- 4. Володько Л. В., Комяк А. И., Умрейко Д. С. Ураниловые соединения. Минск, 1981. Т. 1. С. 94.
- 5. Бойко В. В., Кушниренко И. Я., Максимович Х. К., Пенцак Г. М. // ЖПС. 1977. Т. 27. № 1. С. 97.
- 6. Бойко В. В., Кушниренко И. Ч., Максимович Х. К. // Оптика и спектроскопия. 1981. Т. 50. № 6. С. 1156.

Поступила в редакцию 30.11.89.

УДК 535.33:547.772

И. В. ЛИПНИЦКИЙ, И. К. СКУТОВ, В. И. ЛИПНИЦКИЙ

КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ И СТРОЕНИЕ АКВАКОМПЛЕКСОВ МАРГАНЦА И КАДМИЯ С МЕТИЛПИРАЗОЛОМ

Пятичленные гетероциклические амины типа пиразола $C_3N_2H_4$ (Pz) и его производные в последнее время находятся в поле зрения спектроскопистов, биофизиков, медиков. Прежде всего, этот повышенный интерес вызван тем, что пиразолы, как полигетероциклические амины, весьма широко распространены в веществах природного происхождения, входят в состав многих синтетических и естественных лекарственных препаратов [1] и красителей. Некоторые производные пиразола, например, алкилсодержащие, обладают ярко выраженным антиопухолевым действием в отношении аденокарциномы СА-775, характеризуются фунгицидной активностью [2, 3] и др. Кроме того, пиразолы, как оказалось, имеют высокие адсорбционные свойства в отношении ряда кислых компонент промышленных и выхлопных газов, таких как CO₂, CO, H₂S и других, и потому могут быть использованы в качестве фильтров в целях экологической защиты среды. Важно отметить, что эти свойства значительно усиливаются при вхождении пиразолов в комплекс. С другой стороны, координируясь к металлам платиновой группы, они изменяют их каталитические свойства [4]. Такой широкий спектр химико-физических свойств пиразолов и их комплексов ставит ряд новых проблем перед физикой и химией координационных соединений. В конечном счете все эти уникальные особенности определяются электронной структурой комплексообразователя и пиразоллигандов.

Нами изучен ряд модельных смешанных комплексов метил-(MPz) и диметилпиразола (ДMPz) с Pd, Cd, Mn, Co, Cu и другие, в состав которых входят также Cl, Br, SO₄, SCN, H_2O . Соединения изучались методами колебательной спектроскопии (ИКС, СКР) и термогравиометрически.

Пиразол и его производные обладают значительным ароматическим характером, являющимся следствием делокализации трех π-электронов атомов углерода кольца, двух спаренных п-электронов, донором которых является атом азота «пиридинового» типа и одного π-электрона «пиррольного» азота. В результате перераспределения п-электронного облака в цикле «пиридиновый» азот становится формально электроотрицательным, что определяет реакционную способность амина в целом. Благодаря наличию неподеленной электронной пары у «пиридинового» азота, не участвующей в связях в пиразольном кольце, возможно образование донорно-акцепторной связи Ме—N. Вхождение электронодонорных метильных групп СН₃ в состав этих аминов повышает электронную плотность цикла, усиливает донорную способность электронной пары «пиридинового» азота при комплексообразовании. С другой стороны, «пиррольные» атомы азота являются дополнительными протоноакцепторными центрами, так что в определенных условиях Рг, МРг-лиганды могут быть мостиками [5].

В данной работе рассматриваются спектрально-структурные свойства комплексов $Mn(H_2O)_3MPzCl_2$ (комплекс I) и $Cd(H_2O)_3MPzCl_2$ (ком-

плекс II). Среди большого числа комплексов переходных металлов с пиразолом и его производными, например [6, 7], этот класс смешанных аквакомплексов спектроскопически не изучен. Исследования состояния воды в подобных объектах обычно связаны со значительными затруднениями из-за того, что в наиболее информативную часть спектра, далекую ИК область (ДИК), вносят в одинаковой мере вклад все группы атомов, входящих в состав соединений.

