выполнении условия (9) нормированные интенсивности прошедшей и обрашенной волн могут принимать гигантские значения порядка 10⁵. В то же время генерация и усиление ультразвука в критических точках являются нестабильными, поскольку коэффициенты усиления, прохождения и отражения очень быстро уменьшаются при небольшом нарушении условия (9). При толшинах слоя, удовлетворяющих соотношению

$$\left[k_1 \left(\omega_0 - \Omega \right) - k_2 \left(\omega_0 - \Omega \right) \right] L_s = 2\pi s, \qquad (10)$$

интенсивность обращенной волны принимает минимальные значения.

Из сравнения графиков, полученных различными способами, можно сделать вывод о том, что приближенные выражения достаточно точно описывают поведение интенсивностей обращенной, отраженной и прошедших волн в областях стабильного взаимодействия, вдали от толщин слоя, удовлетворяющих соотношению (9). В критических точках слабое отражение ультразвука от границ слоя с вращающейся анизотропией не имсет места, и приближенный метод не может быть использован. При выполнении условия (9) приближенные вычисления дают бесконечно большие значения лля интенсивностей всех волн.

Список литературы

1. Белокопытов Г. В. Иванов А. В., Чистяев В. Н. // Акуст. журн. 1989. Т. 35, № 2. C. 218.

2. Онло Masahiro//Appl. Phys. Lett. 1989. V. 54. № 20. Р. 1979. 3. Белокопытов Г. В., Иванов И. В. Семененко В. Н. и др. // Журн. техн. физ. 1989. Т. 59. № 4. С. 182.

4. Оh по Masahiro // Appl. Phys. Lett. 1989. V. 55. № 9. Р. 832. 5. Bajak Ivan L. // Wiss. Beitr. M., Luther-Univ., Halle-Wittenberg. О. 1989. № 26. Р. 83. 6. Белый В. Н., Севрук Б. Б. // Журн. техн. физ. 1987. Т. 57. № 2. С. 336. 7. Семченко И. В., Сердюков А. Н., Хахомов С. А. // Кристаллография. 1991. T. 36, № 2. C. 298.

8. Сиротин Ю. И., Шаскольская М. П. Основы кристаллофизики. М., 1979. 9. Пекар С. И., Демиденко Л. Л., Здебский А. П. и др. // Докл. АН СССР. 1976. Т. 230. С. 1089.

10. Жабитенко II. К., Кучеров И. Я. // Укр. физич. журнал. 1978. Т. 23. № 2. C 263.

11. Рыбянец А. Н., Турик Д. В., Дорохова И. В. и др. // Жури. техн. физики. 1986. Т. 56. № 12. C. 2371.

Поступила в редакцию 14.01.92.

УДК 535.34

Вик. В. ШЕПЕЛЕВИЧ

ЗАВИСИМОСТЬ ЭФФЕКТИВНОСТИ ЧЕТЫРЕХВОЛНОВОГО ВЗАИМОДЕЙСТВИЯ В BiuSiO20 ОТ ОРИЕНТАЦИИ КРИСТАЛЛА

Большой диапазон практических применений четырсхволнового взаимодействия (обращение волнового фронта, интерферомстрия в реальном врсмени [1], выполнение логических операций, параллельная обработка оптической информации и др. [2].) способствует интенсивному развитию исследований этого явления с использованием различных рабочих сред. В стандартных схемах обращения волнового фронта при четырехволновом смешении в высокочувствительных фоторефрактивных кристаллах Bi₁₃SiO₂₀(BSO), Ві₁₂GeO₂₀(BGO) и Ві₁₂TiO₂₀(BTO) кристаллическая пластинка среза (110) устанавливается таким образом, чтобы кристаллографическое направление [001] было перпендикулярно или параллельно плоскости падения лучей (всктор записываемой голографической решетки К ⊥ [001] и К [[001]) [3].

Эти геометрии, как показано ниже, не являются оптимальными. Известно [4], что кристаллы BSO, BGO и BTO являются пьезо-электриками. В [5] показано, что учет пьезоэлектрического эффекта и фотоупругости приводит к значительному изменению свойств формирующихся в этих средах голографических решеток, что необходимо учитывать

и в процессе оптимизации условий четырехволнового смешения. Следует отметить, что пьезоэлектрический эффект не проявляется при К [[001] и слабо сказывается при К [[110] [6], что, видимо являлось причиной пренебрежения им в подавляющем большинстве работ по голографии в фоторефрактивных кристаллах.

Рис. 1. Схема эксперимента и ориентация кристалла

Цель настоящего сообщения — изучение влияния ориентации вектора решетки К относительно направления [001] на энергетическую эффективность обращения волнового фронта при вырожденном четырехволновом смешении в кристалле BSO с применением модели голографической решетки [5].

Рис. 2. Зависимость коэффициента отражения обращенной волны от угла ориентации кристалла BSO: ~ – экспериментальные точки; 1 – теоретическая зависимость, полученная без учета оптической активности и пьезооффекта; 2 – с учетом оптической активности; 3 – с учетом оптической активности и пьезоофректа

зованными в плоскости схождения. Угол поворота плоскости поляризации в результате однократного прохождения света через кристалл составлял 44°. Ориентация кристалла относительно вектора К показана на рис. 1.

Проведенные измерения интенсивности обращенного пучка I₄ в зависимости от угла поворота кристалла показали, что максимум коэффициента отражения достигается при углах ориентации кристалла 50° и 140° (рис. 2).

