первый участок знакопостоянства всегда самый короткий, находим, что знаки в этих столбцах в начале могут быть расположены лишь следующим образом: $\begin{pmatrix} -+++-- \\ -+++ \end{pmatrix}^T$, либо $\begin{pmatrix} --++--- \\ -+-+ \end{pmatrix}^T$. Положим, $\frac{p}{2h} = 1 + \frac{1}{2h}$ $+\epsilon$. Тогда из первой возможности вытекает, что с одной стороны $2 < 2 + 2\epsilon < 3$, а с другой – $6 < 4 + 4\epsilon < 7$. Из первого неравенства находим, что $\epsilon < \frac{1}{2}$, а из второго, что $\epsilon > \frac{1}{2}$. Противоречие. Аналогично рассматривается вторая возможность. Здесь, с одной стороны, $4 < 3 + 3\epsilon < 5$, а с другой, $7 < 6 + 6\epsilon < 8$. В частности, первое неравенство дает $\epsilon > \frac{1}{2}$, a Bropoe $-\epsilon < \frac{1}{2}$.

Доказанный результат имеет несколько арифметических и геометрических следствий, представляющих и самостоятельный интерес.

Следствие 1. При простом р≥11 и при любых натуральных 1 < a, b < $\frac{p}{2}$ можно подобрать четыре натуральных значения $x, 1 < x < \frac{p}{2}$, таких, что числа $\left[\frac{2ax}{p}\right]$, $\left[\frac{2bx}{p}\right]$ будут иметь любую наперед заданную четность.

Следствие 2. Множество P_1 при det A = p, где p – простое, а n = 3, является неприводимым тогда и только тогда, когда все его точки образуют плоскую антицепь.

Авторы благодарят В. М. Ширяева за полезное обсуждение работы.

Список литературы

Емеличев В. А., Ковалев М. М., Кравцов М. К. Многогранники, графы, оптимизация. М., 1981.
 Стенли Р. Перечислительная комбинаторика. М., 1990.
 Петрова Г. Л. // Изв. АН БССР. Сер. физ.-мат. 1985. № 4. С. 24.

Поступила в редакцию 28.12.91.

УДК 517.977

Н. В. БАЛАШЕВИЧ

СИНТЕЗ ОПТИМАЛЬНЫХ СИСТЕМ СО МНОГИМИ ВХОДАМИ

1. В классе кусочно-непрерывных r-вектор-функций u(t), $t ∈ T = [0, t^*]$, рассмотрим задачу оптимального управления:

$$c'x (t^*) \rightarrow max,$$

$$\dot{x} = Ax + Bu, \ x (0) = x_0,$$

$$Hx (t^*) = g,$$

$$d \cdot \leq u (t) \leq d', \ t \in T,$$
(1)

 $(A \in \mathbb{R}^{n \times n}, B = (b_1, \dots, b_r) \in \mathbb{R}^{n \times r}, c, x \in \mathbb{R}^n, u, d \cdot d \in \mathbb{R}^r,$

$$g \in \mathbb{R}^m$$
, $H \in \mathbb{R}^{m \times n}$, rank $H = m \le n$).

Будем считать, что из-за возмущений, действующих в реальных условиях, поведение системы описывается уравнением

$$\dot{x} = Ax + Bu + w(t), x(0) = x_0,$$
 (2)

где w(t), $t \in T^0 = [0, t^0]$, $0 < t^0 < t^*$, $w(t) \equiv 0$, $t \in [t^0, t^*]$, — неизвестная заранее непрерывная п-вектор-функция.

Использование программных решений задачи (1) в этих условиях невозможно. Для построения оптимальных управлений типа обратной связи погрузим задачу (1) в семейство задач:

$$c'x(t^*) \rightarrow max, \tag{3}$$

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}, \ \mathbf{x}(\tau) = \mathbf{z},\tag{4}$$

$$Hx(t^*) = g, (5)$$

$$\mathbf{d} \cdot \leq \mathbf{u} (t) \leq \mathbf{d}^{*}, \ t \in \mathbf{T}_{\tau} = [\tau, t^{*}], \tag{6}$$

зависящее от скаляра т и вектора z∈Rⁿ.

