Белорусский государственный университет

УТВЕРЖДАЮ

Проректор по учебной работе и образовательных инповациям

«30» 14 15/19 2020 1

Регистрационный № УД-

ORTHADE TO THE OWNER OF THE OWNER OWNE

АЛГЕБРА И ТЕОРИЯ ЧИСЕЛ

Учебная программа учреждения высшего образования по учебной дисциплине для специальностей:

1-31 03 01 Математика (по направлениям) Направления специальности:

1-31 03 01-01 Математика (научно-производственная деятельность),

1-31 03 01-02 Математика (научно-педагогическая деятельность),

1-31 03 01-03 Математика (экономическая деятельность);

1-31 03 08 Математика и информационные технологии (по направлениям) Направления специальности:

1-31 03 08-01 Веб - программирование и интернет - технологии

1-31 03 08 -02 Математическое и программное обеспечение мобильных устройств

1-31 03 09 Компьютерная математика и системный анализ

Учебная программа составлена на основе образовательных стандартов ОСВО 1-31 03 01-2013, утвержденного 30.08.2013, ОСВО 1-31 03 08-2014, утвержденного 09.07.2014, ОСВО 1-31 03 09-2013, утвержденного 30.08.2013, и учебных планов: G31-137/уч, G31-138/уч., G31-139/уч., G31-140/уч., G31з-183/уч., утвержденных 30.05.2013, G31-195/уч., G31з-196/уч., G31з-198/уч., G31з-199/уч., утвержденных 30.05.2014, G31з-212/уч., G31з-213/уч., утвержденных 30.05.2014, G31з-212/уч., G31з-213/уч., утвержденных 30.05.2017, типовой учебной программы ТД-G.533/тип. от 07.09.2015.

составители:

Валерий Вацлавович Беняш-Кривец — заведующий кафедрой высшей алгебры и защиты информации Белорусского государственного университета, доктор физико-математических наук, профессор;

Сергей Викторович Тихонов – доцент кафедры высшей алгебры и защиты информации Белорусского государственного университета, кандидат физикоматематических наук, доцент.

РЕЦЕНЗЕНТЫ:

В.И. Янчевский, заведующий отделом алгебры Института математики Национальной Академии Наук Республики Беларусь, академик Национальной Академии наук Беларуси, доктор физико-математических наук, профессор; С.А. Мазаник, заведующий кафедрой высшей математики Белорусского государственного университета, доктор физико-математических наук, профессор;

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой высшей алгебры и защиты информации Белорусского государственного университета (протокол № 11 от 25.05.2020);

Научно-методическим советом Белорусского государственного университета (протокол № 5 от 17.06.2020).

Зав. кафедрой высшей алгебры и защиты информации, профессор

Pogeti

В.В. Беняш-Кривец

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Цели и задачи учебной дисциплины

Учебная дисциплина «Алгебра и теория чисел» является базовой для преподавания большинства математических курсов. Цель дисциплины «Алгебра и теория чисел»: изложить основы современных алгебры и теории чисел.

Образовательная цель: обучить студентов фундаментальным методам общей алгебры, линейной алгебры, теории чисел; ознакомить с основными алгебраическими структурами — группами, кольцами и полями; создать базу для освоения основных понятий и методов современной математики.

Развивающая цель: формирование у студентов основ математического мышления; знакомство с методами математических доказательств; изучение алгоритмов решения конкретных математических задач; привитие студентам умения самостоятельно изучать учебную и научную литературу в области математики.

Основные задачи, решаемые в рамках изучения дисциплины «Алгебра и теория чисел»:

- ознакомить студентов с фундаментальными понятиями и методами линейной алгебры. Изучить матрицы и определители, методы решения систем линейных уравнений, теорию векторных пространств и линейных операторов, теорию квадратичных и билинейных форм;
- дать введение в задачи и методы теории групп, теории колец и полей, а также теории чисел;
- изучить комплексные числа и многочлены;
- развить у студентов аналитическое мышление и общую математическую культуру;
- привить студентам умение самостоятельно изучать учебную и научную литературу в области математики.

Место учебной дисциплины в системе подготовки специалиста с высшим образованием.

Учебная дисциплина относится **к циклу** специальных дисциплин государственного компонента.

Связи с другими учебными дисциплинами, включая учебные дисциплины компонента учреждения высшего образования, дисциплины специализации и др.

Дисциплина «Алгебра и теория чисел» является базовой для преподавания большинства математических курсов. Наиболее тесной является связь данной дисциплины с такими дисциплинами как «Аналитическая геометрия»,

«Математический анализ», «Дифференциальные уравнения», «Теория функций комплексного переменного», «Функциональный анализ», «Уравнения математической физики».

Требования к компетенциям специалиста.

Освоение учебной дисциплины «Алгебра и теория чисел» должно обеспечить формирование следующих компетенций:

академические компетенции:

- АК-1. Уметь применять базовые научно-теоретические знания для решения теоретических и практических задач.
 - АК-2. Владеть системным и сравнительным анализом.
 - АК-3. Владеть исследовательскими навыками.
 - АК-4. Уметь работать самостоятельно.
- АК-5. Быть способным вырабатывать новые идеи (обладать креативностью).
 - АК-6. Владеть междисциплинарным подходом при решении проблем.
- АК-7. Иметь навыки, связанные с использованием технических устройств, управлением информацией и работой с компьютером.
- АК-8. Иметь лингвистические навыки (устная и письменная коммуникация).
- АК-9. Уметь учиться, повышать свою квалификацию в течение всей жизни.

социально-личностные компетенции специалиста:

- СЛК-2. Быть способным к социальному взаимодействию.
- СЛК-3. Обладать способностью к межличностным коммуникациям.
- СЛК-5. Быть способным к критике и самокритике.
- СЛК-6. Уметь работать в команде.

для специальности 1-31 03 08 Математика и информационные технологии (по направлениям)

профессиональные компетенции:

- ПК-1. Заниматься аналитической и научно-исследовательской деятельностью в области математики и информационных технологий.
- ПК-3. Использовать и развивать современные достижения информационных технологий, в том числе в области математики.
- ПК-4. Самостоятельно работать с научной, нормативно-справочной и специальной литературой, в том числе с доступной в компьютерных сетях.
- ПК-5. Проводить исследования в области решения научно-производственных задач и оценивать эффективность таких решений.
- ПК-22. Работать с научной, технической и патентной литературой.

Для специальности 1-31 03 01 Математика (по направлениям)

профессиональные компетенции:

- ПК-2. Владеть основными методами, способами и средствами получения, хранения, переработки информации. Применять современные методы проектирования информационных систем, использовать веб-сервисы, оформлять техническую документацию.
- ПК-3. Применять методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности и в областях знаний, непосредственно не связанных со сферой профессиональной деятельности.
- ПК-5. Заниматься аналитической и научно-исследовательской деятельностью в области математики и информационных технологий.
- ПК-7. Проводить исследования в области эффективности решения производственных задач.
- ПК-8. Работать с научной, нормативно-справочной и специальной литературой.
- ПК-9. Осуществлять выбор оптимального варианта проведения научно-исследовательских работ.
 - ПК-13. Взаимодействовать со специалистами смежных профилей.
 - ПК-16. Готовить доклады, материалы к презентациям.
 - ПК-22. Работать с научной, технической и патентной литературой.
- ПК-27. Реализовывать инновационные проекты в профессиональной деятельности.

Для специальности **1-31 03 09 Компьютерная математика и системный** анализ

профессиональные компетенции:

- ПК-1. Использовать фундаментальные математические знания в качестве основы при проведении прикладных исследований;
 - ПК-2. Понять поставленную задачу, оценить ее корректность;
- ПК-3. Доказывать основные утверждения, выделять главные смысловые аспекты в доказательствах;
- ПК-4. Самостоятельно разрабатывать алгоритмы решения и их анализировать;
- ПК-5. Получать результат на основе анализа, его корректно формулировать, видеть следствия сформулированного результата;
- ПК-6. Передавать результат проведенных исследований в виде конкретных рекомендаций, выраженных в терминах предметной области изучавшегося явления;
- ПК-7. Публично представлять собственные и известные научные результаты.
- ПК-8. Преподавать математические дисциплины и информатику в учреждениях образования;
- ПК-9. Применять на практике изученные основы педагогического мастерства;

- ПК-10. Распространять знания из области математики, информатики, их приложений среди различных слоев населения.
- ПК-14. Использовать математические и компьютерные методы исследований при анализе современных естественнонаучных, экономических, социально-политических процессов.

В результате изучения учебной дисциплины студент должен:

знать:

- основные понятия и результаты линейной алгебры, теории билинейных и квадратичных форм, теории групп, колец и полей;
- методы доказательств важнейших результатов, изучаемых в рамках учебной дисциплины «Алгебра и теория чисел»;
- алгоритмы решения задач по алгебре;

уметь:

- выполнять действия с комплексными числами в алгебраической и тригонометрической форме, извлекать корни из комплексных чисел, применять формулу Муавра;
- вычислять определители;
- выполнять операции над матрицами;
- решать системы линейных уравнений;
- находить базис векторного пространства, суммы и пересечения подпространств, координаты вектора в заданном базисе, находить ранг матрицы и системы векторов;
- находить собственные значения и собственные векторы матрицы и линейного оператора;
- приводить квадратичную форму к каноническому виду;
- приводить ортогональный оператор к каноническому виду;
- находить ортонормированный базис, ортогональное дополнение к подпространству;
- определять, является ли данное подмножество подгруппой в группе, подкольцом или идеалом в кольце, подполем в поле;
- производить вычисления в факторгруппе, факторкольце;

владеть:

- основными навыками решения задач, связанных с линейной алгеброй, многочленами, комплексными числами, квадратичными и билинейными формами, группами, кольцами и полями;
- методами доказательств основных теорем, встречающихся в курсе «Алгебра и теория чисел».
- навыками самообразования и способами использования аппарата алгебры и теории чисел для проведения математических и междисциплинарных исследований.

Структура учебной дисциплины

Дисциплина изучается в 1, 2, 3 семестрах на дневной форме получения высшего образования и в 1, 2, 3, 4 семестрах на заочной и заочной сокращенной формах получения высшего образования.

