пучков при *n*=1,399465 и разных азимутах поляризации падающего линейно-поляризованного пучка (для варианта 21321 α=39,746792°). На рис. З показана взаимная ориентация эллипсов поляризации отраженных пучков всех вариантов прохождения при n=1,399465 для a=5,253202° (см. рис. 3, а) и а = -39,746792° (см. рис. 3, б). В первом случае пучок, выходящий из 3-й зоны (вариант прохождения 12312), поляризован линейно, во втором — циркулярно.

Список литературы

1. Процко С. В., Хапалюк А. П. // Докл. АН БССР. 1982. Т. 26. № 9. C. 797.

2. Голография — методы и аппаратура / Под ред. В. М. Гинзбурга и Б. М. Степанова. М., 1974.

нова. М., 1974.
3. Бондаренко И. Д., Ханох Б. Ю., Хапалюк А. П. // Вестн. Белорус.
ун-та. Сер. 1: Физ. Мат. Мех. 1976. № 3. С. 66.
4. Барковский Л. М., Борздов А. Н., Борздов Г. Н., Камач Ю. Э.
Овчинников В. М. // ОМП. 1985. № 6. С. 23.
5. Корнейчик В. В., Процко С. В., Ханох Б. Ю., Хапалюк А. П.
Уголковый отражатель: А. с. СССР № 1332422 // БИ. 1987. № 31.
6. Процко С. В., Ханох Б. Ю., Хапалюк А. П. // Изв. вузов СССР:
Приборостроение. 1987. Т. 30. № 1. С. 65.
7. Процко С. В., Титов А. Д., Ханох Б. Ю., Хапалюк А. П. Там же.
1988. Т. 31. № 6. С. 62.
8. Коротаев В. В., Панков Э. Л. // ОМП. 1981. № 1. С. 9.

8. Коротаев В. В., Панков Э. Д. // ОМП. 1981. № 1. С. 9.

Поступила в редакцию 31.10.88.

УДК 666.22:535.37

Е. С. ВОРОПАЙ, С. М. ГОРБАЧЕВ, О. Н. БИЛАН, Н. Г. ЧЕРЕНДА

УЛЬТРАФИОЛЕТОВАЯ ЛЮМИНЕСЦЕНЦИЯ СИЛИКАТНЫХ СТЕКОЛ

Спектральные характеристики силикатных стекол, наиболее распространенного оптического материала, зависят от примесей и дефектов, присутствующих в исходном материале или возникающих в результате внешних воздействий [1—4]. Основной составной частью силикатных стекол является двуокись кремния, и благодаря определенным успехам в исследовании стеклообразного диоксида кремния (кварцевого стекла) [5] появилась возможность изучения природы и строения центров поглощения и люминесценции силикатных стекол. Знание природы и строения этих центров необходимо для создания как люминесцирующих, так и нелюминесцирующих стеклообразных матриц. Различные виды люминесценции стекол описаны в [4].

Край поглощения простых щелочно-силикатных стекол в ультрафиолетовой области представляет собой суперпозицию края собственного поглощения матрицы и поглощения примесей [1]. Край собственного поглощения основы описывается правилом Урбаха [6]:

$$K(\mathbf{v}) = K_0 \exp\left[-\frac{\sigma \left(hv_0 - hv\right)}{kT}\right],\tag{1}$$

где K_0 , v_0 и σ — контакты, характеризующие данную матрицу. Предполагается [2], что длинноволновой край собственного поглощения стекла (170-220 нм) соответствует электронным переходам между уровнями L-центра (≡Si—O-Me+, где Ме — щелочной металл). При возбуждении данного центра наблюдается люминесценция в области 300-400 нм в зависимости от типа катиона. Что же касается более длинноволнового поглощения (220—300 нм), то оно практически не изучалось. В работах [1-3] предполагалось, что это поглощение обусловлено в основном присутствием технологических примесей железа, а именно: трехвалентными ионами Fe³⁺.

С целью выяснения особенностей природы дефектных центров, ответственных за поглощение в области 220-300 нм, нами проведены спектрально-люминесцентные и поляризационные исследования особо чистого высококремнеземного стекла состава 93SiO₂·7K₂O и промышленных силикатных стекол марок ЛК-5 и К-8. Содержание примесей переходных элементов в калиево-силикатном стекле не превышало $5 \cdot 10^{-4}$ мол. %. Толщина полированных образцов варьировала в пределах 0,3-1 мм. поглощения стекол измерялись на спектрофотометрах Спектры Specord M40 и СФ-26. Спектры люминесценции и возбуждения люминесценции регистрировались на установке Spex-Fluorolog в режиме счета фотонов с автоматической коррекцией на спектральную чувствительность прибора. Поскольку интенсивность свечения очень слабая, измерения спектрально-люминесцентных параметров проводились в режиме многократного сканирования спектра и накопления данных с использованием ЭВМ Techtronix. Регистрация излучения осуществлялась по схеме с «передней грани», т. е. с той же грани, на которую направлялся поток возбуждающего света необходимого спектрального интервала от ксеноновой лампы мощностью 450 Вт. Образцы стекол помещались в азотный криостат, температура в котором изменялась в пределах 77-300 K.