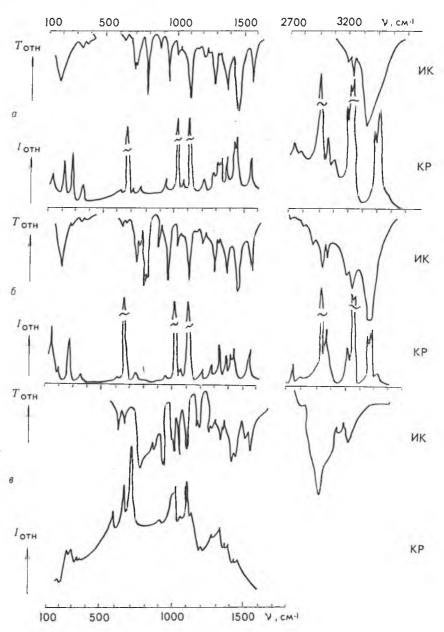


Рис. 1. Спектры ИК поглощения и КР соединений $Cd(H_2O)_3MPzCl_2$ (a), $Mn(H_2O)_3MPzCl_2$ (б) и метилпиразола (в)

ИК спектры поглощения снимались на спектрофотометре Perkin-Elmer-180. Применялась известная методика приготовления образцов в вазелиновом масле и таблетках КВг. Спектры КР регистрировались на спектрометре Spex-Ramalog с использованием линий 632,8 нм He—Ne и 514,5 нм Ar-лазеров (выходная мощность \sim 65 мВт). Параллельно

изучено термическое разложение комплексов методами ДТГ+ДТА+ТГ. Полученные спектры и термограммы приведены на рис. 1,2; колебательные частоты и их отнесение — в таблице.

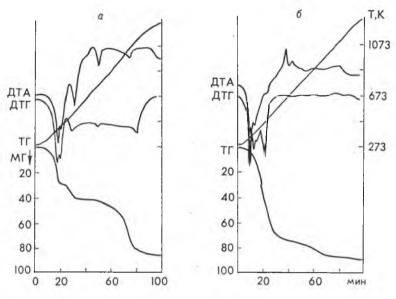


Рис. 2. Кривые термического разложения комплексов $Cd(H_2O)_3MPzCl_2$ (а) и $M\pi(H_2O)_3MPzCl_2$ (б)

Ввиду того, что колебания кристаллизационной и координированной воды лежат примерно в одной области, а термогравиометрические методы также не позволяют надежно идентифицировать природу воды в комплексе, модельный расчет и привлечение известных литературных данных родственных соединений позволяют высказать более определенные соображения о составе внутренней координационной сферы комплекса.

Важнейшим критерием координации воды к металлу являются прежде всего ее либрационные колебания. В спектре KP Mn(H₂O)₃MPzCl₂ наблюдается слабая дублетная полоса с компонентами 630 и 643 см-1. В комплексе ІІ ей отвечает лишь одна — 646 см-1. Эти полосы характеризуются более высоким значением частот по сравнению с неплоскими деформационными колебаниями координированного пиразольного кольца (612 см-1). В ИК поглощении эти колебания смешиваются с деформационными типа γ (CH). В комплексе I они находятся около 625 см⁻¹, а в II — при 617 см⁻¹. В свободном MPz внеплоскостные колебания кольца лежат около 620 см^{-1} (ИКС) и 625 см^{-1} (СКР). В кристаллическом пиразоле они находятся в той же области (627 см⁻¹). В ЙК поглощении гексагидратного соединения $[Mn(H_2O)_6]^{2+}$ и смешанного хлоргидратного $Mn(H_2O)_4Cl_2$ маятниковые (ρ_r) колебания воды проявляются около 655 см-1. Расчетные значения этой частоты составляют 658 см-1. В то время как веерные (ρ_w) колебания, например, октаэдрического аквакомплекса $Mn(H_2O)_6 \cdot FSi$ находятся несколько ниже (560 см⁻¹), а валентные $v(Mn-OH_2)$ около 395 см⁻¹ [8]. Веерные колебания во всех исследуемых образцах с водой экспериментально проявляются весьма слабо. Например, в ИК поглощении образца II имеется лишь одна малоинтенсивная полоса 550 см-1, отвечающая этому типу либрационных колебаний. Что касается валентных колебаний связи Ме—ОН2, то в комплексах M(II) и Cd(II) им отвечают близкие по значениям дублетные полосы 347, 370 см⁻¹ и 345, 365 см⁻¹ соответственно. В СКР комплекса (I) $v(Mn-OH_2)$ составляет 346 см $^{-1}$ и дублетная с компонентами 349, 356 cm⁻¹ в комплексе II. Аналогично в смешанных комплексах

