

Рис. 2. Изменение во времени скорости выделения основных газообразных продуктов термолиза полиэтилена при темпах нагрева 140 (а) и 2 420 (б) °С/мин: 1 - m/e = 41; 2 - m/e = 42; 3 - m/e = 43

Максимальное значение последней определяется электрической прочностью нагревателя.

Возможность изменения скорости нагрева в процессе эксперимента обеспечивает выбор произвольной зависимости температуры как функции времени.

На рис. 2 представлены изменения скорости выделения основных газообразных продуктов полиэтилена [4] при термическом разложении.

Разрабатываемое программное обеспечение для определения кинетических параметров термолиза позволит получать эти параметры сразу после проведения экспериментов.

Список литературы

1. Гусаненко Л. К., Зарко В. Е., Зырянов В. Л., Бобрышев В. П. // Моделирование процессов горения твердых топлив. Новосибирск, 1985. 2. Масс-спектрометр типа МСХ-4: Техническое описание и инструкция по эксплуа-

3. Степанов В. Р., Федоров А. К., Павлов А. Н., Назин Г. М. // Материалы IX Всесоюз. симпознума по горению и взрыву. Кинетика хим. реакций. М., 1989. С. 100.

4. Полякова А. А., Хмельницкий Р. А. // Масс-спектроскопия в органической химии. Л., 1972.

УДК 547.472+712.2

О. Н. БУБЕЛЬ, Ю. Л. ПТАШНИКОВ

РЕАКЦИЯ ПАССЕРИНИ В РЯДУ АЦЕТИЛОКСИРАНОВ

Ранее [1], на отдельных примерах показано, что ацетилоксираны способны вступать в реакцию с изонитрилами и уксусной кислотой (реакция Пассерини [2]), приводя к амидам 2-ацетокси-4,5-эпоксимасляной и эпоксивалериановой кислот.

Представлялось целесообразным более детально исследовать стереохимические особенности протекания рассматриваемой реакции в зависимости от характера заместителей в эпоксидном цикле, строения изонитрила, а также выяснить некоторые особенности механизма реакции Пассерини.

Таблица 1

Номер соедин ния	%	Т _{пл} , ^С	Найдено, %				Вычислено, %		
	Вы сс д		с	н	N	Брутто-формула	с	н	N
VI 86		118-120	55,3	8,8	6,5	C ₁₀ H ₁₉ NO ₄	55,4	9,0	6,7
VII	. 89	104-105	61,1	8,2	5,5	C ₁₃ H ₂₁ NO ₄	61,2	8,3	5,5
VIII	81	126-127	57,1	9,1	6,1	C ₁₁ H ₂₁ NO ₄	57,1	9,1	6,0
IX	82	131-132	62,5	8,6	5,2	C ₁₄ H ₂₃ NO ₄	62,4	8,6	5,2
Х	84	*	59,3	8,6	5,8	C ₁₂ H ₂₁ NO ₄	59,2	8,7	5,8
XI	92(39)	77-78 **	62,8	8,6	5,2	C ₁₄ H ₂₃ NO ₄	62,4	8,6	5,2
XII	82	*	63,9	6,5	5,3	C ₁₄ H ₁₇ NO ₄	63,9	6,5	5,3
X1II	78	4	60,7	8,9	5,4	C ₁₃ H ₂₃ NO ₄	66,7	9,0	5,4
XIV	86	*	63,6	8,8	4,9	C15H25NO4	63,6	8,9	4,9
XV	81	*	65,0	6,9	5,0	C15H19NO4	64,9	6,9	5,1
XVI	67	*	60,7	8,9	5,4	C ₁₃ H ₂₃ NO ₄	60,7	9,0	5,4
XVII	51(19)	7879 **	63,4	8,6	4,9	C ₁₅ H ₂₅ NO ₄	63,6	8,8	4,9
XVIII	64	*	65,0	6,9	5,0	C15H13NO4	65,0	6,9	5,1
XX	83	129—139	51,4	5,8	4,6	C ₁₄ H ₁₈ BrNO ₃ ***	51,2	5,5	4,3

Характеристика соединений VI-XVIII, XX

Соединения X—XVIII — смеси стереонзомеров.

