распределение времени ожидания и времени пребывания.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

		Кол	Количество аудиторных часов					й
Номер раздела, темы	Название раздела, темы	Лекции	Практические занятия	Семинарские занятия	Лабораторные занятия	Иное	Количество часов УСР	Форма контроля знаний
1	2	3	4	5	6	7	8	9
I	Предмет ТМО, ее цели, решаемые задачи. Классификация Кендалла	2						
II	Основные сведения теории входящих потоков	8			6			
2.1	Случайные потоки, их свойства и классификация	2						
2.2	Простейший поток.	2			2			Устный опрос
2.3	Рекуррентные потоки.	2			2			Устный опрос
2.4	Групповой марковский поток (BMAP-Batch Markovian Arrival Process)	2			2			Устный опрос, лабораторная работа
Ш	Производящие функции, преобразования Лапласа и Лапласа-Стилтьеса	4			2		2	Устный опрос
IV	Цепи Маркова с дискретным и непрерывным временем, процессы гибели и размножения	4			6		2	Устный опрос, лабораторная работа, коллоквиу м
V	Марковские системы массового обслуживания	10			6		2	
5.1	Методы исследования	2						Устный
5.2	Система М/М/1	2			2		2	опрос, лаборатор- ная работа
5.3	Системы M/M/n/0, M/M/n и M/E_k/1	4			2			Устный опрос, лаборатор- ная работа
5.4	Система М/М/1 с повторными вызовами	2			2			Устный опрос, лабораторная работа

VI	Полумарковские системы массового обслуживания	6	6	2	
6.1	Система М/G/1	4	4	2	Устный опрос, лабораторная работа
6.2	Системы GI/M/1 и GI/M/m	2	2		Устный опрос, лабораторная работа

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Литература

Основная

- 1. Дудин А.Н., Медведев Г.А., Меленец Ю.В. Практикум на ЭВМ по ТМО, Минск. БГУ. 2000.-109 с.
- 2. Гнеденко, Б.В., Коваленко И.Н. Введение в теорию массового обслуживания. М.: Изд-во ЛКИ, 2011.-400 с.
 - 3. Матвеев И.Г., Ушаков В.Г. «Системы массового обслуживания». М: МГУ. 1984.
 - 4. Бочаров П.П., Печинкин А.В. «Теория массового обслуживания». М.: УДН. 1995. 528 с.

Дополнительная

- 5. Климов Г.П. Стохастические системы обслуживания. М.: Наука. 1968. 328 с.
- 6. Риордан, Дж. Вероятностные системы обслуживания . М.:Связь. 1966. 184 с.
- 7. Дудин А.Н., Клименок В.И. Системы массового обслуживания с коррелированными потоками. Минск. БГУ. 2000. 175 с.

Перечень используемых средств диагностики результатов учебной деятельности

В перечень средств диагностики результатов учебной деятельности по дисциплине входят:

- тесты и тестовые задания, коллоквиум;
- защита выполненных на лабораторных занятиях индивидуальных заданий;
 - сдача экзамена по дисциплине.

Для диагностики могут использоваться собеседование, фронтальный опрос на лекциях и другие формы контроля.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ УВО

Название	Название	Предложения	Решение,
учебной	кафедры	об изменениях в	принятое
дисциплины,		содержании	кафедрой,
с которой		учебной	разработавшей
требуется		программы	учебную
согласование		учреждения	программу (с
		высшего	указанием даты и
		образования по	номера
		учебной	протокола)1
		дисциплине	
1. Компьютерные	Кафедра теории	Предложений нет	протокол № 10 от
сети	вероятностей и		22.04.2015 г.
	математической		
	статистики		
2. Исследование	Кафедра теории	Предложений нет	протокол № 10 от
операций	вероятностей и		22.04.2015 г.
	математической		
	статистики		
3. Имитационное и	Кафедра теории	Предложений нет	протокол № 10 от
статистическое	вероятностей и		22.04.2015 г.
моделирование	математической		
	статистики		

ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ К УЧЕБНОЙ ПРОГРАММЕ УВО на ____/___ учебный год

$N_{\overline{0}}$	Дополнения и	изменения	Основание		
Π/Π					
Учебн	ая программа пересм				
		(протокол	№ от	_201_ г.)	
	(название кафедры)				
Заведу	ующий кафедрой				
				_	
(ученая	степень, ученое звание)	(подпись)	(И.О.Фамилия)		
VTRE	РЖДАЮ				
	факультета				
дскан	факультета				
(ученая	степень, ученое звание)	(подпись)	(И.О.Фамилия)	-	