Для получения теоретической зависимости коэффициента обращения от угла Θ , вообще говоря, необходим учет взаимодействия всех четырех пучков. Однако, как отмечалось выше, в первом приближении можно считать голографическую решетку в стационарном режиме заданной, рассматривая дифракцию пучка I_2 на этой решетке с азимутом, измененным из-за

Схема экспериментальной установки приведена на рис. 1. В качестве обращающего элемента использовалась кристаллическая пластинка среза (110) толщиной 2,19 мм. Световой пучок Не — Ne лазера разделялся на два пучка 1 полупрозрачным зеркалом 2. Пучок накачки I₁ направлялся на кристалл, где интерферировал с сигнальным пучком I₃. Поскольку в кристалле рассматриваемого среза отражательные решетки практически регистрируются, не можно считать, что пучок I2, отраженный от зеркала 3, считывает пропускающую решетку, записанную световыми пучками I₁ и I₃. При этом дифрагированный на решетке пучок 1₄ является обращенным по отношению к I₃. Интенсивность обращенного пучка изфотоприемником мерялась Φ_{1} , а фотоприемник Φ_{2} использовался для контроля стабильности интенсивности лазерного излучения. Пучки І1, I₃ являлись линейно поляри-

вращения плоскости поляризации света в кристалле. Задача такого типа решалась в работе [5]. Теоретические зависимости, построенные с использованием результатов модели [5], приведены на рис. 2. При их расчете использовались следующие параметры (напр., [5]): фотоупругие постоянные $P_{11} = -0,16$, $P_{12} = -0,13$, $P_{13} = -0,12$, $P_{44} = -0,015$; электрооптический коэффициент $R_{41} = -5,0.10^{-12}$ м/В; модули упругости $C_{11} = 12,96.10^{10}$ H/м², $C_{12} = 2,99.10^{10}$ H/м², $C_{44} = 2,45.10^{10}$ H/м² и пьезоэлектрический коэффициент е₁₄ = 1,12 Кл/м². Феноменологическое значение величины электрического поля решетки Е₀ = 0,5 кВ/см было выбрано исходя из наилучшего согласия с экспериментальными данными. Кривая І, полученная без учета оптической активности и пьезоэффекта, является симметричной относительно угла $\Theta = 90^{\circ}$. Кривая 2, построенная с учетом оптической активности, уже не симметрична и по расположению максимумов удовлетворительно согласуется с экспериментом. Однако в области провала (при угле Θ , близком к 100°) наблюдается значительное расхождение в значениях коэффициента отражения с экспериментальными данными (почти в два раза). Наилучшее согласие с экспериментом дает одновременный учет оптической активности и пьезоэффекта (кривая 3).

Таким образом, показано, что эффективность обращения волнового фронта сильно зависит от угла Θ , определяющего ориентацию кристалла, а максимальное значение коэффициента отражения достигается при угле Θ , отличном от углов 0° и 90°, характеризующих традиционные геометрии четырехволнового смешения. Учет оптической активности позволяет приближенно рассчитать угол поворота кристалла, при котором коэффициснт обращения максимален. Учет пьезоэффекта позволяет получить лучшее согласие теоретических и экспериментальных значений. Дальнейшая оптимизация условий обращения волнового фронта может быть достигнута за счет вариации отношения интенсивностей пучков, изменения их поляризации и приложения к кристаллу внешнего электрического поля.

Автор благодарит Толстика А. Л. и Чалея А. В. за обсуждение работы и полезные замечания.

Список литературы

1. Петров М. П., Степанов С. И., Хоменко А. В. Фоточувствительные элект-

рооптические среды в голографии и оптической обработке информации. Л., 1983. 2. Yeh P. // Opt. Lett. 1987. V. 12. № 2. P. 138. 3. Erdmann A., Kovarschik R., Wenke L. // Journ. Modern. Opt. 1988. V. 35. № 10. P. 1727.

4. Акустические кристаллы / Под ред. М. П. Шасколькой. М., 1982.
5. Shepelevich V. V., Shandarov S. M., Mandel A. E. // Ferroelectrics. 1990.
V. 110. P. 235.

6. Шандаров С. М., Шепелевич В. В., Хатьков Н. Д. // Оптика и спектр. 1991. Т. 70. № 5. С. 1068.

Поступила в редакцию 28.11.91.

УДК 535.37

С. К. ГОРБАЦЕВИЧ, И. М. ГУЛИС

ФОТОИНЛУЦИРОВАННЫЙ ШТАРК-ЭФФЕКТ В МОЛЕКУЛЯРНЫХ АНСАМБЛЯХ

Многообразие фотофизических процессов, реализующихся в электронновозбужденных молекулярных ансамблях, позволяет рассматривать молекулярные системы как перспективные среды для создания устройств оптической обработки информации, характеризующихся сложной динамикой отклика на световые воздействия. Имеющиеся в литературе примеры анализа возможностей использования молекулярных сред в устройствах преобразования оптических сигналов основываются чаще всего на достаточно триви-альных эффектах типа насыщения поглощения [1]. Тем не менее даже в рамках таких простейших подходов перспективы использования молекулярных систем оказываются многообещающими, в первую очередь в связи с высокими сечениями поглощения, характерными для электронных переходов в сложных молекулах. Принципиально новые возможности могут открывать-