и выполнено условие:

$$\psi'(k) f_0(\widehat{x}(k), k) \neq 0, \ \forall k \in \overline{0, N-1}, \tag{21}$$

где

$$\psi(k) = \frac{\partial H(x(k), \psi(k+1), u(k), k)}{\partial x}, \qquad (22)$$

$$H(\widehat{x}(k), \ \psi(k+1), \ u(k), \ k) = g_0(\widehat{x}(k), \ k) + \psi'(k+1)(\widehat{f}(\widehat{x}(k), \ k) + u'(k)\widehat{D}_0 f_0(\widehat{x}(k), \ k)), \ k = \overline{0, N-1},$$
(23)

то множество I(k) состоит из таких индексов i_s , для которых $u_{i_s}^0(k)=\lambda_{i_s}(k)=0$.

 $\vec{\mathcal{H}}$ о к а з а т е л ь с т в о. Для доказательства теоремы используем принцип максимума. Поскольку управление $u^0(k)$ удовлетворяет уравнению (20), то оно является оптимальным для процесса (17)—(19). Из этого следует, что вдоль оптимального процесса ($u^0(k)$, $x^0(k)$) и соответствующего решения $\psi^0(k)$ сопряженного уравнения (22) выполняется условие максимума:

$$H(\widehat{x}^{0}(k), \ \psi^{0}(k), \ u^{0}(k), \ k) = \max_{u \in U} H(\widehat{x}^{0}(k), \ \psi^{0}(k), \ u, \ k), \ k = 0, \ N-1.$$
 (24)

В силу линейности по u гамильтониана (23) и условия (21) следует, что оптимальное управление принимает значение 0 или 1.

Из замечания относительно связи задач (12)—(15) и (17)—(19) следует утверждение теоремы.

Список литературы

1. Габасов Р., Кириллова Ф. М. Основы динамического программирования. Минск, 1975.

2. Габасов Р., Кириллова Ф. М. Принцип максимума в теории оптимального управления. Минск, 1974.

Поступила в редакцию 02.12.88.

УДК 517.977

С. ТАГАЙНАЗАРОВ

ОПТИМИЗАЦИЯ НЕПРЕРЫВНОЙ СИСТЕМЫ УПРАВЛЕНИЯ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ

1. Постановка задачи. В классе кусочно-непрерывных r-вектор функций $u=u(t)=u_p(t),\ p\in P,\ t\in T,$ рассмотрим задачу оптимального управления: *

$$J(u(\cdot)|\theta, \, \xi(\cdot), \, v) = c' \, x(t^*) \to \max_{u(\cdot)}, \tag{1}$$

$$\dot{x} = A(t) x(t) + B(t) u(t) + D(t) \xi(t), \tag{2}$$

$$x(t_*) \subseteq X_* = \{x \subseteq R^n : x = x_0 + G\theta, \ \theta \subseteq \Theta = \{\theta \subseteq R^t : \theta_* \leqslant \theta \leqslant \theta^*\}\},$$
 (3)

$$u(t) \in U = \{u \in R^r ; u_* \leqslant u \leqslant u^*\}, \tag{4}$$

$$\xi(t) \subset \Xi = \{ \xi \subset \mathbb{R}^k : \xi_* \leqslant \xi \leqslant \xi^* \}, \ t \subset T = [t_*, t^*], \tag{5}$$

$$w\ (t^*) = \mathrm{H}\ x\ (t^*) + Lv,\ v \in V = \{v \in R^m : v_* \leqslant v \leqslant v^*\},\ h_* \leqslant w(t^*) \leqslant h^*.\ (6)$$
 Здесь $A(t) = A(N,\ N\,|\,t),\ B(t) = B(N,\ P\,|\,t),\ D(t) = D(N,\ \Gamma\,|\,t),\ t \in T,$ матричные функции с кусочно-непрерывными элементами; $N = \{1,\ 2,\ \ldots,\ n\},\ P = \{1,\ 2,\ \ldots,\ r\},\ \Gamma = \{1,\ 2,\ \ldots,\ k\};\ G = G(N,\ \Lambda),\ \mathrm{H} = \mathrm{H}(\mathrm{I},\ N),$

^{*} Р. Габасов, Ф. М. Кириллова. Конструктивные методы оптимизации. Минск 1984. Задачи управления Ч. 2.