Спектры калиевосиликатного стекла:

a — наблюдаемый спектр поглощения; b — край собственного поглощения, аппрокеммированный по правилу Урбаха; a — разностный спектр поглощения между кривыми a и b; z, ∂ — наблюдаемый и рассчитанный спектры люминесценции соответственно; e — спектр возбуждения полосы люминесценции 280 нм

На рисунке приведен спектр поглощения калиево-силикатного стекла в области 220—300 нм (кривая *a*). Считая, что край собственного поглошения стекла описывается формулой (1), мы экстраполировали часть спектра экспоненциальной зависимостью коэффициента поглощения от волнового числа (кривая *б*). Вычитая эту кривую из экспериментальной, получаем полосу поглощения (кривая *в*), которую многие авторы связывают с присутствием технологических примесей, главным образом железа. Однако такая интерпретация указанной полосы поглощения, по нашему мнению, неоднозначна, поскольку содержание примесей мало и определенный вклад могут вносить дефектные центры структурной сетки стекла, по аналогии с кварцевыми стеклами, например, дефекты типа кислородной вакансии Si— Si= [7] и др. Для проверки этого предположения мы исследовали спектрально-люминесцентные характеристики стекол при освещении их излучением с длиной волны, соответствующей полученной полосе поглощения. При 77 К у всех исследованных стекол наблюдается свечение с максимумом в области 280 нм. У силикатных стекол в ультрафиолетовой части спектра имеет место существенная зависимость коэффициента поглощения от частоты. Истинный спектр излучения, регистрируемый от всего объема образца, претерпевает поэтому искажения, связанные с эффектом «внутреннего фильтра», т. е. перепоглощением света образцом. Для определения истинного спектра излучения нами проводился учет этого перепоглощения. При переходе от наблюдаемого спектра излучения к истинному использовали следующую формулу:

$$I_{\text{HCT}}(v) = I_{\text{Hadd}}(v) \frac{K_{\text{B}}(v) + K_{\pi}(v)}{1 - \exp\{-[K_{\text{B}}(v) + K_{\pi}(v)]d\}},$$
(2)

где $K_{\rm B}(v)$ и $K_{\rm II}(v)$ — коэффициенты поглощения стекла, зависящие от волновых чисел возбуждения и люминесценции соответственно; d — толщина стекла. Рассчитанный таким образом истинный спектр излучения приведен на кривой ∂ . Максимум полосы свечения находится у 280 нм. Спектр возбуждения люминесценции состоит из одной полосы с максимумом 246 нм (кривая e).

Исследование анизотропии излучения щелочно-силикатного стекла показало, что при возбуждении линейно-поляризованным светом люминесценция, регистрируемая перпендикулярно к падающему потоку, частично поляризована, а степень поляризации равна +17 %. С повышением температуры до комнатной интенсивность свечения монотонно уменьшается. Обнаруженная анизотропия испускания и характер температурной зависимости интенсивности полосы люминесценции указывают на внутрицентровой характер излучения, т. е. оно обусловлено переходами между локальными электронными уровнями, принадлежащими одному центру свечения.

При облучении гамма-лучами силикатных стекол относительно малыми дозами $10^4 - 10^5$ Р наблюдаемая интенсивность люминесценции $I_{\text{набл}}^{\gamma}(\nu)$ уменьшается. При этом происходит увеличение коэффициентов поглощения стекла в широком спектральном диапазоне за счет наведенного радиацией поглощения, т. е. значения $K_{\text{в}}^{\gamma}(\nu)$ и $K_{n}^{\gamma}(\nu)$ для облученных стекол на определенной частоте больше, чем значения $K_{\text{в}}(\nu)$ и $K_{n}(\nu)$, характерные для исходных необлученных образцов. Подставляя значения параметров $I_{\text{набл}}^{\gamma}(\nu)$, $K_{\text{в}}^{\gamma}(\nu)$ и $K_{n}^{\gamma}(\nu)$ в формулу (2), видим, что истинная интенсивность люминесценции облученных стекол $I_{\text{ист}}^{\gamma}(\nu)$ растет по сравнению с люминесценцией исходных образцов. При увеличении дозы облучения до $5 \cdot 10^5$ Р нам не удалось зарегистрировать излучения в области 270 — 300 нм, что, вероятно, связано с полным поглощением света в образце (очень высокие $K_{\text{в}}^{\gamma}(\nu)$ и $K_{n}^{\gamma}(\nu)$).