Очная форма получения высшего образования

На изучение учебной дисциплины по направлению специальности 1-31 03 01-01 Математика (научно-производственная деятельность) отводится всего 446 часов, в том числе аудиторных — 212 часов, из них лекции — 106 часов, лабораторные занятия — 90 часов, управляемая самостоятельная работа — 16 часов, из них:

1 семестр — всего 152 часа, в том числе аудиторных — 72 часа, из них лекции — 36 часов, лабораторные занятия — 30 часов, управляемая самостоятельная работа — 6 часов.

Трудоемкость учебной дисциплины составляет 4 зачетные единицы;

2 семестр – всего 144 часа, в том числе аудиторных — 68 часов, из них лекции — 34 часа, лабораторные занятия — 30 часов, управляемая самостоятельная работа – 4 часа.

Трудоемкость учебной дисциплины составляет 4 зачетные единицы;

3 семестр — всего 150 часов, в том числе аудиторных — 72 часа, из них лекции — 36 часов, лабораторные занятия — 30 часов, управляемая самостоятельная работа — 6 часов.

Трудоемкость учебной дисциплины составляет 4 зачетные единицы.

Форма текущей аттестации – зачет, экзамен в каждом семестре.

На изучение учебной дисциплины по направлению специальности 1-31 03 01-02 Математика (научно-педагогическая деятельность) отводится всего 456 часов, в том числе аудиторных — 212 часов, из них лекции — 106 часов, лабораторные занятия — 90 часов и управляемая самостоятельная работа — 16 часов, из них:

1 семестр — всего 148 часов, в том числе аудиторных — 72 часа, из них лекции — 36 часов, лабораторные занятия — 30 часов, управляемая самостоятельная работа — 6 часов.

Трудоемкость учебной дисциплины составляет 4 зачетные единицы;

2 семестр — всего 146 часов, в том числе аудиторных — 68 часов, из них лекции — 34 часа, лабораторные занятия — 30 часов, управляемая самостоятельная работа — 4 часа.

Трудоемкость учебной дисциплины составляет 4 зачетные единицы;

3 семестр — всего 162 часа, в том числе аудиторных — 72 часа, из них лекции — 36 часов, лабораторные занятия — 30 часов, управляемая самостоятельная работа — 6 часов.

Трудоемкость учебной дисциплины составляет 4 зачетные единицы.

Форма текущей аттестации – экзамен в 1 семестре, зачет и экзамен во 2 и 3 семестре.

На изучение учебной дисциплины по направлению специальности 1-31 03 01-03 Математика (экономическая деятельность) отводится всего 494 часа, в том числе аудиторных — 212 часов, из них лекции — 106 часов, лабораторные занятия — 90 часов, управляемая самостоятельная работа — 16 часов, из них:

1 семестр – всего 166 часов, в том числе аудиторных — 72 часа, из них лекции — 36 часов, лабораторные занятия — 30 часов, управляемая самостоятельная работа – 6 часов.

Трудоемкость учебной дисциплины составляет 4 зачетные единицы;

2 семестр – всего 154 часа, в том числе аудиторных — 68 часов, из них лекции — 34 часа, лабораторные занятия — 30 часов, управляемая самостоятельная работа – 4 часа.

Трудоемкость учебной дисциплины составляет 4 зачетные единицы;

3 семестр — всего 174 часа, в том числе аудиторных — 72 часа, из них лекции — 36 часов, лабораторные занятия — 30 часов, управляемая самостоятельная работа — 6 часов.

Трудоемкость учебной дисциплины составляет 4 зачетные единицы.

Форма текущей аттестации – зачет и экзамен в каждом семестре.

На изучение учебной дисциплины по специальности 1-31 03 08 Математика и информационные технологии (по направлениям) отводится всего 472 часа, в том числе аудиторных — 212 часов, из них лекции — 106 часов, практические занятия — 90 часов и управляемая самостоятельная работа — 16 часов, из них:

1 семестр – всего 158 часов, в том числе аудиторных — 72 часа, из них лекции — 36 часов, практические занятия — 30 часов, управляемая самостоятельная работа – 6 часов.

Трудоемкость учебной дисциплины составляет 4 зачетные единицы;

2 семестр — всего 152 часа, в том числе аудиторных — 68 часов, из них лекции — 34 часа, практические занятия — 30 часов, управляемая самостоятельная работа — 4 часа.

Трудоемкость учебной дисциплины составляет 4 зачетные единицы;

3 семестр — всего 162 часа, в том числе аудиторных — 72 часа, из них лекции — 36 часов, практические занятия — 30 часов, управляемая самостоятельная работа — 6 часов.

Трудоемкость учебной дисциплины составляет 4 зачетные единицы.

Форма текущей аттестации – экзамен в 1 и 3 семестре, зачет и экзамен во 2 семестре.

На изучение учебной дисциплины по специальности 1-31 03 09 Компьютерная математика и системный анализ отводится всего 472 часа, в том числе аудиторных — 212 часов, из них лекции — 106 часов, практические занятия — 90 часов и управляемая самостоятельная работа – 16 часов, из них:

1 семестр — всего 158 часов, в том числе аудиторных — 72 часа, из них лекции — 36 часов, практические занятия — 30 часов, управляемая самостоятельная работа — 4 часа.

Трудоемкость учебной дисциплины составляет 4 зачетные единицы;

2 семестр — всего 152 часа, в том числе аудиторных — 68 часов, из них лекции — 34 часа, практические занятия — 30 часов, управляемая самостоятельная работа — 4 часа.

Трудоемкость учебной дисциплины составляет 4 зачетные единицы;

3 семестр — всего 162 часа, в том числе аудиторных — 72 часа, из них лекции — 36 часов, практические занятия — 30 часов, управляемая самостоятельная работа — 6 часов.

Трудоемкость учебной дисциплины составляет 4 зачетные единицы.

Форма текущей аттестации – зачет и экзамен в 1 и 2 семестре, экзамен в 3 семестре.

Заочная форма получения высшего образования

На изучение учебной дисциплины по специальности 1-31 03 08 Математика и информационные технологии (по направлениям) (3,5 и 5 лет обучения) отводится всего 472 часа, в том числе аудиторных —54 часа, из них лекции — 32 часа, практические занятия — 22 часа, из них:

установочная сессия – всего 120 часов, в том числе аудиторных — 16 часов, из них лекции — 10 часов, практические занятия — 6 часов;

1 семестр – всего 76 часов, в том числе аудиторных — 10 часов, из них лекции — 6 часов, практические занятия — 4 часа, контрольная работа №1. Трудоемкость учебной дисциплины составляет 4 зачетные единицы;

2 семестр – всего 120 часов, в том числе аудиторных — 16 часов, из них лекции — 8 часов, практические занятия — 8 часов.

Трудоемкость учебной дисциплины составляет 4 зачетные единицы;

3 семестр – всего 78 часов, в том числе аудиторных — 12 часов, из них лекции — 8 часов, практические занятия — 4 часа, контрольная работа №2, Трудоемкость учебной дисциплины составляет 2 зачетные единицы;

4 семестр – всего 78 часов.

Трудоемкость учебной дисциплины составляет 2 зачетные единицы;

Форма текущей аттестации – зачет в 3 семестре, экзамен в 1, 2, 4 семестре.

На изучение учебной дисциплины по направлению специальности 1-31 03 01-02 Математика (научно-педагогическая деятельность) отводится всего 456 часов, в том числе аудиторных — 54 часа, из них лекции — 32 часа, лабораторные занятия — 22 часа, из них:

установочная сессия – всего 116 часов, в том числе аудиторных — 16 часов, из них лекции — 10 часов, лабораторные занятия — 6 часов;

1 семестр — всего 72 часа, в том числе аудиторных — 10 часов, из них лекции — 6 часов, лабораторные занятия — 4 часа, контрольная работа №1. Трудоемкость учебной дисциплины составляет 5 зачетных единиц;

2 семестр – всего 116 часов, в том числе аудиторных — 16 часов, из них лекции — 8 часов, лабораторные занятия — 8 часов.

Трудоемкость учебной дисциплины составляет 3 зачетные единицы;

3 семестр – всего 100 часов, в том числе аудиторных — 12 часов, из них лекции — 8 часов, лабораторные занятия — 4 часа, контрольная работа № 2. Трудоемкость учебной дисциплины составляет 2,5 зачетные единицы;

4 семестр – всего 52 часа.

Трудоемкость учебной дисциплины составляет 1,5 зачетные единицы.

Форма текущей аттестации – экзамен в 1 и 4 семестре, зачет и экзамен во 2 семестре, зачет в 3 семестре.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Тема 1. Арифметика целых чисел. Сравнения.

Делимость целых чисел и ее свойства. Наибольший общий делитель. Алгоритм Евклида. Простые числа. Основная теорема арифметики. Сравнения и их свойства. Классы вычетов. Функция Эйлера. Решение линейных сравнений от одной неизвестной. Китайская теорема об остатках.

Тема 2. Алгебраическая операция, основные алгебраические структуры.

Свойства алгебраической операции. Определения группы, кольца, поля. Примеры. Кольцо классов вычетов.

Тема 3. Поле комплексных чисел.

Алгебраическая форма комплексных чисел. Тригонометрическая форма комплексных чисел. Формула Муавра. Извлечение корня из комплексного числа. Корни из единицы.

Тема 4. Матрицы и операции над ними.

Понятие матрицы. Операции над матрицами: сложение и умножение матриц, умножение матрицы на скаляр, транспонирование. Свойства операций над матрицами. Многочлен от матрицы.

Тема 5. Перестановки и подстановки.

Инверсии и порядки, четность перестановки. Транспозиции и циклы. Умножение подстановок и его свойства, симметрическая группа. Четность подстановки.

Тема 6. Определители и их применение.

Определитель квадратной матрицы произвольного порядка и его свойства. Определитель транспонированной матрицы. Миноры и алгебраические дополнения. Теорема Лапласа. Определитель Вандермонда. Определитель произведения квадратных матриц. Обратная матрица. Полная линейная группа. Теорема Крамера.

Тема 7. Многочлены от одной и нескольких переменных.