 $L = L(I, \gamma)$ — матрицы; $\Lambda = \{1, 2, ..., l\}, I = \{1, 2, ..., m\}, \gamma = \{1, 2, ..., q\};$ x(t) — n-вектор фазовых переменных системы (2) в момент времени t: $u(t), t \in T,$ — г-мерное управляющее воздействие; $\xi(t), t \in T,$ — кусочнонепрерывная k-вектор-функция неконтролируемых возмущений на входе динамической системы; x_0 — детерминированная составляющая вектора начальных значений фазовых переменных; $\theta - l$ -вектор возмущений начальных значений фазовых переменных; v - m-вектор возмущений выходных сигналов; $w(t^*)$ — m-вектор терминальных значений выходных сигналов; c-n-вектор параметров критерия качества, $\theta^* \geqslant 0$, $\theta_* \leqslant 0$ l-векторы ограничений на возмущения начальных значений фазовых переменных; u_* , $u^* - r$ -векторы ограничений на управляющие воздействия; $\xi^* \geqslant 0,\ \xi_* \leqslant 0-k$ -векторы ограничений на неконтролируемые возмущения на входе динамической системы; $v^* \geqslant 0$, $v_* \leqslant 0 - m$ -векторы ограничений на возмущения выходных сигналов; h_* , $h^* - m$ -векторы ограничений на выходные сигналы.

Определение 1. Пусть задана совокупность $\mu = (\chi, d_*, d^*)$, где χ число, d_* , d^*-m -векторы. Кусочно-непрерывное управление u(t), $t \in T$, удовлетворяющее неравенствам (4), назовем и-допустимым (или, кратко, и-управлением), если

$$W(t^*) \subset W_{\mu} = \{ w \in \mathbb{R}^m : h_* + \chi d_* \leqslant w \leqslant h^* + \chi d^* \}.$$

При исследовании задачи оптимального управления динамической системой в условиях неопределенности в рамках принципа получения гарантированного результата естественно качество допустимого управления оценивать по величине гарантированного значения критерия ка-

чества: $J^-(u(\cdot)) = \min_{\theta \in \Theta, \ v \in V, \ \xi(t) \in \Xi, \ t \in T} J(u(\cdot)|\theta, \ \xi(\cdot), \ v).$ Определение 2. μ -управление $u^0 = u^0(t), \ t \in T$, называется оптимальным, если $J^{-}(u^{0}(\cdot)) = \max J^{-}(u(\cdot)).$

Пусть $F(t, \tau), t, \tau \in T$, — фундаментальная матрица решений однородной части $\dot{x} = Ax$ динамической системы (2):

$$F(t, \tau) = F(t)F^{-1}(\tau), \ \dot{F} = AF, \ F(t_*) = E.$$

Обозначим: $\bar{c}'(t) = c' F(t^*, t) B(t), \quad \bar{H}(t) = H F(t^*, t) B(t), \quad \bar{D}(t) = H F(t^*, t) D(t), \quad \bar{G} = H F(t^*, t_*) G, \quad \bar{x}_0 = H F(t^*, t_*) x_0.$

Из множества I выделим подмножество I_{оп}. На отрезке выберем конечное множество моментов $T_{\text{оп}} = \{t_j, j \in J_{\text{оп}}\}, t_j < t_{j+1}, |J_{\text{оп}}| \leq |J_{\text{оп}}|.$ Каждому моменту t_i поставим в соответствие такой набор индексов: $P_{
m on}\left(t_{j}
ight)=P_{
m on}^{j}\subset P$, что $|{
m I}_{
m on}|=|P_{
m on}|$. Обозначим: $P_{
m on}=\{P_{
m on}^{j},\ j\in J_{
m on}\}$, $K_{
m on}=\{T_{
m on},\ P_{
m on}\}$. Совокупность $M_{
m on}=\{{
m I}_{
m on},\ K_{
m on}\}$ назовем опорой задачи (1)-(6), если невырождена опорная матрица $\Phi\left(M_{
m on}\right)=\Phi\left({
m I}_{
m on},\ K_{
m on}\right)$.