Частоты и формы колебаний метилпиразолятов марганца и кадмия

3-метилпиразол		Cd (H ₂ O) ₈ MPzCl ₂		Mn (H ₂ O) ₃ MPzCl ₂		Omu
СКР	икс	CKP	ИКС	CKP	ИКС	Отнесение
-		159 сл.		149 o.c.		$t(CH_3)$,
				159 сл.		∫γ(CH, NH)
178 сл.	180		i			
		220	225	197	205	v(Me—N)
275 o. c.			245	276 o.c.	280	$\gamma(C-CH_3)$
		240	275	246	247	11(0 01.3)
		349 cp. 356	345 365	346	347 370	\ ν(Me—OH ₂)
		300	303	1	460 сл.	$\delta(C-CH_3)$
		550 сл.			200 011.	$\rho_{\omega}(H_2O)$
625 ср.	620	612 ст.	617	612 сл.	625	Γ , δ (NH)
		646 сл.	625	630 сл.		
			İ	646 сл.		$\rho_r(H_2O)$
665 o.c.	670	662 o.c.	675	663 o.c.	676	Г
		708 сл.	715	700 сл.		$\left.\right $ γ (CH, NH)
727 o. c.		752 сл.	725	752 cp.		βγ(CII, NII)
775 сл.	770					
	020	800 сл.	795	795 сл.	790	Λ , $\rho_{\omega}(H_2O)$
	830 890	886 сл.	805	813 сл.	007	/
932 сл.	950	949 ср.	895 960	886 сл. 948 ср.	895 960	γ(CH) Λ
902 сл. 1004 пл.	1015	1006 сл.	300	1006 сл.	500	δ (CH, NH)
1020 o. c.	1030	1020 o.c.	1029	1020 o. c.	1026	$\rho_{\ell}(CH_3)$
1050 сл.			1020	1057 cp.	1020	$\delta(CH, NH)$
1056 ср.	1065	1110 o.c.	1108	1105 o. c.	1117	$\int \rho(CH_3)$
1100 o.c.	1120	1110 o.c.	1108	1105 o.c.	1117) \$(\$)
1125						δ (NH)
1208 сл.	1205	1218 cp.	1220	1215 cp.	1220	\ v(C—CH ₃)
	1220					\ \(\(\mathref{V}(\mathref{O} - \mathref{O} \) \(\mathref{13}\)
1282 o. c.	1015	1000	1000	1286 cp.	1000	ω,
1296 пл. 1332 с.	1315 1345	1290 cp. 1308 cp.	1290	1320 cp. 1336 c.	1300	$\delta(CH, NH)$
1362 c.	1370	1008 ср.		1550 C.) ((311, 1111)
1386 сл.	1070	1385 c.	1385	1384 c.	1385	$\delta(CH_3)$
1406 сл.		1425 o.c.	1300	1410 пл.		13
				1419 o.c.		$\delta(CH_3)$
1446 ср.	1460	1450 сл.		1448 o.c.		$\delta(CH_3)$
	1480		1475		1460	ω, δ(NH)
1575 сл.	1560	1568 c.	157 5	1568 c.	157 7	}δ(OH), ω
	1680	1680			1650) (OII), W
		2748 сл.	2700 сл.	0740		
	0015	0070	2750 сл.	2748 сл.		1
	2915 o. c.	2876 пл. 2929 о.с.	2876	2850 cp. 2929 o.c.	2920 o.c.	$\nu(CH_3)$
	2960 c.	2929 o. c.		2929 o. c. 2966 cp.	2920 o. c. 2965 cp.	$\nu(CH_3)$
	3030 сл.	3004 пл.		3004	2300 Cp.	$v(CH_3)$
	3090 c.	3122 c.	3135 сл.	3122		1
		3134	3140 сл.	3134 o. c.	3140 ср.	v(CH)
	3120 пл.	3144		3144		[] (\)
		3265 пл.		3265 c.	3270 с.	(011)
		3284 c.	3290 o.c.	3284 c.		\right\{ v(OH)
		3303	3350 сл.	3313 пл.		ν(NH)
	3536				<u> </u>	v(NH)

Обозначения: ν — валентные колебания; δ — плоские деформационные; ω — валентные плоские кольца; t — торсионные; Δ — деформационные плоские кольца; γ — внеплоскостные; Γ —деформационные внеплоскостные кольца; ρ_r — маятниковые; ρ_w — веерные

 $Ni(ДMPz)_4(H_2O)_4X_2$ (X=Cl, Br, J и др.) в ДИК эта полоса наблюдается [6] при 350 см^{-1} (широкая, дублетная).