Кольцо многочленов от одной переменной над полем. Степень многочлена и ее свойства. Теорема о делении с остатком для многочленов. Наибольший многочленов, алгоритм Евклида. Взаимно обший делитель многочлены. Неприводимые многочлены. Теорема о разложении многочлена на неприводимые множители. Теорема Безу и следствия из нее. Схема многочлена и ее свойства. Горнера. Производная Кратность корня теорема многочлена. Основная алгебры. Каноническое разложение многочлена над полями комплексных и вещественных чисел. Многочлены от многих переменных. Симметрические многочлены.

Тема 8. Векторные пространства.

Определение и примеры. Система образующих, конечномерные пространства. Линейная независимость векторов. Теорема Штейница о замене. Базис, размерность. Координаты вектора, их изменение при изменении базиса. Матрица перехода от одного базиса к другому, преобразование координат вектора. Подпространство, его размерность. Ранг системы векторов. Ранг матрицы. Сумма и пересечение подпространств, связь их размерностей. Прямая сумма подпространств.

Тема 9. Системы линейных уравнений.

Матричная запись линейной системы. Метод Гаусса. Теорема Кронекера–Капелли. Однородные системы, условие существования нетривиального решения. Фундаментальная система решений. Связь между решениями неоднородной и соответствующей однородной систем. Задание подпространства векторного пространства системой линейных уравнений.

Тема 10. Линейные отображения векторных пространств.

Линейное отображение, его ядро и образ. Ранг и дефект. Алгебраические действия над линейными отображениями: сумма, умножение на константу, композиция. Линейный оператор и его матрица. Изменение матрицы оператора при переходе к другому базису. Матрица композиции и суммы линейных операторов. Пространство линейных операторов и его связь с пространством матриц. Условия обратимости оператора.

Тема 11. Инвариантные подпространства. Собственные векторы и собственные значения. Нормальные формы матриц.

Инвариантное подпространство. Сужение оператора на инвариантное подпространство. Матрица оператора при наличии инвариантного подпространства, при разложении пространства прямую сумму инвариантных подпространств. Собственное число и собственный вектор оператора. Характеристический многочлен оператора и матрицы. Теорема Гамильтона-Кэли. Оператор, имеющий диагональную матрицу в некотором базисе; признак диагонализируемости. Жорданова матрица.

Тема 12. Билинейные и квадратичные формы.

Билинейная форма на векторном пространстве, ее матрица. Изменение матрицы билинейной формы при изменении базиса, ранг формы. Симметрические и кососимметрические билинейные формы, их матрицы. Квадратичная форма и ее матрица, существование и единственность полярной билинейной формы. Канонический вид билинейной и квадратичной формы. Алгоритм Лагранжа приведения квадратичной формы каноническому виду. Нормальный вид вещественной и комплексной квадратичных форм. Закон инерции вещественных квадратичных форм. Знакоопределенные квадратичные формы, критерий Сильвестра.

Тема 13. Евклидовы пространства.

Определение евклидова пространства. Длина вектора, угол между векторами. Неравенство Коши–Буняковского. Ортогональные векторы. Ортогональные и ортонормированные базисы. Процесс ортогонализации Грама–Шмидта. Ортогональное дополнение к подпространству. Разложение пространства в прямую сумму подпространства и его ортогонального дополнения.

Тема 14. Линейные операторы евклидовых пространств.

Сопряженный оператор, его существование и свойства. Инвариантные подпространства для сопряженных операторов. Ортогональные операторы, канонический вид их матриц. Самосопряженные операторы, канонический вид их матриц. Существование ортогонального преобразования, приводящего вещественную квадратичную форму к диагональному виду.

Тема 15. Введение в теорию групп.

Определение группы, подгруппы, примеры. Гомоморфизм, изоморфизм, автоморфизм. Порядок элемента группы. Циклические подгруппы. Циклические группы, их классификация. Смежные классы по подгруппе, индекс подгруппы. Теорема Лагранжа и следствия из нее. Нормальная подгруппа. Факторгруппа. Основная теорема о гомоморфизмах групп. Прямое произведение групп.

Тема 16. Введение в теорию колец и полей.

Определение кольца, подкольца, поля, подполя, примеры. Гомоморфизм, изоморфизм колец, ядро гомоморфизма. Идеалы колец. Факторкольца. Основная теорема о гомоморфизмах для колец. Прямое Характеристика поля. произведение колец. Простые поля. Степень расширения, расширения. Мультипликативность конечные степени. Алгебраические и трансцендентные элементы. Простые расширения полей. Алгебраически замкнутые поля, алгебраическое замыкание.

для специальностей: 1-31 03 08 Математика и информационные технологии (по направлениям)

1-31 03 09 Компьютерная математика и системный анализ

Дневная форма получения образования

	I	I/o zve				20.5		
Номер раздела, темы	Название раздела, темы	лекции	практические занятия	семинарские	лабораторные занятия	Иное	Количество часов по УСР	Формы контроля знаний
1	2	3	4	5	6	7	8	9
1	1 семестр	0	0					n
1	Арифметика целых чисел. Сравнения	8	8				2	Защита индивиду альных заданий
2	Алгебраическая операция, основные алгебраические структуры	3	2					Контроль ная работа
3	Поле комплексных чисел	6	6					Защита индивиду альных заданий
4	Матрицы и операции над ними	4	2				2	Контроль ная работа
5	Перестановки и подстановки	3	2					Защита- индивиду альных заданий
6	Определители и их применение	6	4				2	Контроль ная работа
7	Многочлены от одной и нескольких переменных	6	6					Защита индивиду альных заданий
	Всего за семестр	36	30				6	
	2 семестр							
8	Векторные пространства	10	10					Защита индивиду альных

						заданий
9	Системы линейных уравнений	6	4		2	Контроль
						ная
						работа
10	Линейные отображения векторных	8	8			Защита
	пространств.					индивиду
						альных
						заданий
11	Инвариантные подпространства.	10	8		2	Контроль
	Собственные векторы и собственные					ная
	значения. Нормальные формы матриц					работа
	Всего за семестр	34	30		4	
	3 семестр					
12	Билинейные и квадратичные формы	8	6		2	Контроль
						ная
						работа
13	Евклидовы пространства	6	6			Защита
						индивиду
						альных
						заданий
14	Линейные операторы евклидовых	6	4		2	Контроль
	пространств					ная
						работа
15	Введение в теорию групп	8	8			Защита
						индивиду
						альных
						заданий
16	Введение в теорию колец и полей	8	6		2	Контроль
						ная
						работа
	Всего за семестр	36	30		6	
	Всего по курсу	106	90		16	

для специальности: 1 31 03 01 Математика (по направлениям), направления специальности: 1-31 03 01-01 Математика (научно-производственная деятельность), 1-31 03 01-02 Математика (научно-педагогическая деятельность), 1-31 03 01-03 Математика (экономическая деятельность)

Дневная форма получения образования

-	Дпевная форма полу к		чество а			сов	0	
Номер раздела, темы	Название раздела, темы	лекции	практические занятия	семинарские	лабораторные занятия	Иное	Количество часов по УСР	Формы контроля знаний
1	2	3	4	5	6	7	8	9
	1 семестр				-			
1	Арифметика целых чисел. Сравнения	8			8		2	Индивиду альные задания
2	Алгебраическая операция, основные алгебраические структуры	3			2			Индивиду альные задания
3	Поле комплексных чисел	6			6			Индивиду альные задания
4	Матрицы и операции над ними	4			2		2	Контроль ная работа
5	Перестановки и подстановки	3			2			Индивиду альные задания
6	Определители и их применение	6			4		2	Контроль ная работа
7	Многочлены от одной и нескольких переменных	6			6			Индивиду альные задания
	Всего за семестр	36			30		6	
	2 семестр							
8	Векторные пространства	10			10			Индивиду альные задания
9	Системы линейных уравнений	6			4		2	Контроль ная работа

10	Линейные отображения векторных пространств.	8	8		Индивиду альные задания
11	Инвариантные подпространства. Собственные векторы и собственные значения. Нормальные формы матриц	10	8	2	Контроль ная работа
	Всего за семестр	34	30	4	риооти
	3 семестр			•	
12	Билинейные и квадратичные формы	8	6	2	Индивиду альные задания
13	Евклидовы пространства	6	6		Индивиду альные задания
14	Линейные операторы евклидовых пространств	6	4	2	Контроль ная работа
15	Введение в теорию групп	8	8		Индивиду альные задания
16	Введение в теорию колец и полей	8	6	2	Контроль ная работа
	Всего за семестр	36	30	6	
	Всего по курсу	106	90	16	

для специальности 1-31 03 08 Математика и информационные технологии (по направлениям)

Заочная и заочная сокращенная форма получения образования

P		Колич	чество	аудитор	ных час	сов	
Номер раздела, темы	Название раздела, темы	лекции	практические занятия	семинарские занятия	лабораторные занятия	Иное	Формы контроля знаний
1	2	3	4	5	6	7	9
	Установочная сессия						
1	Арифметика целых чисел. Сравнения	2	2				
2	Алгебраическая операция, основные алгебраические структуры	2					
3	Поле комплексных чисел	3	2				
4	Матрицы и операции над ними	3	2				
	Всего	10	6				
	1 семестр						
5	Перестановки и подстановки	2					
6	Определители и их применение	2	2				контрольная работа 1
7	Многочлены от одной и нескольких переменных	2	2				
	Всего за 1 семестр	6	4				
	2 семестр						
8	Векторные пространства	2	2				
9	Системы линейных уравнений	2	2				
10	Линейные отображения векторных пространств.	2	2				Отчет по самостоятел ьной работе
11	Инвариантные подпространства. Собственные векторы и собственные значения. Нормальные формы матриц	2	2				
	Всего за 2 семестр	8	8				
	3 семестр						
12	Билинейные и квадратичные формы	3	2				
13	Евклидовы пространства	3	1				контрольная работа 2
14	Линейные операторы евклидовых пространств	2	1				
	Всего за 3 семестр	8	4				

	4 семестр				
15	Введение в теорию групп				
16	Введение в теорию колец и полей				
	Всего по курсу	32	22		

для специальности 1-31 03 01 Математика (по направлениям), направление специальности 1-31 03 01-02 Математика (научно-педагогическая деятельность)