Спектральное расположение полос поглощения, люминесценции и возбуждения люминесценции, значение степени поляризации полосы излучения и характер температурной зависимости интенсивности люминесценции щелочно-силикатного стекла хорошо коррелируют с соответствующими параметрами полос люминесценции и поглощения (возбуждения) кварцевых стекол [5, 7, 8]. В этих стеклах излучение с максимумом 280 нм и полоса возбуждения 248 нм приписываются одному центру, связанному с дефектом структуры. Данный центр наводится в особо чистых кварцевых стеклах при облучении быстрыми нейтронами. Относительно природы этого центра высказывалось несколько точек зрения. Одни авторы связывают его с кислородной вакансией типа = Si - Si = в сетке стекла [7], другие приписывают соответствующие полосы излучения и возбуждения связанному ионизированному атому кремния =Si [9] и т. д. Нами путем спектрально-люминесцентного исследования кварцевых стекол с дефицитом кислорода показано ранее [10], что полоса люминесценции 280 нм обусловлена кислородными вакансиями

типа =Si-Si=. Общим для всех моделей является то, что данный

центр обусловлен нарушениями структуры стекла и не связан с наличием каких-либо примесей. В структурной сетке щелочно-силикатного стекла, как и кварцевого, преобладают кремний-кислородные тетраэдры [11] и отмечен дефицит кислорода. Разумно предположить поэтому, что в случае высококремнеземных силикатных стекол будут иметь место дефекты структуры, связанные с атомами кремния (в том числе кислородные вакансии), аналогичные дефектам в кварцевых стеклах.

Для промышленных силикатных стекол марок ЛК-5 и К-8 также наблюдается слабая полоса излучения с максимумом 280 нм (возбуждение 248 нм). По-видимому, спектральное проявление дефектов, ответственных за соответствующие полосы люминесценции и возбуждения, не зависит от состава стекла. Это может быть связано с тем, что поглощение и люминесценция обусловлены внутрицентровыми процессами и слабо подвержены влиянию окружения. На внутрицентровый характер поглощения и излучения, характеризующих один электронный переход в дефектном центре промышленных силикатных стекол, указывает относительно высокая степень поляризации излучения. О слабом взаимодействии дефектных центров с окружением свидетельствует и сравнительно небольшой стоксов сдвиг поглощения и излучения. Однако спектры поглощения промышленных стекол имеют несколько более сложный характер, чем стекол 93SiO₂·7K₂O. Это, по-видимому, происходит вследствие большего содержания технологических примесей, главным образом ионов Fe³⁺, которые вносят вклад в спектр поглощения.

Таким образом, можно сделать вывод, что поглощение силикатных стекол в спектральной области 220—300 нм может быть обусловлено как примесными (железо), так и собственными дефектами матрицы стекла типа =Si - Si =. В литературе отсутствуют сведения о люминесценции железа в данной области. Это связано с тем, что переходы внутри внешней d-оболочки ионов железа запрещены. К тому же при облучении стекол образуются свободные электроны, что может приводить к восстановлению ионов Fe³⁺ [12], т. е. их содержание в стекле будет уменьшаться. Однако интенсивность свечения, как указывалось выше, возрастает. Наличие полосы возбуждения 246 нм свидетельствует о том, что в поглощении имеет место суперпозиция спектральных свойств нескольких типов центров стекла как собственных, так и примесных. Первые обусловливают люминесценцию стекол с максимумом 280 нм, для вторых переходы с излучением запрещены. Из сказанного становится понятным, что для увеличения пропускания силикатных стекол в ультрафиолетовой области спектра недостаточно высокой чистоты исходных материалов при синтезе: это уменьшает только содержание технологических примесей. Необходимо также использовать такую технологию приготовления стекол, при которой получаемые образцы имеют минимальный дефицит кислорода, т. е. концентрация дефектов типа кислородной вакансии небольшая.

Список литературы

I. Глебов Л. Б., Попова Л. Б., Толстой М. Н. // Оптико-механич. пром. 1975. № 4. С. 38.

2. Truchin A. N., Tolstoi M. N., Glebov L. B., Savelev V. L. // Phys. Stat. Sol. (b). 1980. V. 99. N 1. P. 155.

3. Арбузов В. И., Витол И. К., Грабовскис В. Я., Толстой М. Н. // Физ. Хим. Стекла. 1985. Т. 11. № 6. С. 666. 4. Бреховских С. М. Основы радиационного материаловедения стекла и ке-

4. Бреховских С. М. Основы раднационного материаловедения стекла и керамики. М., 1971.