Естественно, эти полосы отсутствуют в колебательных спектрах свободного метилпиразола и пиразола. Интенсивные внеплоскостные колебания кольца малочувствительны к природе металла и наблюдаются в изученных нами образцах при 676 см $^{-1}$ (ИКС) и 663 см $^{-1}$ (СКР). Таким образом, несмотря на то, что невозможно выделить колебания в чистом виде в этой области, обычное повышение частот на 20—40 см $^{-1}$ является важным критерием координации MPz, так как оно свидетельствует о локализации координационной связи на sp^2 -гибридизированном «пиридиновом» атоме азота [9]. Точно такая же ситуация имеет место и при идентификации спектров комплексов с пиридином. При этом геометрия пиридинового кольца по своей структуре приближается к бензольной с полуторной связью С $\overline{\cdots}$ N.

Плоские деформационные ∆ колебания кольца MPz находятся около 950 см⁻¹, которые при координации к металлу повышены и наблюдаются около 960 см⁻¹ в ИК поглощении обоих комплексов. Аналогично в СКР с 932 см⁻¹ (944 см⁻¹ в Pz) они смещены к 948 см⁻¹.

Многочисленные данные по колебательным спектрам комплексов с гетероциклическими аминами, в том числе с производными пиразола [10], указывают на то, что валентные колебания Me-N захватывают довольно широкий диапазон $200-380~{\rm cm}^{-1}$, тем не менее они не могут быть выше $400~{\rm cm}^{-1}$. И это подтверждается теоретическими расчетами [11]. В комплексах с MPz и другими производными частоты v(Me-N) находятся в интервале $220-280~{\rm cm}^{-1}$. В случае комплексов I и II это колебательные полосы $225~{\rm cm}^{-1}$ (VKC), VKC0, VKC1, VKC200 (VKC200) и VKC3 соответственно.

Широкие сильные полосы валентных колебаний $\nu(OH)$ обоих образцов находятся около 3290 (ИКС), 3265, 3284 см⁻¹ (СКР), несколько смещенные в длинноволновую область из-за водородных связей. Что касается колебаний v(NH) 3350 (ИКС), 3303 см-1 (СКР) комплекса II и 3313 см-1 (СКР, комплекс I), то они значительно понижены по сравнению с частотами $\nu({\rm NH})$ свободного метилпиразола (3536 см $^{-1}$) в нейтральном растворителе CCl₄. Сдвиг обусловлен участием N—H-связей в более сильных водородных взаимодействиях, чем О-Н-связи. Сравнение экспериментальных данных свободного MPz и пиразола позволило частоту 1205 (ИКС) и 1208 см-1 (СКР) отнести к валентным колебаниям v(C—ČH₃). При координации MPz она оказывается повышенной в ИКС и СКР до 1220, 1218 см⁻¹ (комплекс II) и 1220, 1215 см⁻¹ (комплекс I). Напротив, маятниковые колебания $\rho_r(CH_3)$ (плоскостное ρ_\parallel и ρ_\perp — перпендикулярно к плоскости кольца) в комплексах малочувствительны к координации лиганда к металлу и лежат, в принципе, около 1020-1100 см-1, как и в свободном MPz, хотя интенсивность соответствующих колебательных полос при этом заметно возрастает.

Об относительной прочности связей и тем самым и о структуре комплексов можно судить по термогравиометрическим данным (ДТА, ТГА). Процесс термического разложения $Cd(H_2O)_3MPzCl_2$ протекает по довольно четко выраженным стадиям (см. рис. 2), характеризуя последовательность разрушения внешней и внутренней координационной сферы соединения. Это отражается эндотермическими эффектами при температурах 200, 230, 330 °C, сопровождаемых убылью массы. Эндомаксимум 200 °C соответствует потере 10 % исходной массы, что теоретически отвечает потере одного атома внешнесферного хлора молекулы. Процесс протекает без наличия в этом температурном интервале на ТГ горизонтальной площадки, указывая тем самым на непрерывность процесса термического разложения, и около 230 °C фактически теряются обе молекулы хлора и одна H_2O . При 330 °C (согласно $T\Gamma$) отщепляются оставшиеся две молекулы воды и 1/2 MPz, иллюстрируя тем самым фактическое разложение исходного комплекса. При этом образуется довольно устойчивый промежуточный продукт вплоть до температуры 560 °C, что соот-

