время как условие (13), которое для рассматриваемой структуры сводится к *d* ≥ 0,1 *a*₀, не выполняется для кривой *3*.

При выполнении условий (11) и (13) координата x, темной линии приближенно определяется формулой

$$x_r^{(0)} \simeq \frac{1}{2} \Delta_0 - \frac{a_0^2}{2\Delta_0} \ln \left| \frac{1 - R_{12}^{0^2}}{R_{12}^0} \right|.$$

В заключение отметим, что условия (11)—(13) достаточно ограничительны, так что наблюдение темных линий при отражении пучка от квазиволновода требует специального подбора параметров квазиволновода и падающего пучка.

Список литературы

1. Tien P. K., Ulrich R., Martin R. J.//Appl. Phys. Lett. 1969. V. 14. № 9. P. 291.

2. Midwinter J. E. // IEEE Journ. Quant. Electron. 1970. V. 6. № 10. Р. 583, 3. Бельский А. М., Могильный В. В., Мовчан В. Б. // Опт. и спектр. 1988. Т. 65. № 6. С. 1308.

Поступила в редакцию 13.12.88.

УДК 535.514.2

С. В. ПРОЦКО, А. Д. ТИТОВ, Б. Ю. ХАНОХ, А. П. ХАПАЛЮК

УСЛОВИЯ ФОРМИРОВАНИЯ ИЗЛУЧЕНИЯ С ЛИНЕЙНОЙ И КРУГОВОЙ ПОЛЯРИЗАЦИЕЙ СВЕТОВОЗВРАЩАТЕЛЕМ ПОЛНОГО ВНУТРЕННЕГО ОТРАЖЕНИЯ (π/2, π/2, π/4)

Световозвращатели (CB) в форме трехгранных углов ($\pi/2$, $\pi/2$, π/s , где s — целые четные числа) обладают свойством возвратного отражения независимо от направления распространения падающего света [1]. Такие СВ, работающие в режиме полного внутреннего отражения (ПВО), изменяют поляризационные состояния падающего излучения и в общем случае формируют эллиптически поляризованное отраженное излучение. При использовании СВ в качестве отражательных элементов в лазерах. интерферометрах, контрольно-измерительной технике практически важно получить отраженный сигнал, поляризованный линейно или по кругу [2, 3]. Это необходимо, в частности, чтобы достичь максимальной контрастности наблюдаемой интерференционной картины [2]. Условия получения линейной и круговой поляризации света, отражаемого СВ ПВО $(\pi/2, \pi/2, \pi/2)$, проанализированы в [3], собственные состояния поляризации исследованы в [4]. В настоящей работе приведены результаты исследований эллипсометрических характеристик для СВ ПВО (π/2, π/2, π/4), который имеет ряд преимуществ (большие помехоустойчивость и надежность работы, меньшие габариты и масса и т. д.) по сравнению с обычным прямоугольным СВ ПВО [5-7].

В СВ ($\pi/2$, $\pi/2$, $\pi/4$), согласно законам геометрической оптики, реализуется 10 варнантов прохождения исходного падающего пучка света. В соответствии с этим выходная апертура разделяется на 10 секторов, из них выходят пучки с различными поляризационными характеристиками. Эти характеристики математически определяются комплексными матрицами Джонса, которые получаются в результате перемножения матриц поляризующего действия отдельных граней в порядке прохождения их оптическим пучком (рис. 1). Состояние поляризации излучения, падающего на СВ в направлении q_1 и отраженного $-q_1$, описывается в правовинтовых системах ортогональных векторов q_1 , s, p и $-q_1$, -s, p [8].