** Т_{пл} и выход в скобках приведены для стереоизомера, выделенного дробной кристаллизацией *** Найдено, % Вг: 24,7; вычислено, % Вг: 24,3.

Исследование взаимодействия циклогексил-, трет-бутил-, фенил-изонитрилов и уксусной кислоты с 2-ацетилоксираном (I), а также с транс-З-метил- (II), 2-метил- (III), 3,3-диметил- (IV) и транс-2,3-диметил- (V) 2-ацетилоксиранами показало, что во всех случаях с высоким выходом образуются замещенные амиды 2-ацетокси-3,4-эпоксикарбоновых кислот (VI—XVIII) (табл. 1). Качественно реакционная способность ацетило-ксиранов (I—V) снижается в ряду: I>II>II≥V≫IV.

Неочищенные амиды VI-IX, полученные из оксиранов I, II, по данным спектров ПМР представляют собой смеси диастереомеров в отношении примерно от 8:1 до 10:1. Остальные амиды являются смесями стереоизомеров в отношении близком 1:1. Индивидуальные стереоизомеры амидов XI и XVII выделены дробной кристаллизацией.

I, VI, VII $R = R^1 = R^2 = H$: II, VIII, IX $R^1 = R^2 = H$, $R = CH_3$; III, X—XII $R = R^1 = H$, $R^2 = CH_3$; V, XIII—XV $R = R^2 = CH_3$, $R^1 = H$: IV, XVI—XVIII $R = R^1 = CH_3$, R = H; VI, VIII, X, XIII, XVI $R^3 = rper - C_4H_9$; VII, IX, XI, XIV, XVII $R^3 = C_6H_{11}$; XII, XV, XVIII $R^3 = Ph$.

Строение и стереохимия амидов VI и VII, полученных из оксирана I, установлены на основании следующих превращений: амиды VI, VII вос-становили алюмогидридом лития при 0° в диоксиамиды, которые без предварительной очистки гидролизовали в присутствии щелочи в натриевую соль 2,3-диокси-2-метилмасляной кислоты. Кислота XIX, выделенная