Заочная форма получения образования

ы		Количество аудиторных часов					
Номер раздела, темы	Название раздела, темы	лекции	практические занятия	семинарские занятия	лабораторные занятия	Иное	Формы контроля знаний
1	2	3	4	5	6	7	9
4	Установочная сессия						
1	Арифметика целых чисел. Сравнения	2			2		
2	Алгебраическая операция, основные алгебраические структуры	2					
3	Поле комплексных чисел	3			2		
4	Матрицы и операции над ними	3			2		
	Всего	10			6		
	1 семестр						
5	Перестановки и подстановки	2					
6	Определители и их применение	2			2		контрольная работа 1
7	Многочлены от одной и нескольких переменных	2			2		
	Всего за 1 семестр	6			4		
	2 семестр						
8	Векторные пространства	2			2		
9	Системы линейных уравнений	2			2		
10	Линейные отображения векторных пространств.	2			2		
11	Инвариантные подпространства. Собственные векторы и собственные значения. Нормальные формы матриц	2			2		
	Всего за 2 семестр	8			8		
	3 семестр						
12	Билинейные и квадратичные формы	3			2		
13	Евклидовы пространства	3			1		контрольная работа 2
14	Линейные операторы евклидовых пространств	2			1		
	Всего за 3 семестр	8			4		

	4 семестр				
15	Введение в теорию групп				
16	Введение в теорию колец и полей				
	Всего по курсу	32		22	

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Перечень основной литературы

- 1. Виноградов И.М. Основы теории чисел. М.: Ленанд, 2020.
- 2. Кострикин А.И. Введение в алгебру. Т. 1-3. М.: МЦНМО, 2020.
- 3. Беняш-Кривец В.В., Пунинский Г.Е. Лекции и семинары по алгебре: основные понятия алгебры и теории чисел. Минск: БГУ, 2015. 152 с. 116 с.
- 4. Беняш-Кривец В.В., Пунинский Г.Е. Лекции и семинары по алгебре: группы, кольца, поля. Минск: БГУ, 2015. 152 с.
- 5. Милованов М.В., Тышкевич Р.И., Феденко А.С. Алгебра и аналитическая геометрия. Т. 1. Мн.: Амалфея, 2001.
- 6. Милованов М.В., Толкачев М.М., Тышкевич Р.И., Феденко А.С. Алгебра и аналитическая геометрия. Т. 2. Мн.: Амалфея, 2001.
- 7. Гельфанд И.М. Лекции по линейной алгебре. М.: МЦНМО, 1998.
- 8. Бурдун А.А., Мурашко Е.А., Толкачев М.М., Феденко А.С. Сборник задач по алгебре и аналитической геометрии. Мн.: Университетское, 1999.
- 9. Монахов В.С., Бузланов А.В. Алгебра и теория чисел: практикум. Минск: Изд. центр БГУ, 2007.
- 10. Проскуряков И. В. Сборник задач по линейной алгебре. Санкт-Петербург, Москва, Краснодар: Лань, 2010.
- 11. Баркович О.А. Алгебра: задания для практических занятий и самостоятельной работы. В 2 ч. Ч. 1. Введение в алгебру. Минск: БГПУ, 2005.
- 12. Баркович О.А. Алгебра: задания для практических занятий и самостоятельной работы. В 2 ч. Ч. 2. Линейная алгебра. Минск: БГПУ, 2006.

Перечень дополнительной литературы

- 1. Винберг Э.Б. Курс алгебры. М.: МЦНМО, 2019.
- 2. Айерлэнд К., Роузен М. Классическое введение в современную теорию чисел. М.: Мир, 1987.
- 3. Ван дер Варден Алгебра. М.: Наука, 1976.
- 4. Ленг С. Алгебра. М.: Мир, 1968.
- 5. Каргаполов М.И., Мерзляков Ю.И. Основы теории групп. М.: Наука, 1972.
- 6. Сборник задач по алгебре. Под ред. А. И. Кострикина. М.: Наука, 1987.

Перечень рекомендуемых средств диагностики и методика формирования итоговой оценки

Формой текущей аттестации по дисциплине «Алгебра и теория чисел» учебным планом предусмотрен зачет и экзамен.

Контроль работы студента проходит в форме собеседования, выполнения самостоятельных работ и практических упражнений в аудитории, а также самостоятельной работы вне аудитории с предоставлением отчета с его устной защитой. Задания к самостоятельным работам составляются согласно содержанию учебного материала.

Зачет по дисциплине выставляется в случае сдачи всех контрольных работ. Рейтинговая оценка предусматривает использование весовых коэффициентов для текущего контроля знаний и текущей аттестации студентов по дисциплине.

Примерные весовые коэффициенты, определяющие вклад текущего контроля знаний и текущей аттестации в рейтинговую оценку:

Формирование оценки за текущую успеваемость:

- − выполнение контрольной работы 50 %;
- защита индивидуальных заданий 50 %.

Итоговая оценка формируется на основе 3-х документов:

- 1. Правила проведения аттестации студентов, курсантов, слушателей при освоении содержания образовательных программ высшего образования (Постановление Министерства образования Республики Беларусь №53 от 29.05.2012 г.).
- 2. ПОЛОЖЕНИЕ о рейтинговой системе оценки знаний студентов по дисциплине в Белорусском государственном университете (Приказ ректора БГУ № 189-ОД от 31.03.2020).
- 3. Критерии оценки знаний и компетенций студентов по 10-балльной шкале (Письмо Министерства образования Республики Беларусь от 22.12.2003 г. № 21-04-1/105).

Рейтинговая оценка по дисциплине рассчитывается на основе оценки текущей успеваемости и экзаменационной оценки с учетом их весовых коэффициентов. Вес оценки по текущей успеваемости составляет $40\,\%$, экзаменационная оценка $-60\,\%$.

Примерный перечень заданий для управляемой самостоятельной работы

Тема 1. Арифметика целых чисел. Сравнения.

- 1. Методом математической индукции докажите, что для любого натурального n число a делится на число b: a) $a = 6^{2n} 1$, b = 35; б) $a = 4^n + 15n 1$, b = 9; в) $a = n^3 + 5n + 12$, b = 6.
- 2. Найдите неполное частное и остаток от деления числа a на число b: a) a = 761, b = 13; б) a = 437, b = 24.
- 3. С помощью алгоритма Евклида вычислите HOД(a,b) и выразите его через исходные числа. Используя связь НОД и НОК двух натуральных чисел, вычислите HOK(a,b): а) a = 5544, b = 7644; б) a = 1188, b = 3080; в) a = 1296, b = 6600.
- 4. С помощью канонических разложений чисел a,b,c найдите $HO\mathcal{A}(a,b,c)$ и HOK(b,c): a) a=6188,b=88,c=-320; б) a=1188,b=-132,c=-64; в) a=9100,b=92,c=-114.
- 5. Решить в целых числах уравнение 1275x 3796y = 1.
- 6. Используя свойства сравнений, найти остаток от деления: а) $a = 178^{214}$ на b = 22; б) $a = 5^{50} + 13^{100}$ на b = 18.
- 7. Решите сравнение 1-й степени: a) $-3x \equiv 13 \pmod{4}$; б) $7x \equiv -12 \pmod{16}$.
- 8. Решить систему сравнений $\begin{cases} x \equiv 5 \pmod{12} \\ x \equiv 4 \pmod{7} \end{cases}$.
- 9. Составьте таблицы сложения и умножения в кольце классов вычетов: а) \mathbb{Z}_5 ; б) \mathbb{Z}_6 .
- 10. Вычислите значение функции Эйлера для числа a: a) a = 142560; б) a = 421200.

Форма контроля – защита индивидуальных заданий.

Тема 4. Матрицы и операции над ними.

- 1. Две квадратные матрицы A и B называются перестановочными, если AB = BA. Докажите, что если матрицы B, C перестановочны с A, то B + C и BC также перестановочны с A.
- 2. Доказать, что если матрицы A и B перестановочны, то $(A+B)^n = \sum_{i=1}^n C_n^i A^i B^{n-i}.$

3. Вычислить
$$BC$$
 и CB^T , где $B = \begin{pmatrix} 1 & 2 \\ -2 & -4 \\ -1 & -2 \end{pmatrix}$, $C = \begin{pmatrix} i & -2 \\ 1 & 3i \end{pmatrix}$.

- 4. Вычислить AA^{\top} и f(B), где $A = \begin{pmatrix} 1 & 2-i & 1 & 3 \\ 3 & 1 & 1-2i & -1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & -5 \\ 1 & 4 \end{pmatrix}$, $f(x) = -x^2 + 3x 6$.
- 5. Для матрицы $C = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}$ и полинома $f(x) = x^3 5x^2 + 2x + 4$ вычислить f(C).
- 6. С помощью элементарных преобразований найти матрицу C^{-1} , где $C = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$
- 7. Используя явные формулы для обратной матрицы, вычислить C^{-1} , где $C = \begin{pmatrix} -1 & 2 \\ 3 & 1 \end{pmatrix}$.
- 8. Найти A^{-1} , где $A = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 0 & 5 \\ -1 & 2 & 3 \end{pmatrix}$.
- 9. Найти все матрицы X , перестановочные с данной матрицей $C = \begin{pmatrix} 1 & 1 \\ 3 & 3 \end{pmatrix}$. Получающуюся при решении систему линейных уравнений решить методом Гаусса.
- 10. Пусть A квадратная матрица порядка n , такая, что $A^2 = A$. Докажите, что $(2A E_n)^2 = E_n$.
- 11. Найдите все квадратные матрицы порядка 2, такие, что A^2 нулевая матрица.
- 12. Матрица S называется симметрической, если $S^T = S$. Докажите, что если A произвольная квадратная матрица, то матрицы $A + A^T$, AA^T являются симметрическими.
- 13. Пусть A обратимая квадратная матрица. Докажите, что $(A^{-1})^T = (A^T)^{-1}$. Форма контроля контрольная работа.

Тема 6. Определители и их применение.

- 1. С каким знаком произведение $a_{25}a_{41}a_{36}a_{52}a_{13}a_{65}$ входит в определитель шестого порядка?
- 2. Выписать все миноры второго порядка, содержащиеся в 1-й и 3-й строках

матрицы
$$A = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 0 & 5 \\ -1 & 2 & 3 \end{pmatrix}$$
, а также алгебраические дополнения к ним.

