лородактивирующих систем мембран, т. е. в определенной мере модифицирует реакции клетки на рентгеновское облучение. Этот вывод коррелирует с результатами работ о торможении известными радиопротекторами процессов перекисного окисления липидов [11], а также с данными работ [9, 12] о том, что исходное состояние облучаемого объекта определяет характер развития лучевого поражения. При внесении ионов кальция или Кон А в суспензию ХЛ-ответ лимфоцитов развивается на фоне предшествовавшего свечения клеток, и поэтому на рис. 3 представлены зависимости интенсивности ХЛ через 1 мин и через 5 мин после добавления кальция и Кон А соответственно относительно интенсивности ХЛ в момент внесения.

Видно, что облучение увеличивает амплитуду ХЛ-ответа клеток на кальций и Кон А по сравнению с контролем, что, вероятно, объясняется частичной радиационной деструкцией гликокаликса и обнажением более глубоко расположенных мембранных структур [9] ранее недоступных для взаимодействия с ионами кальция и молекулами Кон А.

Инкубация лимфоцитов с эрселом (рис. 3, $1'-\hat{b}'$) также изменяет уровень генерации АФК при указанных воздействиях, а для клеток «ОЭ» наблюдается наибольший по интенсивности ХЛ ответ на введе-

ние кальция и Кон А.

Реакция клеток на Кон А в определенной степени является моделью специфического функционирования лимфоцитов в организме. Аналогично можно рассматривать и отклик лимфоцитов на введение ионов кальция, учитывая их важнейшую роль в процессах жизнедеятельности. С этой точки зрения, результаты, полученные для облученных клеток, позволяют объяснить данные литературы о стимулирующем воздействии введения облученной крови на целый ряд физиологических систем организма [1]. Результаты, зарегистрированные для клеток, облученных в присутствии эрсела, а также по воздействию эрсела на уровень генерации лимфоцитами АФК при адгезии, при введении в суспензию ионов кальция и Кон А, позволяют предположить, что в механизме действия биологического регулятора при лейкозе [5] и облучении существенную роль играет его влияние на кислородактивирующие системы плазматических мембран.

Список литературы

1. Несис А. И. // Облучение крови вне организма: Материалы II конф. по изол. облучению крови. М., 1980. С. 23.

2. Washida N., Sagawa A. and all // BBA. 1980. V. 631. № 2. Р. 371. 3. Семенкова Г. Н., Черенкевич С. Н. и др. // Иммунология. 1985. № 1.

C. 79. 4. Семенкова Г. Н., Черенкевич С. Н. и др. // Биофизика. 1985. Т. 30. Вып. 5. С. 864.

5. Свирновский А. И. и др. Стволовые клетки и опухолевый рост. Кнев, 1985.

6. Говорун А. К. и др. // Биофизика. 1974. Т. 19. № 1. С. 100. зирующей радиации на организм. Днепропетровск, 1986. 8. Мукалов И. О. и др. Теоретические и методические основы биохемилюм. М., 1986. С. 131. 7. Дворецкий А. И. Система активного транспорта ионов при действии иони-

9. Верболович В. П. и др. // Радиобиология. 1984. Т. 24. № 2. С. 227.

10. Попов Г. А. и др. // Радиация и организм. Обнинск, 1982. С. 37.

11. Попов Г. А. и др. // Радиобиология. 1984. Т. 24. № 3. С. 424. 12. Гончарова Е. Н., Кудряшов Ю. Б. Гипотеза эндогенного фона радиорезистентности. М., 1980.

УДК 581.2.07

Е. Н. ДЗЯТКОВСКАЯ

особенности организации ФОТОСИНТЕТИЧЕСКИХ МЕМБРАН РАСТЕНИЙ РЖИ, ЗАРАЖЕННЫХ СТЕБЛЕВОЙ РЖАВЧИНОЙ

В данной работе показаны результаты исследования особенностей организации пигментного аппарата фотосинтетических мембран в растениях ржи различной устойчивости к стеблевой ржавчине в условиях патогенеза.

Материал и методика

Исследовали растения ржи устойчивого к стеблевой ржавчине сорта Державина и восприимчивого сорта Радзіма, выращенные в условиях климатермосветокамеры КТЛК-1250 «Файтрон» при фотопериоде 18/6 ч, освещенности 20 000 лк, влажности воздуха 75 %, температуре 20 °С. Заражение проводили на 14-й день вегетации. Анализу подвергали 1, 2 и 3-й лист проростков при переходе гриба в стадию репродукции. Абсолютно сухую массу листа определяли высушиванием при 105 °С до постоянной массы в сушильном шкафу 2В-151. Для определения содержания в тканях листа фотосинтетических пигментов растительный материал растирали в ступке с добавлением кварцевого песка и СаСО₃ в нескольких порциях неразбавленного ацетона (4 °С) до полного обесцвечивания тканей. Гомогенат отфильтровывали на фильтре Шотта №3 и использовали для спектрофотометрирования на СФ-16. Количество хлорофилла в пробах рассчитывали по формулам [1].