Oпределение 3. Пару $\{u(\cdot), M_{on}\}$ из μ -допустимого управления $u(\cdot)$ и опоры $M_{\text{оп}}$ назовем опорным μ -управлением. Будем считать его невырожденным, если $u_{*p} < u_p(t) < u_p^*, \, p \in P_{\text{оп}}(t), \, t \in T_{\text{оп}}$, и при всех $\theta \in \Theta$, $\xi(t) \in \Xi, t \in T; v \in V$ выполняются неравенства:

$$h_{*H} + \chi d_{*H} < \int_{T} \overline{H} (I_{H}, P|t) u(t) dt + \int_{T} \overline{D} (I_{H}, \Gamma|t) \xi(t) dt + (\overline{\chi}_{0})_{H} + G(I_{H}, N) \theta + L(I_{H}, \gamma) v < h_{H}^{*} + \chi d_{H}^{*},$$

где $I_{\rm H}=I \setminus I_{\rm on}$, $h_{*{\rm H}}=h_*(I_{\rm H})$, $h_{*}^*=h^*(I_{\rm H})$, $(\overline{x}_0)_{\rm H}=\overline{x}_0(I_{\rm H})$. Опорному управлению $\{u(\cdot),\ M_{\rm on}\}$ поставим в соответствие вектор $\mathbf{Z}=\int\limits_{T}\overline{\mathbf{H}}\left(\mathbf{I},\;P\,|\,t\right)u\left(t\right)dt+\overline{x}_{0}$, траекторию $\psi\left(t\right),\;t$ \equiv T, сопряженной системы

$$\dot{\psi} = -A'\psi, \ \psi(t^*) = c - H'\nu, \tag{7}$$

где v — вектор потенциалов:

$$\mathbf{v} = (c(t_j), \ j \in J_{\text{orr}})'\Phi^{-1}. \tag{8}$$

$$\Delta(t) = -B'(t)\psi(t), \ t \in T. \tag{9}$$

Далее подсчитаем:

$$\alpha_{i}^{-} = h_{*i} + \chi d_{*i} - \varphi_{i}^{-}, \ \alpha_{i}^{+} = h_{i}^{*} + \chi d_{i}^{*} - \varphi_{i}^{+},$$

где

$$\begin{split} \phi_{i}^{-} &= \min_{\xi(t) \in \mathbb{Z}, \ t \in T} \int_{T} \overline{D}\left(i, \ \Gamma \mid t\right) \xi\left(t\right) dt + \min_{\theta \in \Theta} \overline{G}\left(i, \ \Lambda\right) \theta + \\ &+ \min_{v \in V} L\left(i, \ \gamma\right) v = \int_{T} \overline{D}\left(i, \ \Gamma \mid t\right) \xi_{(i)}^{-}\left(t\right) dt + \overline{G}\left(i, \ \Lambda\right) \theta_{(i)}^{-} + L\left(i, \ \gamma\right) v_{(i)}^{-}, \\ \phi_{i}^{+} &= \max_{\xi(t) \in \mathbb{Z}, \ t \in T} \int_{T} \overline{D}\left(i, \ \Gamma \mid t\right) \xi\left(t\right) dt + \max_{\theta \in \Theta} \overline{G}\left(i, \ \Lambda\right) \theta + \\ &+ \max_{v \in V} L\left(i, \ \gamma\right) v = \int_{T} \overline{D}\left(i, \ \Gamma \mid t\right) \xi_{(i)}^{+}\left(t\right) dt + G\left(i, \ \Lambda\right) \theta_{(i)}^{+} + L\left(i, \ \gamma\right) v_{(i)}^{+}. \end{split}$$

2. Перейдем к исследованию субоптимальных управлений. Определение 4. μ -управление $u^{\varepsilon}(t)$, $t \in T$, назовем (строго) ε -оптимальным, если

$$J^{-}(u^{0}) - J^{-}(u^{\varepsilon}) < \varepsilon$$
.

Для опорного управления $\{u(\cdot), M_{\text{on}}\}$ подсчитаем вектор потенциалов v_{ord} (8); коуправление $\Delta(t), t \in T$, (9). Введем понятия μ -псевдоуправления $\omega(t), t \in T$, и вектор ζ , сопровождающих опору M_{on} . Разобъем множества I_{on}, T на непересекающиеся подмножества:

$$\mathbf{I}_{\text{on}}^+ = \{i \in \mathbf{I}_{\text{on}} : \mathbf{v}_i \geqslant 0\}, \ \mathbf{I}_{\text{on}}^- = \{i \in \mathbf{I}_{\text{on}} : \mathbf{v}_i \leqslant 0\},$$

$$\mathbf{I}_{\text{on}}^+ \cap I_{\text{on}}^- = \varnothing, \ I_{\text{on}}^+ \cup I_{\text{on}}^- = I_{\text{on}};$$

$$I_{\text{on}} || I_{\text{on}} = \emptyset, I_{\text{on}} \cup I_{\text{on}} = I_{\text{on}},$$

$$T_{(p)}^{+} = \{t \in T : \Delta_{p}(t) \geqslant 0\}, \ T_{(p)}^{-} = \{t \in T : \Delta_{p}(t) \leqslant 0\},$$

$$T_{(p)}^+ \cap T_{(p)}^- = \emptyset, \ T_{(p)}^+ \cup T_{(p)}^- = T, \ p \in P.$$