Рис. 1. Система координат и разделение фронтальной грани световозвращателя на 10 зон с различными вариантами прохождения граней

Матрицы Джонса C_{jk}^{t} исследуемого СВ имеют громоздкий аналитический вид. Они унитарны и их элементы удовлетворяют соотношениям

$$|c_{11}^{i}|^{2} + |c_{21}^{i}|^{2} = 1, |c_{12}^{i}|^{2} + |c_{22}^{i}|^{2} = 1, c_{11}^{i} c_{12}^{i} = -c_{21}^{i} c_{22}^{i},$$
(1)

где $i=1, \ldots, 10$ — номер зоны, из которой выходит отраженный пучок (цифра в кружке на рис. 1), что является необходимым условием для выполнения ПВО. В таблице приведены значения элементов матрицы Джонса:

n	c_{11}^{l}		¢12		c ¹ ₂₁		c ¹ ₂₂	
	a	b	с	d	k	t	m	р
1,361453	-0,5438	0,8316		0,1100	0,0264	0,1100	0,1080	0,9877
1,40	-0,3695	-0,9231	-0,0519	-0,0934	0,0857	0,0638	-0,8660	-0,4885
1,45	0,5937	0,7953	0,0699	-0,1007	0,0011	0,1225	-0,0427	-0,9916
1,50	0,9575	-0,2534	0,1343	-0,0321	-0,0776	0,1142	0,5760	_0,8057
1,55	0,9602	0,2346	0,1448	0,0459	-0,1315	0,0761	0,8866	-0,4369
1,60	0,7963	0,5822	0,1220	0,1096	-0,1616	0,0280	0,9840	0,0703
1,65	0,5728	0,8009	0,0826	0,1537	-0,1734	-0,0201	0,9557	0,2369
1,70	0,3421	0,9215	0,0375	0,1798	-0,1723	0,0638	0,8605	0,4753
1,75	0,1277	0,9731	-0,0074	0,1916	-0,1627	-0,1015	0,7337	0,6519
1,80	0,0616	0,9781	-0,0489	0,1928	—0,1480	-0,1329	0,5961	0,7779
1,85	-0,2242	0,9527	-0,0856	0,1865	-0,1302	-0,1586	0,4590	0,8644
1,90	-0,3613	0,9083	-0,1174	0,1757	-0,1110	-0,1792	0,3286	0, 9 206
1,95	—0,4759	0,8526	-0,1442	0,1606	-0,0914	0,1956	0,2077	0,9541
2,00	-0,5709	0,7909	-0,1669	0,1442	-0,0719	0,2083	0,0974	0,9705

$$C_{jk} = \begin{pmatrix} a+ib \ c+id \\ k+il \ m+ip \end{pmatrix}$$
(2)

для пучка, выходящего из 1-й зоны выходной апертуры (вариант прохождения граней 31212) в зависимости от показателя преломления *n* при распространении падающего пучка в направлении главной оптической оси:

$$\vec{q}_1 = (5 - 2\sqrt{2})^{-1/2} \{1, \sqrt{2} - 1, 1\}.$$
 (3)

В этом случае падающий пучок образует равные углы с ребрами двугранных углов СВ и при равенстве длин ребер перпендикулярен к фронтальной грани. В каждом из 10 вариантов прохождения падающий пучок по два раза отражается от боковых граней 1 и 2 и один раз от грани 3. В каждом из вариантов прохождения реализуются только два угла падения на боковые грани: φ_1 =47,265790° и φ_2 =73,675050°. Причем трижды отражение происходит под углом φ_1 и дважды — φ_2 . Отражение под углом φ_1 определяет в соответствии с формулой соз $\varphi_1 \leq \sqrt{n^2 - 1/n}$ минимальный показатель преломления, при котором возможно ПВО:

$$n_{\min} = \sqrt{6 + \sqrt{2}/2} = 1,361453.$$
 (4)

Исследования показали, что при любом ином, чем (3), направлении падения исходной волны ПВО возможно только при больших, чем (4), показателях преломления. Поэтому направление (3) является главной оптической осью СВ ($\pi/2$, $\pi/2$, $\pi/4$) в режиме ПВО. Отметим, что в прямоугольном СВ ПВО при распространении вдоль оптической оси реализуется только один угол падения на боковые грани φ =54,7356°, что приводит к $n_{\min} = \sqrt{3/2} = 1,224745$.