Фракционирование фотосинтетических мембран на пигмент-белковые комплексы проводили с помощью модифицированного метода SDS-гельэлектрофореза Андерсон и др. [2]. Выделяли 6 пигментированных белковых зон. Контроль степени их нативности и идентификацию проводили по электрофоретической подвижности и спектрофотометрически (СФ «Шимадзу», Япония). Разделяли следующие пигмент-белковые комплексы (ПБК): СР1, и СР1, содержащие реакционный центр фотосистемы І— P-700 (более высокомолекулярный СР1_а содержал еще и антенный комплекс ФС 1); CPa, содержащий реакционный центр фотосистемы II— P-680; LH_{1-3} — три светособирающих комплекса, причем LH_3 являлся мономером LH₁ и относился к антенне фотосистемы II, а LH₂ являлся светособирающим комплексом фотосистемы I. Содержание белков в индивидуальных ПБК определяли на том же спектрофотометре после окрашивания полосок геля в 0,05 % Кумасси в смеси: спирт этиловый (ледяная уксусная кислота) $H_2O = 9(2)9$ и промывания в смеси: ледяная уксусная кислота (изопропанол) $H_2O = 7(43)50$.

Провели 6 серий опытов по 3 повторности в каждом варианте, среднюю пробу готовили из 15 растений. Результаты эксперимента обрабатывали статистически.

Результаты и их обсуждение

Анализировали искусственно зараженные вегетирующие растения ржи сортов Державина и Радзіма в период спороношения гриба. Согласно данным литературы, именно на этом этапе развития заболевания изменение гормонального статуса растения-хозяина приводит к кардинальным перестройкам его фотосинтетической функции [3].

Нами установлено, что под влиянием возбудителя стеблевой ржавчины в листьях устойчивого сорта Державина количество хлорофилла в единице сухой массы возрастает (см. таблицу). Повышается и отношение хлорофилла а к хлорофиллу в за счет синтеза как хлорофилла а (70 %), так и хлорофилла в (37 %). У растений же восприимчивого сорта при аналогичных условиях эксперимента показано уменьшение содержания хлорофилла в единице сухой массы листа и снижение отношения хлорофилла а к хлорофиллу в. Причем последнее было вызвано не только возрастанием в тканях количества хлорофилла в, но и уменьшением содержания хлорофилла а.

Таким образом, под влиянием патогена отмечалось увеличение содержания хлорофилла в, количество же хлорофилла а изменялось по-разному: в сторону увеличения у растений устойчивого сорта и в сторону уменьшения у растений восприимчивого сорта.

Полученные результаты по изменению содержания зеленых пигментов в листьях ржи различной устойчивости к стеблевой ржавчине под действием заболевания были дополнены исследованиями тех измене-

Содержание хлорофилла и белков пигмент-белковых комплексов хлоропластов в здоровых (К) и зараженных стеблевой ржавчиной (О) растениях ржи сортов Державина и Радзіма

Показатель	Державина		Радзіма	
	К	0	К	0
Хлорофилл/сухая масса, 10^{-3} г/г	1,01±0,04	1,58±0,02	2,56±0,04	$2,31 \pm 0,07$
Хлорофилл а/хлорофилл в, г/г	$1,76 \pm 0,09$	$2,28 \pm 0,11$	$2,76\pm0,10$	$1,90 \pm 0,11$
Хлорофилл, а/сухая масса, 10^{-3} г/r	0,65	1,10	1,88	1,51
Хлорофилл в/сухая масса, 10^{-3} г/г	0,36	0,48	0,68	0,80
Содержанне белков ПБК в мембране, %:				
CP1 _a	2,8	3,0	2,1	_
CP1	15,1	15,3	18,5	22,7
LH_1	17,9	18,9	26,9	22,9
LH_2	27,0	26,7	25,9	24,2
CP_a	16,8	18,5	11,6	8,8
LH_3	20,4	17,6	15,0	21,4
ПБК реакционных центров/светособирающие комплексы, r/r	0,530±0,006	0,580±0,005	0,480±0,004	$0,461 \pm 0,005$
ПБК ФС 1/ПБК ФС 2	1,07±0,01	$0,99 \pm 0,02$	1,77±0,01	$2,55\pm0,01$

ний, которые произошли в белковых компонентах пигмент-белковых комплексов фотосинтетических мембран.

Установлено, что под влиянием инфекции у растений восприимчивого сорта снижалась доля белков реакционных центров фотосистемы II, а также антенных комплексов фотосистемы I, относительное же количество белков мономерного светособирающего комплекса фотосистемы II увеличивалось. В результате снижалось отношение ПБК реакционных центров к светособирающим комплексам. Соотношение ПБК ФС 1 и ПБК ФС 2 изменялось в пользу ФС 1.

У устойчивых к ржавчине растений под действием инфекции наблюдалась более высокая стабильность в организации фотосинтетических мембран. Соотношение ПБК ФС 1 и ПБК ФС 2 изменялось незначительно в пользу фотосистемы И. Доля ПБК реакционных центров увеличивалась, что привело к возрастанию отношения ПБК реакционных центров к светособирающим комплексам.

Такие результаты свидетельствуют о разрушающем действии инфекции прежде всего на реакционные центры фотосистемы II и олигомерный светособирающий комплекс этой же фотосистемы. В результате этих процессов у восприимчивых к заболеванию растений усиливаются окислительные процессы в тканях. Некоторое возрастание доли ПБК фотосистемы II в хлоропластах устойчивых растений, по-видимому, способствует увеличению содержания в клетке восстановительных эквивалентов, ингибирующих каскад окислительных процессов в тканях.

Таким образом, адаптивные процессы в инфицированных растениях устойчивого сорта, по-видимому, приводят к структурно-функциональным перестройкам фотосинтетического аппарата, направленным на поддержание гомеостаза организма в целом.

Список литературы

3. Дементьева М. И. Фитопатология. М., 1983.

^{1.} Шлык А. А. Биохимические методы в физиологии растений. $M_{\rm s}$, 1971. С. 154. 2. Кахнович Л. В., Стефанович Е. Н., Ходоренко Л. А. и др. // Физиология растений. 1989. Т. 36. Вып. 2. С. 222.