Пользуясь теоремой Лапласа, записать разложение $\det A$: а) по 1-й и 3-й строке; б) по 2-й строке.

- 3. Как изменится определитель порядка n, если его повернуть на 90° вокруг «центра» против часовой стрелки?
- 4. Доказать, что определитель $\begin{vmatrix} z_1 & \overline{z}_1 & a \\ z_2 & \overline{z}_2 & b \\ z_3 & \overline{z}_3 & c \end{vmatrix}$, где z_1, z_2, z_3 комплексные, а a,b,c –

вещественные числа, является чисто мнимым числом.

- 5. С каким знаком входит в развернутое выражение определителя порядка n произведение элементов побочной диагонали?
- 6. Как изменится определитель порядка n, если каждый его элемент a_{ik} умножить на число c^{i-k} , где $c \neq 0$ фиксированное число?
- 7. Чему равен определитель, у которого сумма строк с четными номерами равна сумме строк с нечетными номерами?
- 8. Найти наибольшее значение определителя третьего порядка, составленного из чисел 0 и 1.
- 9. Как изменится определитель квадратной матрицы, если каждый элемент матрицы заменить на противоположный?
- 10. Как изменится определитель квадратной матрицы, если его строки записать в обратном порядке?
- 11. Как изменится определитель квадратной матрицы, если первую строку поставить на место последней строки, а остальные строки сдвинуть вверх, не меняя их порядок?
- 12. Пусть A квадратная матрица над полем $\mathbb C$ комплексных чисел. Заменяя элементы матрицы A сопряженными комплексными числами, получим матрицу B. Как связаны между собой определители матриц A и B?
- 13. Пусть все элементы матриц A и A^{-1} целые числа. Чему равны определители этих матриц?
- 14. Найдите такие значения i, j, k, чтобы произведение $a_{2i}a_{41}a_{j3}a_{5k}a_{12}a_{64}$ входило в определитель матрицы шестого порядка со знаком минус.

15. Вычислите определители матриц
$$B = \begin{pmatrix} 3i & 1+i \\ 2 & 1-i \end{pmatrix}$$
, $C = \begin{pmatrix} 3 & 5 & -6 \\ 2 & 4 & 3 \\ -3 & 1 & 1 \end{pmatrix}$.

16. Вычислите определитель матрицы
$$F = \begin{pmatrix} 1 & 1 & -1 & 2 \\ 2 & 3 & -3 & 7 \\ -3 & -3 & 2 & -4 \\ 1 & 2 & -3 & 7 \end{pmatrix}$$
.

17. Разложить определитель матрицы
$$F = \begin{pmatrix} 1 & 1 & -1 & 2 \\ 2 & 3 & -3 & 7 \\ -3 & -3 & 2 & -4 \\ 1 & 2 & -3 & 7 \end{pmatrix}$$
 по второй строке

и третьему столбцу.

Форма контроля - контрольная работа.

Тема 9. Системы линейных уравнений.

1. Решите следующие системы, используя правило Крамера:

a)
$$\begin{cases} -3x_1 + 2x_2 = -8 \\ 5x_1 + 4x_2 + 3x_3 = 15, 6 \end{cases} \begin{cases} 3x_1 - x_2 + 2x_3 = -2 \\ 4x_1 + 3x_3 = -1 \\ x_1 + 3x_2 + x_3 = 3 \end{cases}.$$

2. Исследуйте системы на совместность. Совместные системы решите методом Гаусса:

a)
$$\begin{cases} x_1 - 2x_2 + 2x_3 = -2 \\ 4x_1 + 3x_3 = -1 \end{cases}$$
; 6)
$$\begin{cases} 3ix_1 + x_2 - x_3 = -1 \\ 2x_1 - ix_2 + 2x_3 = i - 2 \text{; B}) \ 2x_1 + 3x_2 - x_3 + 4x_4 = 5 \\ -x_1 + 3x_2 - ix_3 = 3 \end{cases}$$

3. Найти фундаментальную систему решений и общее решение системы урав-

нений
$$AX = 0$$
, где a) $A = \begin{pmatrix} 2 & 3 & -5 & 1 & -1 \\ 1 & 2 & 3 & 2 & 2 \\ 4 & 7 & 1 & 5 & 3 \\ 5 & 9 & 4 & 7 & 5 \end{pmatrix}$; 6)

$$A = \begin{pmatrix} 7 & 13 & 10 & 11 & 9 \\ -1 & -3 & -14 & -5 & -5 \\ 0 & -2 & -22 & -6 & -4 \\ 7 & 11 & -12 & 5 & 3 \end{pmatrix}; \qquad B) \qquad A := \begin{bmatrix} 10 & 18 & 8 & 14 & 10 \\ -5 & -9 & -4 & -7 & -3 \\ 1 & 0 & -19 & -4 & -2 \\ 15 & 25 & -10 & 15 & 9 \end{bmatrix}; \qquad \Gamma$$

$$A := \begin{bmatrix} 13 & 23 & 6 & 17 & 13 \\ -6 & -11 & -7 & -9 & -5 \\ -7 & -14 & -21 & -14 & -8 \\ 11 & 19 & 0 & 13 & 7 \end{bmatrix};$$
д) $A = (1, 2, -1, 0, 3)$.

4. Линейную оболочку следующей системы векторов задайте системой линейных уравнений: а) $v_1=(1,1,1,1)\,;$ б) $v_1=(1,1,1,1),v_2=(1,2,3,4)\,;$ в) $v_1=(1,1,1,1),v_2=(1,2,3,4),v_3=(1,0,1,0)\,.$

Форма контроля - контрольная работа.

Тема 11. Инвариантные подпространства. Собственные векторы и собственные значения. Нормальные формы матриц.

1. В некотором базисе даны матрица A отображения f и векторы e_1, e_2, e_3 . Определить, какие из указанных векторов являются собственными вектора-

ми отображения
$$f$$
: a) $A = \begin{pmatrix} 0 & 1 & 0 \\ 6 & 3 & 2 \\ 3 & 0 & 1 \end{pmatrix}$, $e_1 = \begin{pmatrix} -1 & 2 & 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 1 & 0 & -3 \end{pmatrix}$,

$$e_3 = \begin{pmatrix} -4 & 0 & 1 \end{pmatrix};$$
 6) $A = \begin{pmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{pmatrix},$ $e_1 = \begin{pmatrix} -1 & 0 & 1 \end{pmatrix},$ $e_2 = \begin{pmatrix} 1 & 1 & -1 \end{pmatrix},$ $e_3 = \begin{pmatrix} -3 & 1 & 1 \end{pmatrix}.$

2. Найти собственные значения и собственные векторы линейного отображения, заданного в некотором базисе матрицей A: a) $A = \begin{pmatrix} 2 & 4 \\ -1 & -3 \end{pmatrix}$; б)

$$A = \begin{pmatrix} 1 & 2 & -2 \\ 1 & 0 & 3 \\ 1 & 3 & 0 \end{pmatrix}; B) A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 3 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

3. Подобна ли матрица
$$A$$
 диагональной матрице: a) $A = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ 0 & -1 & 2 \end{pmatrix}$; б)

- 4. Докажите, что вектор лежит в ядре линейного оператора тогда и только тогда, когда он является собственным и соответствует собственному значению нуль.
- 5. Докажите, что при умножении линейного оператора на ненулевой скаляр множество собственных векторов не меняется, а собственные значения умножаются на этот скаляр.
- 6. Найти жорданову нормальную форму матрицы: a) A^2 , где $A = diag(J_3(0),J_3(0)); \quad \text{б}) \quad A = \begin{pmatrix} 0 & J_3(0) \\ J_3(0) & 0 \end{pmatrix}; \quad \text{в}) \quad A = \begin{pmatrix} 0 & J_3(0) \\ J_3(0) & 0 \end{pmatrix}; \quad \text{г})$ $A = -J_4(0)^2; \text{ д}) \quad A = -J_4(1)^2; \text{ e}) \quad A = \begin{pmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$
- 7. Выясните, являются ли подобными матрицы $A = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$ и $B = \begin{pmatrix} 10 & 4 \\ -25 & -10 \end{pmatrix}.$
- 8. Докажите, что матрица A, обладающая свойством $A^k = E$ при некотором натуральном k, подобна диагональной матрице и найдите вид этой диагональной матрицы.
- 9. Приведите пример двух неподобных матриц, характеристические и минимальные многочлены которых одни и те же. Форма контроля контрольная работа.

Тема 12. Билинейные и квадратичные формы.

1. Пусть A — матрица невырожденной билинейной формы Φ на вещественном пространстве V размерности n, где n — нечетно. Существует ли другой базис V, в котором матрицей Φ является -A? Что будет в случае четного n?

- 2. Доказать, что если f(x), g(y) линейные формы на векторном пространстве V, то отображение $\Phi: V \times V \to V$, $\Phi(x, y) = f(x)g(y)$, является билинейной формой на V и rank $\Phi = 1$. Является ли Φ симметрической, кососимметрической?
- 3. Пусть Φ билинейная форма на векторном пространстве V и пусть W множество всех векторов $x \in V$ таких, что $\Phi(x,y) = 0$ для всех векторов $y \in V$. Доказать, что W подпространство в V и справедлива формула $\operatorname{rank} \Phi = \dim V \dim W$.
- 4. Пусть Φ билинейная форма на векторном пространстве V, V_1 подпространство в V и Φ_1 ограничение Φ на V_1 . Предположим, что Φ_1 невырожденная билинейная форма. Доказать, что $\operatorname{rank} \Phi \geq \dim V_1$.
- 5. Пусть Φ билинейная форма на векторном пространстве V и $\mathrm{rank}\,\Phi=1$. Доказать, что существуют линейные формы f(x),g(y) на векторном пространстве V такие, что $\Phi(x,y)=f(x)g(y)$.
- 6. Пусть Φ симметрическая билинейная форма на векторном пространстве V, а Φ_1 кососимметрическая билинейная форма на V. Предположим, что $\Phi + \Phi_1 = 0$. Доказать, что $\Phi = \Phi_1 = 0$.
- 7. Найти полярную билинейную форму F для квадратичной формы $f(x)=x_1^2+2x_1x_2+2x_2^2-6x_1x_3+4x_2x_3-x_3^2.$ Записать матрицу F. Вычислить F(x,y), где x=(1,i,1), y=(2,-1,-i).
- 8. Найти симметрическую билинейную форму Φ , ассоциированную с квадратичной формой q(x) = F(x,x), где $F(x,y) = -x_1y_2 + x_2y_1 2x_2y_2 + 3x_2y_3 x_3y_1 + 2x_3y_3$. Записать матрицу Φ . Вычислить $\Phi(x,y)$, где x = (2,1-i,0), y = (0,-1,i).
- 9. Дана матрица $A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 2 \\ -1 & 0 & 1 \end{pmatrix}$ некоторой билинейной формы F(x,y). За-

писать эту билинейную форму F(x,y), а также соответствующую ей квадратичную форму f(x) = F(x,x) и ее матрицу.