2 Зак. 1039

Слектры ПМР соединений (VI—XVIII) Таблиг										
Номер соединения	Изомер –	Химические сдвиги (о, м. д.), константы спин-спинового взаимодействия (Л), Гц								
		R	Rı	R ²	CHa	R³	COCH	NH		
VI	эритро-	2,64д (4,0)	2,74д (4,0)	3,44дд(4,0)	1,46c	1,26c	2.00c	5.90м		
VII	эритро-	2,66(4,0)	2,76д (4,0)	3,44дд (4,0)	1,48c	1,0—1,5м, 3,64м	2,00c	5,80м		
VIII	эритро-	2,80м (4,0)	1,21д (4,0)	3,08дд(4,0)	1,40c	1,24c	2,01c	5,70м		
IX	эритро-	2,92дк (2,0; 4,0)	1,33д (4,0)	3,16д(4,0)	1,50c	1—1,5м, 3,64м	2,01c	6,00		
X	эритро-	2,36д (4,0)	2,89д (4,0)	1,28c	1,54c	1,28c	2,01	6.12м		
1 3 4 5	трео-	2,38д (4,0)	2,92д(4,0)	1,30c	1,54c	1,28c	2,06	6,12м		
XI	эритро-	2,30д (4,0)	2,90д (4,0)	1,28c	1,56c	1—2,1м, 3,70м	2,00	5,80c		
14 A A	трео-	2,38д (4,0)	3,06д (4,0)	1,32c	1,60c	1—2,1м, 9,70м	2,04	5.80м		
XII	эритро-	2,64д(4,0)	2,88д (4,0)	1,34c	1,70c	7,25—8,0м	2,06	5,79м		
1231	трео-	2,60д(4,0)	2,92 (4,0)	1,50c	1,82c	7,25—8,0м	2,24	5,79м		
XIII	эритро-	1,20д (5,0)	3,15ĸ(5,0)	1,27c	1,62c	1,24c	2,01	5,68м		
56.9.6	трео-	1,21д(5,0)	3,19ĸ(5,0)	1,29c	1,69c	1,24c	2,04	5,68м		
XIV	эритро-	1,20д (5,0)	3,14ĸ(5,0)	1,24c	1,50c	1—2,1м, 3,70м	2,00	5,26м		
	трео-	1,20д(5,0)	3,32к(5,0)	1,24c	1,54c	1—2,1м, 3,70м	2,04	5,26c		
XV	эритро-	1,30д (6,0)	3,20к (6,0)	1,42c	1,76c	7,25—8,0м	2,01	6,24м		
	трео-	1,32д(6,0)	3,22к (6,0)	1,44c	1,78	7,25—8,0м	2,04	6,24м		
XVI	эритро-	1,26c	1,26c	3,42c	1,67c	1,26c	2,01	5,79м		
0	трео-	1,28c	1,28c	3,46c	1,68c	1,26c	2,04	5,79м		
XVII	эритро-	1,24c	1,24c	3,22c	1,60c	1—2,1м, 3,73м	2,01	5,79		
	трео-	1,30c	1,30c	3,26c	1,62c	1—2,1м, 3,73м	2,04	5,85м		
XVIII	эритро-	1,28c	1,28c	3,46c	1,78c	7,25—8,0м	2,04	5,89м		

3,48c

1,80c

7.25—8,0м

2,12

5,89м

2

17

трео-

1,31c

1,31c

Таблица З

Устойчивые конформации оксиранов Í, II, их протонированных по карбонилу уксусной кислотой форм І $\theta - \varepsilon$ и интермедиатов І $\partial - \infty$, II $\partial - \infty$

 $1 \ \pi - 3 \ (R = H)$

II ж-з (R=CH₃)

 $a-\delta$ (R=H) I e - e (R = H)I $\partial -e (R = H)$ II $a - \delta_{a}(R = CH_{3})$ II s-r (R=CH₃) II $\partial -e (R = CH_3)$

Номер соединения	φ	Н _f , ккал/моль	Мольная доля изомера (25°)	Номер соеди- нения	φ	Н _f , ккал/моль	Мольная доля изомера (25°)
Ia	270	-52,75	0,777	16	59	-52,01	0,223
IIa	261	57,36	0,857	Пб	76	-56,30	0,143
Ιв	226	—150,59	0,670	Іг	57	-150,17	0,330
Пв	240	-154,99	0,762	IIr	42	-154,3	0,238
Ід*	86	-97,76	0,139	Ie	247		0,705
Іж*	313	-97,80	0,149	Ιз	36	-95,90	0,006
II д**	305	-101,60	0,261	IIe	88	-101,70	0,310
Ш ж**	323	—101,72	0,320	IIз	40	-101,80	0,109

* Процентный состав: 84,4 % — эритро-изомера, 15,4 % — трео-изомера. Соотношение изомеров 5,9:1.

 Процентный состав: 57 % — эритро-изомера, 43 % — трео-изомера. Соотношение изомеров 1,3 1.

из ее соли при подкислении, по Тил (110°) и спектру ПМР оказалась идентичной эритро-2,3-диокси-2-метилмасляной кислоте [3].

По результатам, полученным при изучении эффекта Оверхаузера (ЭО) на амидах VIII, IX (рис. 1), относительная конфигурация атомов С-2 и С-3 идентична таковой в соединениях VI и VII.

Амидам XI и XVII на основании сопоставления химических сдвигов сигналов 2-СН₃ и СН₃СО-групп со сдвигами соответствующих метильных групп эритро-изомеров VI, VII и других амидов (табл. 2) приписана трео-конфигурация.