Кусочно-непрерывную г-вектор-функцию $u(t \mid \tau, z)$, $t \in T$, удовлетвокусочно-непрерывную т-вектор-функцию u(t т, z), t∈т,, удовлетво-ряющую прямому ограничению (6), назовем допустимым программным управлением, если порожденная ею траектория x(tlτ, z), t∈T,, уравнения (4) удовлетворяет терминальному ограничению (5). Допустимое управление u°(tlτ, z), t∈T,, называется оптимальным программным управлением, если на соответствующей ему оптимальной

траектории х°(tlт, z), t∈T,, критерий качества (3) достигает максималь-

Кусочно-непрерывную г-вектор-функцию $u^{o}(\tau, z)$, $\tau \in T$, $z \in R^{n}$, будем называть оптимальным управлением типа обратной связи, если на траектории $\dot{x}(t)$, $t\in T$, уравнения $\dot{x}=Ax+Bu^o(t,x), x(\tau)=z$, выполняется равенство $\dot{x}(t)=x^o(t|\tau,z),\,t\in T$, при всех $\{\tau,z\}$ из области управляемости системы (3) - (6).

Обозначим через w*(t),t∈T°, возмущение, реализовавшееся в некотором конкретном процессе. Замкнем систему (2) оптимальной обратной связью uo(t, x) и обозначим через х*(t), t∈T, траскторию замкнутой системы. Функция $u^*(t) = u^o(t, x^*(t)), t \in T$, представляет управление, циркулирующее в замкнутой системе в рассматриваемом конкретном про-

Устройство, которое в каждом конкретном процессе вырабатывает в режиме реального времени управление u*(t), t∈T, назовем оптимальным регулятором.

2. Согласно [1], компоненты оптимального программного управления $u_{\tau}^{\circ}(t) = u^{\circ}(t|\tau, x^{*}(\tau))$, $t \in T_{\tau}$, задачи (3) – (6) имеют вид:

$$u_{i}^{o}(t) = \frac{d_{i}^{\bullet} + d_{i}}{2} + \frac{d_{i}^{\bullet} - d_{i}}{2} \operatorname{sign} \Delta_{i}^{o}(t), t \in T_{r}, i = \overline{1, r},$$

где

$$\Delta_{\tau}^{\circ}(t) = \Delta_{i}^{\circ}(t|\tau, x^{*}(\tau)) = \psi'(t)b_{i}, \psi = -A'\psi, \psi(t^{*}) = c - H'y(\tau),$$

 $y(\tau) = y(\tau, x^*(\tau))$ — оптимальный вектор потенциалов задачи (3) – (6). Таким образом, оптимальное программное управление полностью определяется совокупностью

$$t_{i}^{j}(\tau), i \in P_{i} = \{1, 2, ..., p_{i}\}, j = \overline{1, r}; y(\tau),$$
 (7)

состоящей из нулей

$$t_1^j(\tau) < \dots < t_{pj}^j(\tau), j = \overline{1, r},$$

коуправления Δ_{ij}° (t), $j = \overline{1, r}$, $t \in T_{r,i}$ и вектора потенциалов. Элементы (7) удовлетворяют системе уравнений:

$$f(\tau; t_i^{j}(\tau), i \in P_j, j = \overline{1, r}; x^{*}(\tau)) = 0,$$

$$q_1(t_i^{j}(\tau), i \in P_j, j = \overline{1, r}; y(\tau)) = 0, 1 = \sum_{k=1}^{j-1} p_k + i,$$
(8)

где

$$f(\tau; t_i^j, i \in P_j, j = \overline{1, r}; x) = \sum_{j=0}^r \sum_{i=0}^{p_i} k_i^j \int_{t_i^j}^{t_{i+1}^j} H^j(t) dt +$$

$$+ HF(t^* - \tau)x - g, t_0^j = \tau, t_{p_j+1}^j = t^*, j = \overline{1, r}; H^j(t) = HF(t^* - t)b_j;$$

$$\dot{F} = AF$$
, $F(0) = E$, $k_i^j = \frac{d_j^* + d_{ij}}{2} + \frac{d_j^* - d_{ij}}{2} sign \Delta_{ij}^0 (t_i^j + 0)$;

$$q_{l}\left(\ t_{i}^{j},\ i\in P_{j},\ j=\overline{1\ r};\ y\ \right)\ =\ \left(\ c'-y'H\ \right)F\left(\ t^{*}-t_{i}^{j}\ \right)b_{j},\ l=\sum_{k=1}^{j-1}p_{k}+i.$$

Систему уравнений (8) назовем определяющими уравнениями опти-

мального регулятора.

Численный метод решения определяющих уравнений в режиме реального времени аналогичен методу решения определяющих уравнений оптимального регулятора для системы управления с одним входом [2].