Сначала построим $\varsigma_{\text{on}}: \varsigma_i = \alpha_i^+$, если $i \in I_{\text{on}}^+$; $\varsigma_i = \alpha_i^-$, если $i \in I_{\text{on}}^-$. Функцию $\omega(t), \ t \in T$ построим в виде $\omega(t) = \omega^{\pi}(t) + \omega^{\delta}(t), \ t \in T$. Положим $\omega_p^{\pi}(t) = u_{*p}$, если $t \in T_{(p)}^+$; $\omega_p^{\pi}(t) = u_p^*$, если $t \in T_{(p)}^-$; $\omega_p^{\delta}(t) = u_p^{\delta}$ $=\sum_{j\in J_{(p)}}\omega_p^j\,\delta\,(t-t_j)$, t \equiv T, p \equiv P, где совокупность $\omega_{\mathrm{on}}=(\omega_p^j,\ j$ \equiv $J_{(p)}$,

$$p\in P)$$
 равна $\omega_{\mathrm{on}}=Q\left(\varsigma_{\mathrm{on}}-\int\limits_{\dot{t}}\overline{H}\left(\mathrm{I}_{\mathrm{on}},\ P\,|\,t\right)\omega^{\pi}\left(t\right)dt-(\overline{x_{\mathrm{0}}})_{\mathrm{on}}\right)$. В заключение положим $\varsigma_{\mathrm{H}}=\int\limits_{\dot{t}}\overline{H}\left(\mathrm{I}_{\mathrm{H}},\ P\,|t\right)\omega\left(t\right)dt+\overline{(x_{\mathrm{0}})}_{\mathrm{H}}.$

Число

$$\beta = \beta \left(u \left(\cdot \right), \ \mathrm{M}_{\mathrm{on}} \right) = \int_{T} \Delta' \left(t \right) \left(u \left(t \right) - \omega^{\pi} \left(t \right) \right) dt + v_{\mathrm{on}}' \left(\varsigma_{\mathrm{on}} - \mathrm{Z}_{\mathrm{on}} \right)$$

назовем оценкой субоптимальности опорного μ -управления $\{u(\cdot), M_{\text{out}}\}$. Решения $x^*(t)$, $t \in T$ системы $\dot{x} = A(t)x(t) + B(t)u(t)$, $x(t_*) = x_0$ назовем идеальной траекторией соответствующих управлений u(t), $t \in T$. Построим экстремальные траектории $x_{(i)}^+(t)$, $x_{(i)}^-(t)$, $t \in T$, $i \in I_{\text{оп}}$ динамической системы (2), порождаемые соответственно совокупностями:

$$x_{(i)}^{+}(t_{*}) = x_{0} + G\theta_{(i)}^{+}, \ u(t), \ \xi_{(i)}^{+}(t), \ t \in T, \ i \in I_{\text{on}}$$

И

$$x_{(i)}^{-}(t) = x_0 + G\theta_{(i)}^{-}, \ u(t), \ \xi_{(i)}^{-}(t), \ t \in T, \ i \in I_{on}.$$

Им соответствуют экстремальные значения выходных сигналов:

$$egin{aligned} & w_{(i)}^{+}\left(t^{*}
ight) = \mathrm{H}\left(i,\ N
ight) x_{(i)}^{+}\left(t^{*}
ight) + L\left(i,\ \Lambda
ight) v_{(i)}^{+}, \ & w_{(i)}^{-}\left(t^{*}
ight) = \mathrm{H}\left(i,\ N
ight) x_{(i)}^{-}\left(i^{*}
ight) + L\left(i,\ \Lambda
ight) v_{(i)}^{-}, \ i \in \mathrm{I}_{\mathrm{on}}. \end{aligned}$$

Критерий субоптимальности. При любом $\varepsilon > 0$ для ε -оптимальности в задаче (1)—(6) μ -управления u(t), $t \in T$, необходимо и достаточно существования такой опоры $M_{\text{оп}}$, при которой оценка субоптимальности опорного μ -управления $\{u(\cdot), M_{\text{оп}}\}$ удовлетворяла неравенству $\beta(u(\cdot), M_{\text{оп}}) \leq \varepsilon$.