Вектор Джонса, описывающий поляризационное состояние выходного эллиптически поляризованного пучка, соответствующего данному способу переотражения, имеет вид

$$\begin{bmatrix} E_s e^{i\delta} \\ E_p \end{bmatrix} = C^i_{ik} \begin{bmatrix} \cos \alpha \\ \sin \alpha \end{bmatrix},$$
(5)

где α — азимут поляризации входного линейно-поляризованного света; E_s и E_p — s- и p-ортогональные компоненты напряженности электрического выходного излучения; δ — сдвиг фазы между ними:

$$\delta = \arctan\left(\frac{(b+d \operatorname{tg} \alpha) (k+m \operatorname{tg} \alpha) - (a+c \operatorname{tg} \alpha) (l+p \operatorname{tg} \alpha)}{(a+c \operatorname{tg} \alpha) (k+m \operatorname{tg} \alpha) + (b+d \operatorname{tg} \alpha) (l+p \operatorname{tg} \alpha)}\right).$$
(6)

Линейная поляризация отраженной волны получается, если $\delta = 0$, что приводит к соотношению

$$(b+d \operatorname{tg} \alpha) (k+m \operatorname{tg} \alpha) = (a+c \operatorname{tg} \alpha) (l+p \operatorname{tg} \alpha).$$
(7)

При этом формируется линейно-поляризованная отраженная волна с азимутом поляризации

$$\psi = \operatorname{arctg}\left(\frac{a+c\,\operatorname{tg}\alpha}{k+m\,\operatorname{tg}\alpha}\right) = \operatorname{arctg}\left(\frac{b+d\,\operatorname{tg}\alpha}{l+p\,\operatorname{tg}\alpha}\right). \tag{8}$$

Зависимости (7), (8) $\alpha = \alpha(n)$ и $\psi = \psi(n)$ показаны на рис. 2, *a* (кривые 1, 2 соответствуют варианту прохождения падающего пучка 31212, кривые 3, 4 — 12312).

Для получения отраженного света с круговой поляризацией необходимо выполнение условий:

$$(a + c \operatorname{tg} \alpha) (k + m \operatorname{tg} \alpha) + (b + d \operatorname{tg} \alpha) (l + p \operatorname{tg} \alpha) = 0,$$

$$(a + c \operatorname{tg} \alpha)^{2} + (b + d \operatorname{tg} \alpha)^{2} = (k + m \operatorname{tg} \alpha)^{2} + (l + p \operatorname{tg} \alpha)^{2},$$
(9)

где первое уравнение определяет для заданного показателя такие азимуты поляризации падающего света, при которых разность фаз между ортогональными компонентами электрического вектора отраженной волны $\delta = \pi/2$ (кривые 1, 3 на рис. 2, б), а второе — при которых ортогональные компоненты электрического вектора отраженной волны равны по абсолютной величине $|E_s| = |E_p|$ (кривые 2, 4 на рис. 2, б). Система (9) разрешима относительно tg α :

$$\operatorname{tg} \alpha = -\frac{a \mp l}{c \mp p} = -\frac{k \pm b}{m \pm d}.$$
 (10)

Рис. 2. Зависимости α и ψ от *n* при преобразовании линейно-поляризованной волны в линейно-поляризованную (*a*) и α от *n* при преобразовании линейно-поляризованной волны в волну с круговой поляризацией (*б*)

Рис. 3. Взаимная ориентация эллипсов поляризации отраженного излучения при n = 1,399465: пучок, выходящий из 3-й зоны, линейно поляризован (a) и циркулярно поляризован (б)

Второе равенство в (10) выражает необходимое условие, накладываемое на величину показателя преломления, при котором падающий линейно-поляризованный свет преобразуется в циркулярно-поляризованный. Из рис. 2, 6 видно, что система (9) не имеет решения для варианта прохождения пучка 31212, а для варианта прохождения 12312 имеет единственное решение при n=1,399465 и $\alpha=-39,746792^{\circ}$.