5. Силинь А. Р., Трухин А. Н. Точечные дефекты и элементарные возбуждения в кристаллическом и стеклообразном SiO₂. Рига, 1985. 6. Urbach F. // Phys. Rev. 1953. V. 11. N 3. P. 1324.

6. Ствасн Р. // Рнуз. кей. 1953. V. 11. 10 5. Р. 1924. 7. Амосов А. В., Халилов В. Х., Хитомченко В. С. и др. // ЖПС. 1976. Т. 25. № 6. С. 817.

8. Воропай Е. С., Горбачев С. М., Козлов И. Н., Черенда Н. Г. // ЖПС. 1985. Т. 43. № 2. С. 213.

9. Санаев Б., Икрамов Г. И., Усманова С. Х. // Физ. Хим. Стекла. 1977. Т. З. № 4. С. 376. 10. Bilan O. N., Cherenda N. G., Gorbachev S. M. et. al. // Radiation Effects. 1988, V. 105. N 3/4, P. 167.

100. у. 100. год. Р. 107. 11. Назя М. // Journ. Phys. Chem. Solids. 1970. V. 31. N 3. Р. 417. 12. Глебов Л. Б., Попова Л. Б., Толстой М. Н. // Физ. Хим. Стекла. 1975. Т. 1. № 1. С. 87.

Поступила в редакцию 28.07.88.

УДК 535.33

КИМ ЗЕН ХО. М. Р. ПОСЛЕДОВИЧ. А. М. МАЛЯРЕВИЧ

КОМБИНАЦИОННОЕ РАССЕЯНИЕ И СТРОЕНИЕ БЕЗВОДНЫХ МОЛИБДАТОВ УРАНИЛА

Исследование свойств и строения молибдатоуранилатов щелочных металлов методами колебательной и электронной спектроскопии проведено в работах [1-3]. Однако приведенных в них данных недостаточно для детального изучения процессов взаимодействия молибдатогрупп с ионами уранила. Совершенно не исследовано влияние вторичных катионов на свойства и строение этого класса веществ. Решение этих вопросов невозможно без детальной интерпретации спектральных линий, проявляющихся в колебательных и электронно-колебательных спектрах этих соединений.

В данной работе проведены исследования спектров комбинационного рассеяния кристаллических порошков димолибдатоуранилатов калия, рубидия и цезия. В качестве модельного соединения использовался молибдат калия. Спектры регистрировались на спектрофотометре Spex-Ramalog.

Комбинационное рассеяние возбуждалось линией 647 нм криптонового лазера. Мощность возбуждающего пучка ~300 мВт. Регистрация спектров производилась в режиме счета фотонов. Спектральная ширина щели равнялась 4 см-1.

Полученные спектры изображены на рисунке, значение колебательных частот и их отнесение приведены в таблице.

Спектры комбинационного рассеяния димолибдатоуранилатов калия, рубидия и цезия имеют богатую структуру при сравнительно простом химическом составе. Проведенные в работе [3] рентгеноструктурные исследования димолибдатоуранилата калия позволили установить, что в структуре этого кристалла имеются два кристаллографически неэквивалентных иона уранила, к каждому из которых монодентатно координируют пять молибдатогрупп. Ионы нелинейны и несимметричны. Сравнение спектрально-люминесцентных данных с приведенным на рисунке спектром КР К₂UO₂(MoO₄)₂ позволило отнести две сильно различающиеся по интенсивности линии 762 и 777 см⁻¹ к полносимметричным колебаниям неэквивалентных ионов уранила. Длины связей U-O этих ионов отличаются незначительно и не могут служить, по-видимому, критерием отнесения обсуждаемых полос к одному из двух ионов UO2⁺. Но для одной из ураниловых групп угол между связями О-U-O отличается от 180° на 0,8° (UO₂²⁺ — I), для другой — на 2,3° (UO₂²⁺ — II), т. е. первая из ураниловых групп ближе к линейной, чем вторая. Кроме того, наблюдаются различия и в координационном окружении этих групп. Связи, которые образуют координированные к урану атомы кислорода молибдатных групп в случае UO2²⁺ — I, располагаются как выше, так и ниже плоскости, перпендикулярной к короткой связи уран — кислород группы уранила; в случае UO₂²⁺ — II все связи уран—лиганд ниже аналогичной плоскости. Таким образом, для UO2²⁺ — I обе ураниловые связи уран — кислород находятся в одинаковых условиях воздействия координационного окружения, для группы UO2²⁺ — II короткая связь уран — кислород подвержена большему воздействию координационного окружения.