Принцип ε -максимума. При любом $\varepsilon > 0$ μ -управление u(t), $t \in T$, является ε -оптимальным управлением задачи (1)—(6) тогда и только тогда, когда существует такая опора $M_{\text{оп}}$, что вдоль опорного μ -управления $\{u(\cdot), M_{\text{on}}\}$ и соответствующих ему идеальной траектории $x^*(t)$, $t \in T$ и решений $\psi(t)$, $t \in T$ сопряженной системы (7) выполняется принцип ε -максимума:

1) (условие $\varepsilon(\cdot)$ — максимума):

$$\psi'(t) B(t) u(t) = \max_{u_* \leqslant u \leqslant u^*} \psi'(t) B(t) u - \varepsilon(t), \ t \subseteq T,$$

2) (условие трансверсальности)

$$\mathbf{v}_i \, h_{(i)}' \, \mathbf{x}^* \, (t^*) = \max_{\overline{\alpha}_i < \mathbf{w}_i < \mathbf{\alpha}_i^+} \mathbf{v}_i - \mathbf{\varepsilon}_i, \ i \in \mathbf{I}_{\mathrm{on}},$$

3)
$$\beta = \int_{T} \varepsilon(t) dt + \sum_{i \in I_{OR}} \varepsilon_{i} \leqslant \varepsilon.$$

Поступила в редакцию 03.02.89.

УДК 514.76

Ю. Д. ЧУРБАНОВ

ИНДУЦИРОВАННЫЕ ПОЧТИ КОМПЛЕКСНЫЕ СВЯЗНОСТИ НА Ф-ПРОСТРАНСТВАХ И ИХ ПОДПРОСТРАНСТВАХ

Пусть G — связная группа Ли с единицей e, Φ — ее аналитический автоморфизм, G^{Φ} — группа неподвижных точек автоморфизма Φ . Обозначим через M реализацию B. M. Ведерникова [1] однородного Φ -пространства G/G^{Φ} , через I — действие G на M [1].

$$I_g(x) = \Phi(g)xg^{-1},\tag{1}$$

 $x \in M$, $g \in G$. Пусть g и h — алгебры Ли групп G и G^{Φ} соответственно, $\varphi = (d\Phi)_e$, $A = \varphi - id$, m = Ag — касательное пространство к M в единице e [2].

Предположим, что на M существует почти комплексная структура J_1 .

Она называется G-инвариантной, если для всех $g \in G$

$$dI_g \circ J_1 = J_1 \circ dI_g. \tag{2}$$

Обозначим через J сужение J_1 на m.

Теорема 1. Предположим, что на M существует почти комплексная G-инвариантная структура J_1 . Пусть ∇ — инвариантная аффинная связность пространства M, Γ — ее функция Вана [2]. Для того чтобы ∇ была почти комплексной связностью относительно J_1 (т. е. $\nabla J_1 = 0$), необходимо и достаточно, чтобы для всех $X \in \mathbf{g}$

$$J \circ \Gamma_X = \Gamma_X \circ J. \tag{3}$$

Доказательство. Если ∇ — почти комплексная связность, то из равенств $(\nabla_{X^*}J_1\widetilde{Y})_e=[X^*,\ J_1\widetilde{Y}]_e-\Gamma_XJ\widetilde{Y}_e,\ J(\nabla_{X^*}\widetilde{Y})_e=J]X^*,\ \widetilde{Y}]_e-J\Gamma_X\widetilde{Y}_e=[X^*,\ J_1\widetilde{Y}]_e-J\Gamma_X\widetilde{Y}_e$ имеем $J\cdot\Gamma_X=\Gamma_X\cdot J.$ Обратно, рассмотрим связность $\nabla_X\widetilde{Y}=-J_1\nabla_{\widetilde{Y}}J_1\widetilde{Y}$ с функцией Вана $\widetilde{\Gamma}$. Тогда получаем:

$$\widetilde{\Gamma}_{X}\widetilde{Y}_{e} = -(\widetilde{\nabla}_{X^{*}}\widetilde{Y})_{e} + [X^{*}, \widetilde{Y}]_{e} = J(\nabla_{X^{*}}, J_{1}\widetilde{Y})_{e} + [X^{*}, \widetilde{Y}]_{e} =$$