В СВ ПВО ($\pi/2$, $\pi/2$, $\pi/2$) при падении линейно-поляризованного света в направлении оптической оси все 6 отраженных пучков поляризованы по кругу при показателе преломления n=1,767476. Однако при этом для каждой циркулярно-поляризованной отраженной волны требуется линейно-поляризованная падающая волна со своим, отличным от других, азимутом поляризации. Для СВ ПВО ($\pi/2$, $\pi/2$, $\pi/4$) не существует такого показателя преломления, когда все 10 отраженных пучков поляризованы по кругу. Возможна циркулярная поляризация только двух отраженных пучков при *n*=1,399465 и разных азимутах поляризации падающего линейно-поляризованного пучка (для варианта 21321 α=39,746792°). На рис. З показана взаимная ориентация эллипсов поляризации отраженных пучков всех вариантов прохождения при n=1,399465 для a=5,253202° (см. рис. 3, а) и а = -39,746792° (см. рис. 3, б). В первом случае пучок, выходящий из 3-й зоны (вариант прохождения 12312), поляризован линейно, во втором — циркулярно.

Список литературы

1. Процко С. В., Хапалюк А. П. // Докл. АН БССР. 1982. Т. 26. № 9. C. 797.

2. Голография — методы и аппаратура / Под ред. В. М. Гинзбурга и Б. М. Степанова. М., 1974.

нова. М., 1974.
3. Бондаренко И. Д., Ханох Б. Ю., Хапалюк А. П. // Вестн. Белорус.
ун-та. Сер. 1: Физ. Мат. Мех. 1976. № 3. С. 66.
4. Барковский Л. М., Борздов А. Н., Борздов Г. Н., Камач Ю. Э.
Овчинников В. М. // ОМП. 1985. № 6. С. 23.
5. Корнейчик В. В., Процко С. В., Ханох Б. Ю., Хапалюк А. П.
Уголковый отражатель: А. с. СССР № 1332422 // БИ. 1987. № 31.
6. Процко С. В., Ханох Б. Ю., Хапалюк А. П. // Изв. вузов СССР:
Приборостроение. 1987. Т. 30. № 1. С. 65.
7. Процко С. В., Титов А. Д., Ханох Б. Ю., Хапалюк А. П. Там же.
1988. Т. 31. № 6. С. 62.
8. Коротаев В. В., Панков Э. Л. // ОМП. 1981. № 1. С. 9.

8. Коротаев В. В., Панков Э. Д. // ОМП. 1981. № 1. С. 9.

Поступила в редакцию 31.10.88.

УДК 666.22:535.37

Е. С. ВОРОПАЙ, С. М. ГОРБАЧЕВ, О. Н. БИЛАН, Н. Г. ЧЕРЕНДА

УЛЬТРАФИОЛЕТОВАЯ ЛЮМИНЕСЦЕНЦИЯ СИЛИКАТНЫХ СТЕКОЛ

Спектральные характеристики силикатных стекол, наиболее распространенного оптического материала, зависят от примесей и дефектов, присутствующих в исходном материале или возникающих в результате внешних воздействий [1—4]. Основной составной частью силикатных стекол является двуокись кремния, и благодаря определенным успехам в исследовании стеклообразного диоксида кремния (кварцевого стекла) [5] появилась возможность изучения природы и строения центров поглощения и люминесценции силикатных стекол. Знание природы и строения этих центров необходимо для создания как люминесцирующих, так и нелюминесцирующих стеклообразных матриц. Различные виды люминесценции стекол описаны в [4].

Край поглощения простых щелочно-силикатных стекол в ультрафиолетовой области представляет собой суперпозицию края собственного поглощения матрицы и поглощения примесей [1]. Край собственного поглощения основы описывается правилом Урбаха [6]:

$$K(\mathbf{v}) = K_0 \exp\left[-\frac{\sigma \left(hv_0 - hv\right)}{kT}\right],\tag{1}$$

где K_0 , v_0 и σ — контакты, характеризующие данную матрицу. Предполагается [2], что длинноволновой край собственного поглощения стекла (170-220 нм) соответствует электронным переходам между уровнями L-центра (≡Si—O-Me+, где Ме — щелочной металл). При возбуждении данного центра наблюдается люминесценция в области 300-400 нм в зависимости от типа катиона. Что же касается более длинноволнового поглощения (220—300 нм), то оно практически не изучалось. В работах [1-3] предполагалось, что это поглощение обусловлено в основном присутствием технологических примесей железа, а именно: трехвалентными ионами Fe³⁺.