- 10. Привести квадратичную форму $q(x) = x_1x_2 + x_1x_3 + x_1x_4 + x_2x_3 + x_2x_4 + x_3x_4$ к каноническому виду над полями вещественных и комплексных чисел. Над полем $\mathbb R$ найти ее положительный и отрицательный индекс инерции, сигнатуру и ранг.
- 11. Пусть положительный индекс инерции вещественной квадратичной формы и ее отрицательный индекс инерции. Пусть заданы положительных

- чисел и отрицательных чисел. Доказать, что существует базис, в котором форма принимает вид.
- 12. Привести данную квадратичную форму к каноническому виду с помощью метода Лагранжа. Найти ранг, положительный и отрицательный индексы инерции и сигнатуру этой формы.
- 13. Выясните, какие из квадратичных форм, эквивалентны между собой а) над; б) над.
- 14. При каких значениях данная квадратичная форма положительно определена, отрицательно определена. .
- 15. Найдите все значения, при которых квадратичная форма отрицательно определена.
- 16. При каких значениях квадратичная форма положительно определена, отрицательно определена.
- 17. Исследовать на знакоопределенность квадратичную форму.
- 18. При каких значениях квадратичная форма является положительно определенной?
- 19. Найти все значения, при которых квадратичная форма отрицательно определена.

Форма контроля - контрольная работа.

Тема 14. Линейные операторы евклидовых пространств.

- 1. Пусть преобразование f нильпотентно, т.е. $f^n = 0$ для некторого n > 0. Доказать, что сопряженное преобразование f^* нильпотентно с тем же показателем нильпотентности n.
- 2. Доказать, что для двух преобразований f и g произведение $f^*g=0$ тогда и только тогда, когда $\operatorname{Im} f$ ортогонально $\operatorname{Im} g$.
- 3. Пусть f поворот плоскости на угол α . Найти сопряженное преобразование f^* .
- 4. Пусть \mathbf{a} фиксированный вектор трехмерного геометрического пространства. Преобразование f сопоставляет каждому вектору \mathbf{x} векторное произведение $[\mathbf{a},\mathbf{x}]$. Найти f^* .
- 5. Доказать, что преобразование f диагонализуемо тогда и только тогда, когда преобразование f^* диагонализуемо.
- 6. Доказать, что Im f совпадает с ортогональным дополнением (Ker f) $^{\perp}$.
- 7. Пусть f,g самосопряженные операторы евклидова пространства. Доказать, что самосопряженными будут также операторы:
 - 1) fg + gf; 2) af + bg для любых $a, b \in \mathbb{R}$; 3) f^{-1} для невырожденного f.

- 8. Доказать, что произведение fg самосопряженных операторов f и g является самосопряженным оператором тогда и только тогда, когда f и g перестановочны.
- 9. Может ли матрица ненулевого самосопряженного оператора евклидова пространства в каком-либо ортонормированном базисе быть: а) кососимметричной; б) не симметричной?
- 10. Найти ортогональную матрицу C, приводящую данную симметрическую матрицу $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ к диагональному виду, и найти этот диагональный вид.
- 11. Доказать, что все собственные значения самосопряженного преобразования равны нулю тогда и только тогда, когда это нулевое преобразование.
- 12. Найти все самосопряженные нильпотентные преобразования (оператор f нильпотентен, если $f^n = 0$ для некоторого n > 0).
- 13. Доказать, что для любых двух векторов одинаковой длины найдется ортогональное преобразование, переводящее первый вектор во второй.
- 14. Доказать, что для любых двух ортонормированных базисов евклидова пространства найдется ортогональный оператор, переводящий первый базис во второй.
- 15. Доказать, что преобразование f^*f ортогонально тогда и только тогда, когда ортогонально f .
- 16.Пусть V евклидово пространство строк со стандартным скалярным произведением, оператор f переводит векторы $a_1=(4,7),\ a_2=(2,1)$ в векторы $b_1=(8,1),\ b_2=(2,-1).$ Является ли f ортогональным оператором?
- 17.Пусть e_1, e_2 ортонормированный базис евклидова пространства V . Линейный оператор f переводит векторы e_1, e_2 в векторы $e_1 e_2$ и $e_1 + e_2$. Является ли f ортогональным оператором?
- 18. Является ли сумма ортогональных операторов ортогональным оператором?
- 19. Является ли произведение ортогонального оператора на число ортогональным оператором?
- $20. \mbox{Пусть } f$ самосопряженный ортогональный оператор евклидова пространства. Каковы собственные значения f? Найти канонический вид матрицы f.

Форма контроля - контрольная работа.

Тема 16. Введение в теорию колец и полей.

- 1. Составить таблицу умножения в кольце \mathbb{Z}_5 .
- 2. Найдите все идеалы кольца $\mathbb{Z}/12\mathbb{Z}$, факторкольца по которым являются по-

лями.

- 3. Составить таблицы сложения и умножения в \mathbb{Z}_{6} .
- 4. Найти все подкольца кольца $\mathbb{Z}/15\mathbb{Z}$.
- 5. Найти все идеалы кольца $\mathbb{Z} / 21\mathbb{Z}$.
- 6. Найдите все подкольца кольца $\mathbb{Z} / 26\mathbb{Z}$.
- 7. Найдите все гомоморфизмы кольца $\mathbb{Z} / 24\mathbb{Z}$ в себя.
- 8. Доказать, что если матрица $x \in M_n(K)$, где K поле, перестановочна со всеми остальными матрицами, то x скалярная матрица.
- 9. Пусть F произвольное поле. Описать все идеалы кольца матриц $M_n(F)$.

10. Пусть
$$K_1 = \left\{ \begin{pmatrix} z & w \\ -w & z \end{pmatrix} z, w \in \mathbb{C} \right\}, \quad K_2 = \left\{ \begin{pmatrix} x & -y & -z & -t \\ y & x & -t & z \\ z & t & x & -y \\ t & -z & y & x \end{pmatrix} | x, y, z, t \in \mathbb{R} \right\}.$$
 Про-

верить, что K_1, K_2 – кольца и $K_1 \cong K_2$.

- 11. Найти многочлен третьей степени, корнями которого являются кубы комплексных корней многочлена $x^3 x 1$.
- 12. Пусть K множество всех $u \times u$ матриц над \mathbb{C} , перестановочных с заданной матрицей A. Доказать, что K кольцо. Форма контроля контрольная работа.

Примерные варианты контрольных работ.

Контрольная работа № 1.

- **1.** Найти $z_1 z_2$, $\frac{z_1}{z_2}$, $\frac{z_1 \overline{z_2}}{z_1 + \overline{z_2}}$, где $z_1 = n + i$, $z_2 = 1 + ni$, n --- номер варианта.
- 2. Изобразить на плоскости комплексные числа z_1 , z_2 , $\overline{z_1}$, $\overline{z_2}$, $z_1 \overline{z_2}$, $z_1 + \overline{z_2}$, где z_1 , z_2 числа из задачи 1.
- 3. Вычислить: $\sqrt[3]{2-i\sqrt{12}}$.
- 4. Вычислить α^{-1} , $\alpha\beta$, α^{100n} , где: $\alpha,\beta\in S_8$ некоторые подстановки.
- 5. Вычислить AA^{\top} и f(B), где $f(x) = x^2 2X + 1$, а A, B заданные матрицы второго порядка.

Контрольная работа № 2.

1. Вычислить произведение подстановок и разложить его в произведение независимых циклов и произведение транспозиций: (1,2,5,6,9)(2,3,4,5,9)(5,6,7,8,9).

2. Вычислить AB и BA, где
$$A = \begin{pmatrix} 1 & 3 \\ 3 & -2 \\ 1 & 2 \\ -2 & -1 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 & 2 & 1 \\ -1 & -3 & 1 & -2 \end{pmatrix}.$$

- 3. Выбрать i, j, k так, чтобы произведение $a_{2i}a_{44}a_{j5}a_{5k}a_{12}a_{64}$ входило в развернутое выражение определителя шестого порядка со знаком минус.
- 4. Вычислите определитель данной матрицы.
- 5. Найти матрицу, обратную к заданной матрице.

Контрольная работа № 3.

- 1. Найти фундаментальную систему решений и общее решение системы уравнений AX = 0, где $A = \begin{pmatrix} 2 & 3 & -5 & 1 & -1 \\ 1 & 2 & 3 & 2 & 2 \end{pmatrix}$
- 2. Найти базис суммы и пересечения подространств, натянутых на системы векторов $a_1 := [10,17,-3,11], a_2 := [5,12,-8,6], b_1 := [-1,-2,-3,-2], b_2 := [1,0,-1,0].$
- 3. Выяснить, является ли подпространством соответствующего векторного пространства следующая совокупность векторов: последовательности вещественных чисел, имеющие предел: 1) 0; 2) $a \neq 0$.
- 4. Является ли следующая система функций линейно независимой: $\sin x, \sin(x+1), \sin x+2$?
- 5. При каких значениях x ранг матрицы $A = \begin{pmatrix} -1 & 2 & 1 \\ 2 & x & -2 \\ 3 & -6 & -3 \end{pmatrix}$ равен: a) 1; б) 2.

Контрольная работа № 4.

