Photoelectrochemical processes on TiO₂/MoO₃ film heterostructures

N. E. Boboriko^a, D. I. Mychko^a, S. M. Rabchynski^a, S. K. Poznyak^b,

E. A. Streltsov^a, A. I. Kulak^c

^aChemistry Department, Belarusian State University, Minsk, Belarus, e-mail: <u>natchem@tut.by</u>

^bResearch Institute for Physical Chemical Problems, Belarusian State University, Minsk, Belarus ^c Institute of General and Inorganic Chemistry, NAS of Belarus, Minsk, Belarus

Titanium dioxide is known to be an effective photoelectron acceptor in the third-generation of photovoltaic solar converters. One of the ways to decrease the recombination of photogenerated charge carriers during their transport and therefore to increase the quantum efficiency of a solar cell consists in employing binary oxide heterostructures. The difference in the conduction band edge position of TiO_2 and MoO_3 favors the separation of photogenerated electrons and holes and the increase in the solar cell quantum efficiency. TiO_2/MoO_3 film heterostructures were prepared using the mixed colloidal solutions of the corresponding hydrated oxides followed by thermal treatment (450 °C, 2 hours) of the deposited films. The dependence of photoelectrochemical properties (photocurrent, photopotential, spectral response) inherent to TiO_2/MoO_3 film electrodes on the MoO₃ content ranging from 1 to 10 mol. % was studied.