ИК спектры амидов VI-XVIII содержат полосы поглощения, обусловленные валентными колебаниями связи N-H

Рис. І. Эксперимент по ЭО

(3450 см-1), карбонилами сложноэфирной и амидной групп (1733, 1672 см-2), колебаниями связи С-О (1242 см-2) и эпоксидного цикла (850, 910 см-1). Спектры ПМР амидов VI-XVIII приведены в табл. 2.

Наблюдаемые в эксперименте соотношения стереоизомеров в эпоксиамидах VI-XV не коррелируют с соотношением устойчивых конформеров, образующихся при вращении ацетильной группы в ацетилоксиранах I а-б, II а-б (табл. 3) и их прото-

18

нированных уксусной кислотой форм І в, г, ІІ в, г (см. табл. 3). Устойчи-вые конформеры ацетилоксиранов І а, б, ІІ а, б найдены методом МПДП [4] и практически соответствуют экспериментальным [5]. Конформации протонированных по карбонилу уксусной кислотой ацетилоксиранов І, ІІ рассчитаны методом AM1 [6]. Ацетильная группа устойчивых конформеров I a, II a расположена под углом 226-270° по отношению к биссектральной плоскости, проходящей через атом углерода эпоксицикла, связанного с ацетилом, и середину противоположной связи С-О эпоксицикла. Из указанных конформеров при атаке изоцианидом карбонила ацетильной группы с наиболее доступной, противоположной эпоксициклу стороны должны образовываться преимущественно трео-изомеры, что противоречит эксперименту, т. е. наблюдаемое соотношение стереоизомеров не контролируется конформацией ацетильной группы в ацетилоксиранах. По-видимому, соотношение стереоизомеров определяется принципом Кёртина-Гаммета [7], согласно которому предпочтительность образования одного из стереоизомеров контролируется разностью свободных энергий переходных состояний.

Известно несколько моделей переходных состояний (ПС) для реакции Пассерини [8—10]: *А*, *В*, *D*. В ПС *А* и *В* кислород карбонильной компоненты должен находиться в сложноэфирном фрагменте аддукта *F*, а в случае ПС *D* — в амидной группе.

Для выяснения места нахождения карбонильного кислорода в аддукте *F* из *n*-бромбензальдегида (¹⁸O), *трет*-бутилизонитрила и уксусной кислоты получен ацетоксиамид (XIX) (см. табл. 1).

В ИК спектре XIX «ацетатная полоса» (1251 см⁻¹) сместилась на 10 см⁻¹ в низкочастотную область по сравнению с немеченым образцом. Полосы поглощения «амид I» и сложноэфирного карбонила полностью совпали (рис. 2). В масс-спектрах меченого и немеченого образцов содержатся соответственно катионы 257 и 255 *m/e* ([BrC₆H₄C=O]⁺).

Согласно этим данным исключается ПС D. Известно [11], что перкислоты в реакции Пассерини дают α -пероксиэфиры амидов кислот, образование которых не может быть удовлетворительно объяснено с использованием моделей A и B.

Сопоставление зарядового распределения и граничных плотностей (ПС С) на атомах в модельном *трет*-бутилиминооксиране и уксусной кислоте (АМ1) позволяют предположить, что реакция Пассерини протекает через ПС С, которое, по существу, близко к протонированной форме иминооксирана. Расчет ΔH_f^0 методом АМ1 устойчивых конформаций І ∂ —е, II ∂ —е (см. табл. 3), констант конформационного и конфигурационного равновесия (в предположении $\Delta S = 0$ [12]) показал, что отношение эритро-трео-изомеров для оксирана I (І ∂ —з) должно составлять $\sim 6: 1$, а для оксирана II (II ∂ —з) — $\sim 1: 1$, что на качественном уровне вполне удовлетворительно соответствует наблюдаемому в эксперименте соотношению эритро-трео-изомеров.