ветствует потере оставшейся 1/2 МРг. На основании термогравиометрического анализа можно сказать о более прочной связи молекул $\dot{H_2}O$ в комплексе по сравнению с ионами Cl. В отличие от Cd-комплекса термическое поведение марганцевого аналога иное. Здесь невозможно вплоть до 340°C выделить промежуточные состояния образца и фактически (по ТГ) процесс идет в одну стадию, хотя на кривой ДТА в интервале 170-340°C отмечается ряд эндотермических максимумов, в значительной степени налагающихся друг на друга, отражая параллельность процессов разрушения координационной сферы комплекса и указывая на близость кинетических параметров реакции. Потеря массы при 340 °C составляет 73 %, что соответствует потере Cl, MPz и 2H₂O. Фактически при 340°C образуется оксид марганца. При 470 и 510°C проявляются два экзоэффекта, первый из которых не сопровождается потерей массы и связан, очевидно, со структурным превращением промежуточного продукта с последующим его дальнейшим упрощением и перестройкой с потерей массы при 510°C.

Список литературы

1. Пюльман Б., Пюльман А. Квантовая биохимия. М., 1985. 2. Phillip N. Gordon, Lyme Old.//United States Patent office. 1965. 3, 169, 091. Patented Feb., 9.

3. Dan N. B., Nayak A., Maharapta B. B., Mittra A. S.//Journ. Ind. Chem. Soc. 1981. V. 58. N 4. P. 337.

4. Сафронова Л. А., Шебандова А. Д., Брюханова О. В., Черкасова Л. В. // Координац. хим. 1987. Т. 13. Вып. 12 С. 1662.

5. Yos I. G., Groeneveld W. L. // Inorg. Chem. Acta. 1978. V. 27. P. 173. 6. Guichelaar M. A., van Hest J. A. M., Reedijk J. // Chemistry and Chemical engineering. 1976. V. 2. P. 51.
7. Van Kralinoen C. G., de Ridder J. K., Reedijk J. // Transit. Metal. Chem. 1980. V. 5. N 2. P. 73.

8. Nakagawa J., Shimanouchi T.//Spectrochim Acta. 1964. V. 20. P. 429. 9. Юнусов К. М., Гарновский А. Д., Осипов О. А., Колодяжный Ю. В.//ЖОХ. 1971. Т. 41. Вып. 6. С. 1320. 10. Forquharson S., Lay P. A., Weaver M. J.//Spectochim. Acta. 1984.

V. 40A. P. 907. 11. Березин В. И., Ганин В. В., Ковриков А. Б., Липницкий И. В., Рогалевич Н. Л. // ЖПС. 1983. Т. 38. Вып. 3. С. 434.

Поступила в редакцию 26.12.88,

УДК 535.37

В. Н. БОЙКОВ, Ю. В. КИРЕЕВА, А. Н. КРАСОВСКИЙ, Д. С. УМРЕЙКО

ФАЗОВЫЙ ПЕРЕХОД В КРИСТАЛЛАХ НАТРИЙУРАНИЛАЦЕТАТА

Природе формирования спектров люминесценции кристаллов ураниловых соединений при гелиевой температуре посвящена общирная литература [1—5]. На основе измерений кинетики люминесценции, например, натрийуранилацетата показано, что свечение этих кристаллов является многоцентровым, а их структура при гелиевой температуре не согласуется с данными рентгенографического исследования при комнатной температуре [6], согласно которым все молекулы Na[UO₂(CH₃COO)₃] кристаллографически эквивалентны. В частности, центры свечения с № pprox 21240 см $^{-1}$ (проявляются лишь на ранних стадиях высвечивания при импульсном возбуждении) и 21102,3 см-1* авторы [4] относят за счет смещения незначительной части ($\sim 5 \%$) катионов натрия в вакантные объемы с линейными размерами ~ 0.4 нм, разделяющие один из уранильных

^{*} Величины частот в работе [4] занижены приблизительно на 5 см-1 по сравнению с [5].