- 1. Как изменится матрица линейного оператора, если в базисе $e_1, ..., e_n$ вектор e_1 заменить на $e_1 + e_2$?
- 2. Выяснить, является ли матрица $A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$ диагонализируемой.
- 3. Доказать, что преобразование $f: M_2(\mathbb{C}) \to M_2(\mathbb{C})$, f(X) = AX, где A --- фиксированная матрица, является линейным. Найти матрицу f, а также собственные векторы, собственные значения и (по возможности) инвариантные подпространства f в случае, когда $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$.
- 4. Найти жорданову нормальную форму матрицы A^2 , где $A = diag(J_3(0), J_3(0))$.

Контрольная работа № 5.

- 1. Привести данную квадратичную форму к каноническому виду с помощью метода Лагранжа. Найти ранг, положительный и отрицательный индексы инерции и сигнатуру этой формы. $f(x) = x_1^2 + x_2^2 + 3x_3^2 + 4x_1x_2 + 2x_1x_3 + 2x_2x_3.$
- 2. При каких значениях λ данная квадратичная форма положительно определена, отрицательно определена. $f(x) = \lambda x_1^2 2x_2^2 3x_3^2 + 2x_1x_2 2x_1x_3 + 2x_2x_3.$
- 3. С помощью процесса ортогонализации построить ортогональный базис линейной оболочки системы векторов $a_1 = (1,2,-1,1), \quad a_2 = (1,1,2,2), \quad a_3 = (-1,2,0,2).$
- 4. Найти ортогональную проекцию вектора v на подпространство W, ортогональную составляющую вектора v и расстояние от вектора v до подпространства W: $W = \langle (1,1,1,1), (1,2,2,-1), (1,0,0,3) \rangle$, v = (4,-1,-3,4).
- 5. Найти длины сторон и внутренние углы треугольника ABC в пространстве \mathbb{R}^5 : A = (2,4,2,4,2), B = (6,4,4,4,6), C = (5,7,5,7,2).

Контрольная работа № 6.

- 1. Обозначим через G множество матриц вида $\begin{pmatrix} a & 3b \\ 2b & a \end{pmatrix}$, где $a,b \in Q$, a и b одновременно не равны нулю. Доказать, что G является подгруппой в $GL_2(Q)$.
- 2. Найти разложение Лагранжа в левые смежные классы циклической группы $G = \langle a \rangle$ порядка 18 по циклической подгруппе $H = \langle a^{12} \rangle$.
- 3. В группе \mathbb{C}^* найти порядок элемента $\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}i$.
- 4. Пусть $\alpha_1,...,\alpha_n$ различные вещественные числа. Доказать, что отображение $\Psi:R[x]\to R^n$, $\Psi(f(x))=(f(\alpha_1),...,f(\alpha_n))$ является гомоморфизмом. Найти ядро Ψ .
- 5. Доказать, что в факторгруппе C^*/T , где $T = \{z \in C \mid |z| = 1\}$, все неединичные элементы имеют бесконечный порядок.

35

Описание инновационных подходов и методов к преподаванию учебной дисциплины

При организации образовательного процесса используется **практико-ориентированный подход**, который предполагает:

- освоение содержание образования через решения практических задач;
- приобретение навыков эффективного выполнения разных видов профессиональной деятельности;
- ориентацию на генерирование идей, реализацию групповых студенческих проектов, развитие предпринимательской культуры;
- использованию процедур, способов оценивания, фиксирующих сформированность профессиональных компетенций.

Методические рекомендации по организации самостоятельной работы обучающихся

Для организации самостоятельной работы студентов по учебной дисциплине «Алгебра и теория чисел» используются современные информационные ресурсы: размещается на образовательном портале комплекс учебных и учебнометодических материалов (учебно-программные материалы, учебное издание для теоретического изучения дисциплины, материалы текущего контроля и текущей аттестации, позволяющие определить соответствие учебной деятельности обучающихся требованиям образовательных стандартов высшего образования и учебно-программной документации, в т.ч. вопросы для подготовки к зачету, экзамену, задания, вопросы для самоконтроля и др., список рекомендуемой литературы, информационных ресурсов и др.).

При составлении индивидуальных заданий по учебной дисциплине задания располагаются в порядке возрастания их сложности: задания, формирующие достаточные знания по изученному учебному материалу на уровне узнавания; задания, формирующие компетенции на уровне воспроизведения; задания, формирующие компетенции на уровне применения полученных знаний.

Примерный перечень вопросов к экзамену

- 1. Свойства делимости целых чисел. Теорема о делении с остатком. НОД целых чисел. Алгоритм Евклида.
- 2. Теорема о представлении НОД целых чисел в виде целочисленной линейной комбинации. Нахождение НОД нескольких целых чисел.
- 3. Взаимно простые числа. Критерий взаимной простоты. НОК целых чисел.
- 4. Простые числа, их свойства. Основная теорема арифметики.
- 5. Сравнения и их свойства.
- 6. Классы вычетов по модулю п, их свойства. Полная система вычетов.
- 7. Функция Эйлера, ее мультипликативность и вычисление.
- 8. Теоремы Эйлера и Ферма.
- 9. Решение линейных сравнений.
- 10. Алгебраическая операция, ее свойства. Примеры. Ассоциативность.
- 11. Теоремы о нейтральном и обратном элементе.
- 12. Группа, кольцо, поле. Определения и примеры.
- 13. Кольцо классов вычетов Z_m .
- 14. Обратимые элементы в Z_m . Критерий того, что Z_m поле.
- 15.Определение комплексных чисел, операции сложения и умножения и их свойства. Алгебраическая форма комплексных чисел.
- 16. Операция сопряжения комплексных чисел и ее свойства.
- 17. Комплексная плоскость, тригонометрическая форма комплексных чисел. Модуль комплексного числа, его свойства.
- 18.Умножение комплексных чисел в тригонометрической форме. Формула Муавра.
- 19. Геометрическая интерпретация действий над комплексными числами.
- 20.Извлечение корней из комплексных чисел.
- 21. Корни из единицы. Первообразные корни из единицы и их свойства.
- 22. Определения перестановок и подстановок, их число. Транспозиции и циклы. Четность перестановки.
- 23. Теорема о характере четности перестановки после применения к ней транспозиции.
- 24. Умножение подстановок. Симметрическая группа.
- 25. Разложение подстановки в произведение транспозиций.
- 26. Разложение подстановки в произведение независимых циклов.
- 27. Матрицы и действия над ними. Умножение матрицы на число и его свойства.
- 28. Свойства сложения матриц. Операция транспонирования и ее свойства.

- 29. Свойства умножения матриц.
- 30.Определители. Теорема о замене строк в определителе.
- 31. Свойства определителей порядка *n*.
- 32. Теорема об определителе произведения матриц.
- 33. Миноры и алгебраические дополнения. Теорема Лапласа.
- 34. Теорема о разложении определителя по строке.
- 35.Определитель Вандермонда.
- 36. Обратная матрица. Критерий существования и методы вычисления.
- 37. Свойства обратной матрицы.
- 38.Системы линейных уравнений. Метод Крамера.
- 39.Системы линейных уравнений. Метод Гаусса.
- 40. Кольцо многочленов от одной переменной. Степень многочлена и ее свойства.
- 41. Теорема о делении многочленов с остатком.
- 42. Делимость многочленов и ее свойства. НОД многочленов. Алгоритм Евклида.
- 43. Теорема о представлении НОД многочленов в виде линейной комбинации. Взаимно простые многочлены. Критерий взаимной простоты.
- 44. Неприводимые многочлены и их свойства.
- 45. Разложение многочлена на неприводимые множители.
- 46. Кратные множители многочлена.
- 47. Корни многочленов. Теорема Безу и ее следствия. Кратные корни.
- 48.Схема Горнера.
- 49.Интерполяционный многочлен Лагранжа.
- 50. Неприводимые многочлены над C и R. Каноническое разложение многочленов из C[x] и R[x].

- 1. Векторные пространства. Определение и примеры. Простейшие свойства векторных пространств.
- 2. Линейная зависимость и линейная независимость. Примеры. Свойства линейной зависимости. Критерии линейной зависимости.
- 3. Базис векторного пространства. Примеры.
- 4. Эквивалентные системы векторов. Лемма Штейница.
- 5. Размерность векторного пространства. Свойства n-мерных векторных пространств.
- 6. Координаты вектора. Изменение координат вектора при изменении базиса. Матрица перехода.
- 7. Элементарные преобразования систем векторов.

- 8. Изоморфизмы векторных пространств и их свойства. Критерий изоморфности векторных пространств.
- 9. Подпространства векторного пространства. Примеры
- 10. Операции над подпространствами.
- 11. Размерности суммы и пересечения подпространств.
- 12. Прямая сумма подпространств. Критерии.
- 13. Прямое дополнение.
- 14. Базис и ранг системы векторов. Ранг матрицы.
- 15. Теорема о ранге матриц.
- 16. Ранг произведения двух матриц.
- 17. Методы вычисления ранга матрицы.
- 18. Критерий совместности системы линейных уравнений.
- 19.Однородные системы линейных уравнений. Фундаментальная система решений.
- 20.Задание подпространства системой уравнений. Связь решений однородной и неоднородной систем.
- 21. Линейные отображения. Примеры.
- 22. Простейшие свойства линейных отображений.
- 23. Теорема о продолжении отображения базиса.
- 24. Действия над линейными отображениями.
- 25. Матрица линейного оператора.
- 26. Матрица суммы и произведения операторов.
- 27. Изменение матрицы линейного оператора при переходе к новому базису.
- 28. Ядро и образ и линейного отображения.
- 29. Нахождение ядра линейного оператора. Теорема о ранге и дефекте.
- 30. Инвариантные подпространства. Определение и примеры.
- 31.Сумма и пересечение инвариантных подпространств. Инвариантные подпространства и матрица линейного оператора.
- 32. Собственные векторы и собственные значения. Определения и примеры.
- 33. Линейная независимость собственных векторов, принадлежащих попарно различным собственным значениям. Подпространство V_{λ} .
- 34. Нахождение собственных значений.
- 35. Теорема Гамильтона Кэли.
- 36. Минимальный полином матрицы и оператора.
- 37.Определение жордановой нормальной формы и канонического базиса. Нахождение ЖНФ матрицы.