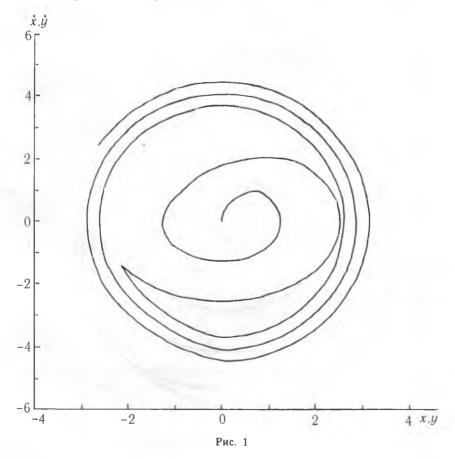
3. Зададим параметр $\nu > 0$, характеризующий предельную частоту переключения управлений, вырабатываемых регулятором. Регулятор начинает работу в момент t=0 со значения $u^*(0)=u^\circ(0|0,x_0)$, где $u^\circ(t|0,x_0)$, $t\in T$, — оптимальное программное управление задачи (1), которое вычисляется до включения регулятора [1]. Пусть регулятор проработал на промежутке $[0, \tau[$. Обозначим через $u^*(t)$, $t\in [0, \tau[$, управление, выработанное регулятором к моменту τ , τ_i , j=1, τ , — ближайшие слева к τ точки разрыва компонент управления $u_i^*(t)$, $t\in [0, \tau[$, j=1, τ . При $\tau=0$ считаем

$$\tau_j = -\infty, j = \overline{1, r}.$$

В момент τ регулятор выработает управление

$$\begin{cases} \mathbf{u}_{\mathbf{j}}^{*}\left(\tau_{\mathbf{j}}+0\right), & \tau-\tau_{\mathbf{j}}<\nu, \\ \mathbf{u}_{\mathbf{j}}^{o}\left(\tau|\tau,\mathbf{x}^{*}\left(\tau\right)\right), & \tau-\tau_{\mathbf{j}}\geq\nu, & \mathbf{j}=\overline{1,\ r}, \end{cases}$$

где $u^{\circ}(\tau | \tau, x^{*}(\tau))$ – значение управления, построенного в результате численного решения определяющих уравнений (8).



Действуя таким образом, регулятор в каждом конкретном процессе функционирования системы (2) будет вырабатывать релейное управле-

ние $u^*(\tau)$, $\tau \in T$, расстояние между точками переключения компонент которого не меньше чем ν .

4. Пример. Рассмотрим задачу об оптимальной встрече двух колебательных систем:

$$\int_{0}^{t^{*}} (u(t) + v(t)) dt \rightarrow min, \ \bar{x} + x = u, \ x(0) = x_{10}, \ \dot{x}(0) = x_{20}, \ \ddot{y} + 2y = v,$$

$$y(0) = y_{10}, \ \dot{y}(0) = y_{20}, \ x(t^*) = y(t^*), \ \dot{x}(t^*) = \dot{y}(t^*), \ 0 \le u(t) \le 1,$$

 $0 \le v(t) \le 1, \ t \in T = [0, t^*].$

В качестве исходных данных возьмем $t^* = 4\pi$, $x_{10} = x_{20} = 0$, $y_{10} = -264324$, $y_{20} = 2.423175$. Совокупность точек переключения оптимальных программных управлений: $t_u^o = \{1.448149, 2.827007, 7.731335, 9.110192\}$, $t_v^o = \{2.890995, 3.285176, 7.333878, 7.728058, 11.776761, 12.170942\}$. Значения управлений на первом интервале: $u^o(+0) = v^o(+0) = 0$. Терминальные состояния систем (точка их встречи): $x^o(t^*) = y^o(t^*) = -2.14653$, $x^o(t^*) = y^o(t^*) = -1.36613$. Значение критерия качества: $J^o = 3.94026$. Фазовые траектории невозмущенных систем изображены на рис. 1.

Пусть из-за действия возмущений системы движутся согласно урав-

нениям $\ddot{x} + x = u + w_u^*(t)$, $\ddot{y} + 2y = v + w_v^*(t)$. Зададим

$$w_u^*(t) = 0.5 \sin 0.5t, \ w_v^*(t) = 0.2 \sin 3t, \ 0 \le t \le t^\circ = 7.5,$$

 $w_u(t) = w_v(t) = 0, \ 7.5 < t \le 4\pi.$

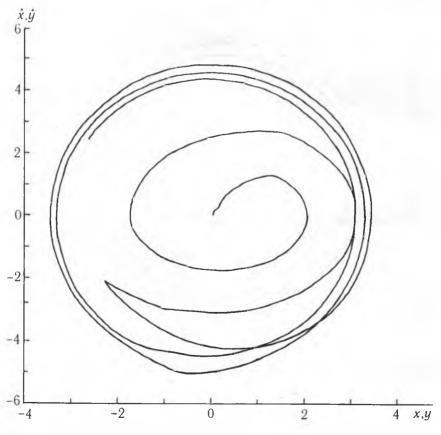


Рис. 2.