Таким образом, стереохимия аддуктов Пассерини в случае хиральной

2*

Рис. 2. ИК спектры изотопнозамещенных (16О, 18О) трет-бутиламидов 2-ацетокси-*n*-бромфенилуксусных кислот

карбонильной компоненты (ацетилоксиранов) определяется разност свободных энергий ПС типа С.

Наблюдаемая низкая реакционная способность оксирана IV обусл лена, по-видимому, стерическими препятствиями, создаваемыми цисог ной по отношению к ацетилу метильной группой при эпоксицикле стадиях трансформации иминооксиранового цикла в ПС С и переацил рования E.

Экспериментальная часть

ИК спектры 0,1 молярных растворов соединений в CHCl₃ сняты спектрофотометре *IR*-75. Спектры ПМР получены на спектрометр «*Tesla» BS*-467 и «*Varian» HA*-100, растворитель CDCl₃. Эксперимент по ядерному эффекту Оверхаузера проводились по методике, опублик ванной в [13]. Масс-спектры записаны на спектрометре MAT-311, энерги ионизации составляла 15, 30 и 75 eV. Течение реакций и чистота продун тов контролировалась при помощи TCX на пластинах «*Silufol»*. Элюен ты — смеси гексан-ацетон и эфир-гексан в разных соотношениях.

Квантово-химические расчеты проводились на ЭВМ ЕС-1035, ЕС-106 и ЕС-1037. Структуры молекул оксиранов, их протонированные формь а также модели ПС рассчитывались с полной оптимизацией геометрии Устойчивые конформеры найдены в режиме оптимизации геометрии и из менения торсионных углов О=С-С-С в секторах 0-90, 90-180, 180-270 и 270-360°.

Ацетилоксираны I—V получены по методикам, опубликованным в [14—17]. трет-Бутил- и фенилизонитрилы получали из соответствующих аминов обработкой щелочной эмульсией 50 % гидроксида калия в CHCl₃ в присутствии бензилтриэтиламмоний хлорида [18]. Циклогексилизонитрил получен обработкой оксихлоридом фосфора циклогексилформамида [19].

Меченый по кислороду (¹⁸О) n-бромбензальдегид получен из n-бромбензальдегида и H_2^{18} О (80 % изотопной чистоты) в растворе диоксана по методике [20].

Амиды 2-ацетокси-3,4-эпоксимасляной и валериановых кислот (VI— XVIII). К раствору 0,05 моля ацетилоксирана (I—V) и 0,1 моля ледяной уксусной кислоты в 50 мл хлористого метилена добавляли 0,05 моля изонитрила. Через 30—300 ч (контроль TCX) летучие компоненты реакционной смеси отгоняли при пониженном давлении. Остаток кристаллизовали из смеси гексан-бензол (3:1).

трет-Бутиламид-2-ацетокси-n-бромминдальной кислоты (XX) получали аналогично предыдущей методике из п-бромбензальдегила (18О и ¹⁶О), уксусной кислоты и *трет*-бутилизонитрила (см. табл. 1). Спектр ПМР (δ , м. д.): 1,23 (с., 9H); 2,05 (с., 3 H); 5,67 (с., 1 H); 5,85 (уш. с., 1 H); 7,17, 7,39 (АВА'В', J=8,4 Гц, 4 H).

эритро-2,3-Диокси-2-метилмасляная кислота (XIX). К эфирному раствору 0,0004 моль алюмогидрида лития добавляли эфирный раствор 0,005 моль эпоксиамида (VI или VII) при температуре 0—5 °C в течение 2 ч. Реакционную смесь разлагали 1 мл воды, осадок фильтровали и промывали эфиром. Фильтрат упарили. Бесцветное масло растворяли в 50 мл 1 н раствора гидроксида натрия и раствор кипятили с обратным холодильником 4 ч. Реакционную смесь упарили в вакууме. Остаток подкислили 10 %-й соляной кислотой, экстрагировали хлористым метиленом, сушили (Na₂SO₄). Растворитель отгоняли, остаток кристаллизовали из смеси ацетон-бензол (1:1). Выход 68—72 %, $T_{n,n}$ 110—111 °C [3]. Спектр ПМР (δ , м. д.) в (CD₃)₂C=O; 1,07 (д., J=6,0 Гц, 3 H); 1,30 (с., 3 H); 3,77 (к., J=6,0 Гц, 1 H); 5,60 (уш. с., 3 H).