- 1. Билинейные формы. Примеры. Матрица билинейной формы. Симметрические билинейные формы и их матрицы.
- 2. Теорема об изменении матрицы билинейной формы при переходе к другому базису. Ранг билинейной формы и его независимость от выбора базиса.
- 3. Квадратичные формы. Полярная билинейная форма для данной квадратичной формы. Теорема о существовании и единственности полярной билинейной формы
- 4. Матрица квадратичной формы. Изменение матрицы квадратичной формы при переходе к другому базису. Ранг квадратичной формы и его независимость от выбора базиса.
- 5. Канонический базис относительно билинейной (квадратичной) формы и канонический вид билинейной (квадратичной) формы. Матрица билинейной (квадратичной) формы в каноническом базисе. Алгоритм Лагранжа.
- 6. Нормальный вид комплексной квадратичный формы.
- 7. Нормальный вид действительной квадратичной формы. Закон инерции действительных квадратичных форм. Положительный и отрицательный индексы инерции.
- 8. Знакоопределенные квадратичные формы. Канонический вид положительно (отрицательно) определенной квадратичной формы. Критерий Сильвестра.
- 9. Евклидовы пространства. Длина вектора.
- 10. Неравенство Коши-Буняковского.
- 11. Неравенство треугольника. Угол между векторами в евклидовом пространстве.
- 12. Ортогональные векторы в евклидовом (унитарном) пространстве и их свойства. Теорема о линейной независимости системы попарно ортогональных ненулевых векторов.
- 13. Ортогональный и ортонормированный базис. Ортогональное дополнение к подпространству. Процесс ортогонализации Грама-Шмидта.
- 14. Теорема о разложении евклидова векторного пространства в прямую сумму подпространства и его ортогонального дополнения.
- 15. Ортогональная проекция и ортогональная составляющая вектора относительно подпространства, их нахождение.
- 16. Связь между ортонормированными базисами евклидова векторного пространства.
- 17. Оператор, сопряженный к данному оператору евклидова пространства. Теорема о существовании и единственности сопряженного оператора. Матрица сопряженного оператора в ортонормированном базисе.
- 18. Свойства сопряженного оператора пространства. Теорема об инвариантных подпространствах.

- 19. Ортогональные операторы. Невырожденность ортогонального оператора. Образ ортонормированного базиса относительно ортогонального оператора.
- 20. Критерий ортогональности оператора. Матрица ортогонального оператора в ортонормированном базисе.
- 21. Инвариантные подпространства ортогонального оператора.
- 22. Собственные значения ортогонального оператора. Ортогональные операторы 1 и 2-мерных векторных пространств.
- 23. Теорема о каноническом виде матрицы ортогонального оператора. Следствие для ортогональных матриц.
- 24. Самосопряженные операторы евклидовых векторных пространств. Матрица самосопряженного оператора. Свойство ортогонального дополнения к подпространству, инвариантному относительно самосопряженного оператора.
- 25. Теорема об одномерном подпространстве, инвариантном относительно самосопряженного оператора евклидова векторного пространства, Следствия.
- 26. Теорема о каноническом виде матрицы самосопряженного оператора. Следствие для симметрических матриц.
- 27. Приведение действительной квадратичной формы к каноническому виду с помощью ортогонального преобразования координат.
- 28. Определение группы, подгруппы. Примеры.
- 29. Порядок элементов группы, его свойства. Циклические подгруппы, их порядок.
- 30. Циклические группы. Их классификация.
- 31. Подгруппы циклической группы.
- 32. Смежные классы. Их свойства. Критерий равенства смежных классов. Индекс подгруппы.
- 33. Теорема Лагранжа и следствия из нее.
- 34. Гомоморфизмы и изоморфизмы групп, их свойства.
- 35. Нормальные подгруппы. Примеры. Нормальность ядра гомоморфизма.
- 36. Факторгруппа. Канонический гомоморфизм.
- 37. Основная теорема о гомоморфизмах групп.
- 38. Прямое произведение групп.
- 39. Определения кольца, подкольца, поля, подполя. Примеры.
- 40. Гомоморфизм и изоморфизм колец. Их свойства. Ядро гомоморфизма.
- 41. Идеал кольца. Примеры. Ядро гомоморфизма колец идеал.
- 42. Факторкольцо.
- 43. Основная теорема о гомоморфизмах колец.
- 44. Прямое произведение колец.
- 45. Характеристика поля. Простое поле.
- 46. Степень расширения полей. Мультипликативность степени. Конечные расширения.

- 47. Алгебраические и трансцендентные элементы.
- 48. Простые расширения полей.
- 49. Алгебраически замкнутые поля, алгебраическое замыкание.

Примерный перечень вопросов к зачету

На зачете по дисциплине «Алгебра и теория чисел» студент должен продемонстрировать умение решать следующие задачи и объяснять свои действия с точки зрения теории.

1 семестр

- 1. Найти НОД (НОК) целых чисел с помощью алгоритма Евклида.
- 2. Комплексное число представить в тригонометрической форме.
- 3. Изображать на комплексной плоскости комплексные числа и множества комплексных чисел, заданные их свойствами.
- 4. Осуществлять действия над комплексными числами: сложение, умножение, возведение в степень, извлечение корня.
- 5. Бинарная алгебраическая операция, определение группы, кольца, поля.
- 6. Находить количество инверсий в перестановках.
- 7. Перемножать подстановки. Разлагать подстановку в произведение транспозиций и независимых циклов.
- 8. Считать простейшие определители по определению.
- 9. Пользуясь теоремой Лапласа, раскладывать определитель по одной или нескольким строкам (столбцам).
- 10. Вычислять числовые определители.
- 11. Решать системы линейных уравнений методом Гаусса.
- 12.Выполнять действия с матрицами. Находить обратную матрицу (два способа).
- 13. Решать крамеровские системы линейных уравнений.
- 14. Найти НОД (НОК) полиномов из P[x].

- 1. Определять линейную зависимость и линейная независимость системы векторов.
- 2. Находить базис системы векторов и базис векторного пространства.
- 3. Находить координаты вектора в заданном базисе.
- 4. Находить матрицу перехода между базисами.
- 5. Уметь определять, является ли некоторое подмножество векторного пространства подпространством.
- 6. Находить базис суммы и пересечения подпространств.
- 7. Определять, является ли сумма подпространств прямой.
- 8. Вычислять ранг системы векторов и ранг матрицы

- 9. Знать и уметь применять критерий совместности системы линейных уравнений.
- 10.Уметь находить фундаментальную систему решений системы однородных линейных уравнений.
- 11. Уметь задать подпространство системой линейных уравнений.
- 12. Уметь определять линейность отображения.
- 13. Уметь вычислить матрицу линейного оператора.
- 14. Уметь вычислить ядро линейного отображения.
- 15. Выяснить инвариантность подпространства.
- 16. Уметь находить собственные векторы и собственные значения матрицы и линейного оператора.
- 17. Уметь записать жорданову нормальную форму матрицы.

- 1. Найти матрицу билинейной и квадратичной формы в разных базисах.
- 2. С помощью алгоритма Лагранжа найти канонический вид билинейной и квадратичной формы.
- 3. Привести вещественную и комплексную квадратичную форму к нормальному виду.
- 4. Найти положительный и отрицательный индексы инерции, сигнатуру квадратичной формы.
- 5. Применять критерий Сильвестра для выяснения знакоопределенности квадратичной формы.
- 6. Уметь выяснить, является ли вещественное пространство евклидовым относительно заданной билинейной формы.
- 7. Уметь вычислить скалярное произведение векторов, длину векторов, угол между векторами.
- 8. Уметь строить ортонормированные семейства векторов с помощью процесса ортогонализации Грама-Шмидта.
- 9. Уметь находить ортогональное дополнение к подпространству, заданному одним из двух способов: а) как линейная оболочка системы векторов; б) как пространство решений однородной системы линейных уравнений.
- 10. Уметь найти сопряженный оператор для заданного оператора.
- 11. Уметь находить канонический вид ортогонального оператора.
- 12. Уметь находить канонический вид самосопряженного оператора.
- 13.Уметь приводить вещественную квадратичную форму к каноническому виду с помощью ортогонального преобразования координат.
- 14. Уметь определять, является ли множество с заданными операциями группой, кольцом, полем.

- 15.Уметь определять, является ли заданное отображение гомоморфизмом групп, колец.
- 16. Уметь вычислить порядок элемента группы.
- 17.Уметь вычислить циклическую подгруппу, порожденную заданным элементом.
- 18.Уметь вычислять смежные классы группы по подгруппе, индекс подгруппы.
- 19. Знать и уметь применять теорему Лагранжа и следствия из нее.
- 20. Уметь определить, является ли заданная подгруппа нормальной.
- 21. Уметь выполнять действия в факторгруппе, факторкольце.
- 22. Уметь определять, является ли данное подмножество идеалом кольца.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ УВО

Название	Название	Предложени	Решение, принятое
дисциплины,	кафедры	Я	кафедрой,
с которой		об	разработавшей
требуется		изменениях в	учебную
согласование		содержании	программу
		учебной	(с указанием
		программы	даты и номера
		по изучаемой	протокола)
		учебной	
		дисциплине	
Аналитическая	Кафедра	нет	Вносить
геометрия	геометрии,		изменения не
	топологии и		требуется
	методики		(протокол №
	преподавания		11 от
	математики		25.05.2020)
Теория функций	Кафедра теории	нет	Вносить
комплексного	функций		изменения не
переменного			требуется
			(протокол № 11 от
			25.05.2020)
Математический	Кафедра теории	нет	Вносить
анализ	функций		изменения не
			требуется
			(протокол № 11 от
			25.05.2020)
Дифференциальны	Кафедра	нет	Вносить
е уравнения	дифференциальны		изменения не
	х уравнений и		требуется
	системного		(протокол № 11 от
	анализа		25.05.2020)

ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ К УЧЕБНОЙ ПРОГРАММЕ ПО ИЗУЧАЕМОЙ УЧЕБНОЙ ДИСЦИПЛИНЕ

на ____/___ учебный год

Л п/п	ополнения и изменен	пия пия	Основание
11/11			
Учебная программа пер	есмотрена и олобрен	а на заселани	и кафелры высшей
алгебры и защиты инфо			
Заведующий кафедрой			
эшьедующий кифедрой			
(степень, звание)	(подпись)	(И.О.	Фамилия)
УТВЕРЖДАЮ			
Декан факультета			
(степень, звание)	(подпись)	(И.О.Фам	