Регулятор, построенный по приведенным выше правилам ($\nu = 0.1$), вы-9.110673}, $t_v = \{3.09, 3.36, 7.11, 7.789931, 11.077541, 12.232814\}$, причем $u^*(+0) = v^*(+0) = 0.$

Фазовые траектории возмущенных систем представлены на рис. 2. Системы встретились в точке $x^*(t^*) = y^*(\hat{t}^*) = -2.29199$, $x^*(t^*) =$

 $= \dot{\mathbf{v}}^*(t^*) = -2.07766.$

Значение критерия качества оказалось равным J° = 5.205877.

Список литературы

1. Габасов Р., Кириллова Ф. М. Конструктивные методы оптимизации. Мн., 1984. Ч. 2. 2. Габасов Р., Кириллова Ф. М., Костюкова О. И. // Докл. АН СССР. 1991, Т. 320. № 6.

Поступила в редакцию 10.01.91.

УДК 519.24

Н. Н. ТРУШ, А. П. СКРИПКО

ВЫЧИСЛЕНИЕ МОМЕНТОВ МОДИФИЦИРОВАННОГО КОНЕЧНОГО ПРЕОБРАЗОВАНИЯ ФУРЬЕ многомерных однородных полей

Рассмотрим д-мерное однородное действительное случайное поле

$$X(\bar{t}) = \{X_1(\bar{t}), ... X_q(\bar{t})\}, \text{ rge } \bar{t} = (t_1, ..., t_n);$$

$$t_i \in \mathbb{Z} = \{0, \pm 1, \pm 2, \dots\}; i = \overline{1,n}.$$

Будем предполагать, что $MX(\bar{t}) = 0$.

Смешанный момент к-го порядка компонент рассматриваемого случайного поля X(t), t∈Zn, определим следующим образом:

$$m_{a_1...a_k}(\bar{t}_1,...,\bar{t}_k) = MX_{a_1}(\bar{t}_1)...X_{a_k}(\bar{t}_k), \bar{t}_j \in \mathbb{Z}^n, a_j = \overline{1,q}, j = \overline{1,k}.$$
 (1)

Для определения смешанного семиинварианта k-го порядка, согласно [3], воспользуемся соотношением:

$$c_{a_{1}} \dots {}_{a_{k}} (\bar{t_{1}}, \dots, \bar{t_{k}}) = \sum_{I_{1} + \dots + I_{p} = I} \prod_{r=1}^{p} (-1)^{r} (r-1)! m_{a_{i_{1}} \dots a_{i_{l_{r}}}} (\bar{t_{i_{1}}}, \dots, \bar{t_{i_{l_{r}}}}),$$

где

$$I = \left\{\,1,\,2,\,\dots\,k\,\right\}, \ \ I_r \subseteq I, \ \ I_r = \,\left\{\,i_{\,1},\,\dots\,,\,i_{\,l_{\,r}}\,\right\}, \ \ a_{\,i_{\,j}} = \, \overline{\,1,\,q}, \ \ j = \, \overline{\,1,\,l_{\,r}}, \quad 1 \le r \le p,$$

 $\mathbf{l_r}$ принимает целочисленные значения, а $\sum\limits_{\mathbf{I_1} + ... + \mathbf{I_p} - \mathbf{I}}$ означает суммирование

по всем упорядоченным непересекающимся разбиениям І, множества І. В тех же обозначениях существует и обратное соотношение:

$$m_{a_1} \dots_{a_k} (\bar{t}_1, \dots, \bar{t}_k) = \sum_{I_1 + \dots I_p = I} \prod_{r=1}^p c_{a_{\bar{i}_1}} \dots_{a_{\bar{i}_{l_r}}} (\bar{t}_{i_1}, \dots, \bar{t}_{i_{l_r}}).$$
 (2)

Для однородных случайных полей как смешанные моменты, так и смешанные семиинварианты инвариантны по сдвигам:

$$m_{a_1} \dots a_k (\bar{t}_1 + \bar{u}, \dots, \bar{t}_k + \bar{u}) = m_{a_1} \dots a_k (\bar{t}_1, \dots, \bar{t}_k),$$

 $c_{a_1} \dots a_k (\bar{t}_1 + \bar{u}, \dots, \bar{t}_k + \bar{u}) = c_{\bar{a}_1} \dots a_k (\bar{t}_1, \dots, \bar{t}_k),$

для любых

$$\bar{\mathbf{u}} \in \mathbf{R}^n$$
, $\bar{\mathbf{t}}_j \in \mathbf{Z}^n$, $a_j = \overline{1, q}$, $j = \overline{1, k}$.