Список литературы

1. Тищенко И. Г., Бубель О. Н., Пташников Ю. Л. // Докл. АН БССР. 1980. T. 24, № 8. C. 719. 2. Passerini M. // Gazz. chim. ital. 1931. V. 61. P. 964. 3. Robins D. G., Gicrout P. H. // Journ. Am. Chem. Soc. 1970. V. C. № 9.

P. 1334.

4. Dewar M. J. S., Thiel W. // Ibid. 1977. V. 99. № 15. P. 4905.

5. Арбузов Б. А., Донскова А. И., Вульфсон С. Г., Камалютдино-ва А. М., Бубель О. Н., Верещагин А. Н. // Изв. АН СССР. Сер. хим. Т. 4. C. 829.

С. 829. 6. Dewar M. J. S., Zoebisch E. G., Healy E. F., Stewart J. P.// Journ. Am. Chem. Soc. 1985. V. 107. № 13. P. 3902. 7. Seeman J. I. // Chem. Rev. 1983. V. 83. P. 83. 8. Ugi I. // Angew. Chem. 1962. V. 74. № 1. P. 10. 9. Saegusa J., Fujii H. // Tetrahedron. 1968. V. 24. P. 3195. 10. Baker R. H., Stanonis D. // Journ. Am. Chem. Soc. 1951. V. 73. P. 699. 11. Пташников Ю. Л., Бубель О. Н. // IX Всесоюз. конф. по химии органи-ческих и элементоорганических пероксидов: Тез. докл. Горький, 1990. С. 34. 12. Илиел Э., Аллинжер Н., Энжлал С., Моррисон Г. // Конформаци-онный анализ. М., 1969. С. 34. 13. Апtwerp С. L. // Journ. Chem. Educ. 1973. V. 50. P. 639. 14. Тищенко И. Г. Жидкофазное окисление непредельных органических соеди-нений. М., 1961. С. 73. 15. Тищенко И. Г., Ахрем А. А., Назаров И. Н. // ЖОХ. 1959. Т. 29. № 8.

15. Тищенко И. Г., Ахрем А. А., Назаров И. Н. // ЖОХ. 1959. Т. 29. № 8. C 809.

16. Пакен А. М. Эпоксидные соединения и эпоксидные смолы. М., 1962. С. 141. 17. Ноизе Н. О., Ro R. S. // Journ. Am. Chem. Soc. 1958. V. 80. № 10. Р. 2488. 18. Вебер В., Гокель Г. Межфазный катализ. М., 1984. С. 72. 19. Organic Chemistry. New York; London, 1971. V. 20. Р. 56. 20. Марарай. Уки ум.с. П. Синтер органических соединений с изотопами.

20. Мэррей А., Уильямс Д. Л. Синтез органических соединений с изотопами галоидов, азота, кислорода, фосфора, серы. М., 1962. С. 94.

УДК 677.862.25

В. М. СИДЕРКО, Т. Д. БИЛЬДЮКЕВИЧ, Ф. Н. КАПУЦКИЙ

привитые сополимеры целлюлозы С БУТИЛМЕТАКРИЛАТОМ

Одним из методов модификации целлюлозы является привитая сополимеризация ее с различными мономерами [1]. В данной работе изучены физико-химические свойства растворов и пленок из привитых сополимеров целлюлозы с бутилметакрилатом.

Прививку бутилметакрилата к вискозному волокну проводили в водно-органической среде по радикальному механизму. Гомополимер отмы-