


Рис. 2. Изменение во времени скорости выделения основных газообразных продуктов термолиза полиэтилена при темпах нагрева 140 (а) и 2 420 (б) °С/мин: 1 - m/e = 41; 2 - m/e = 42; 3 - m/e = 43

Максимальное значение последней определяется электрической прочностью нагревателя.

Возможность изменения скорости нагрева в процессе эксперимента обеспечивает выбор произвольной зависимости температуры как функ-

На рис. 2 представлены изменения скорости выделения основных газообразных продуктов полиэтилена [4] при термическом разложении.

Разрабатываемое программное обеспечение для определения кинетических параметров термолиза позволит получать эти параметры сразу после проведения экспериментов.

### Список литературы

1. Гусаненко Л. К., Зарко В. Е., Зырянов В. Л., Бобрышев В. П. //

Моделирование процессов горения твердых топлив. Новосибирск, 1985. 2. Масс-спектрометр типа МСХ-4: Техническое описание и инструкция по эксплуа-

3. Степанов В. Р., Федоров А. К., Павлов А. Н., Назин Г. М. // Материалы IX Всесоюз. симпозиума по горению и взрыву. Кинетика хим. реакций. М., 1989. С. 100.

4. Полякова А. А., Хмельницкий Р. А. // Масс-спектроскопия в органической химии. Л., 1972.

УДК 547.472+712.2

О. Н. БУБЕЛЬ, Ю. Л. ПТАШНИКОВ

#### РЕАКЦИЯ ПАССЕРИНИ В РЯДУ АЦЕТИЛОКСИРАНОВ

Ранее [1], на отдельных примерах показано, что ацетилоксираны способны вступать в реакцию с изонитрилами и уксусной кислотой (реакция Пассерини [2]), приводя к амидам 2-ацетокси-4,5-эпоксимасляной и эпоксивалериановой кислот.

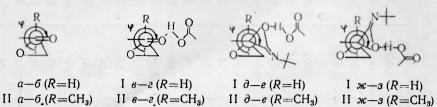
Представлялось целесообразным более детально исследовать стереохимические особенности протекания рассматриваемой реакции в зависимости от характера заместителей в эпоксидном цикле, строения изонитрила, а также выяснить некоторые особенности механизма реакции Пассерини.

| Номер<br>соедини-<br>ния | Высед. % | т <sub>пл</sub> , ^С | Найдено, % |     |     |                                                       | Вычислено, % |     |     |
|--------------------------|----------|----------------------|------------|-----|-----|-------------------------------------------------------|--------------|-----|-----|
|                          |          |                      | С          | н   | N   | Брутто-формула                                        | С            | н   | N   |
| VI                       | 86       | 118—120              | 55,3       | 8,8 | 6,5 | C <sub>10</sub> H <sub>19</sub> NO <sub>4</sub>       | 55,4         | 9,0 | 6,7 |
| VII                      | . 89     | 104-105              | 61,1       | 8,2 | 5,5 | C <sub>13</sub> H <sub>21</sub> NO <sub>4</sub>       | 61,2         | 8,3 | 5,5 |
| VIII                     | 81       | 126—127              | 57,1       | 9,1 | 6,1 | C <sub>11</sub> H <sub>21</sub> NO <sub>4</sub>       | 57,1         | 9,1 | 6,0 |
| IX                       | 82       | 131—132              | 62,5       | 8,6 | 5,2 | C <sub>14</sub> H <sub>23</sub> NO <sub>4</sub>       | 62,4         | 8,6 | 5,2 |
| X                        | 84       | *                    | 59,3       | 8,6 | 5,8 | C <sub>12</sub> H <sub>21</sub> NO <sub>4</sub>       | 59,2         | 8,7 | 5,8 |
| ΧI                       | 92(39)   | 77—78 **             | 62,8       | 8,6 | 5,2 | C <sub>14</sub> H <sub>23</sub> NO <sub>4</sub>       | 62,4         | 8,6 | 5,2 |
| XII                      | 82       | *                    | 63,9       | 6,5 | 5,3 | C <sub>14</sub> H <sub>17</sub> NO <sub>4</sub>       | 63,9         | 6,5 | 5,3 |
| XIII                     | 78       | 4                    | 60,7       | 8,9 | 5,4 | C <sub>13</sub> H <sub>23</sub> NO <sub>4</sub>       | 66,7         | 9,0 | 5,4 |
| XIV                      | 86       | *                    | 63,6       | 8,8 | 4,9 | C <sub>15</sub> H <sub>25</sub> NO <sub>4</sub>       | 63,6         | 8,9 | 4,9 |
| XV                       | 81       | *                    | 65,0       | 6,9 | 5,0 | C <sub>15</sub> H <sub>19</sub> NO <sub>4</sub>       | 64,9         | 6,9 | 5,1 |
| XVI                      | 67       | *                    | 60,7       | 8,9 | 5,4 | C <sub>13</sub> H <sub>23</sub> NO <sub>4</sub>       | 60,7         | 9,0 | 5,4 |
| XVII                     | 51(19)   | 7879 **              | 63,4       | 8,6 | 4,9 | C <sub>15</sub> H <sub>25</sub> NO <sub>4</sub>       | 63,6         | 8,8 | 4,9 |
| XVIII                    | 64       | *                    | 65,0       | 6,9 | 5,0 | C <sub>15</sub> H <sub>13</sub> NO <sub>4</sub>       | 65,0         | 6,9 | 5,1 |
| XX                       | 83       | 129—139              | 51,4       | 5,8 | 4,6 | C <sub>14</sub> H <sub>18</sub> BrNO <sub>3</sub> *** | 51,2         | 5,5 | 4,3 |

Соединения X—XVIII — смеси стереоизомеров.

\*\* Тпл и выход в скобках приведены для стереоизомера, выделенного дробной кристаллизацией \*\*\* Найдено, % Вг: 24,7; вычислено, % Вг: 24,3.

Исследование взаимодействия циклогексил-, трет-бутил-, фенил-изонитрилов и уксусной кислоты с 2-ацетилоксираном (I), а также с транс-3-метил- (II), 2-метил- (III), 3,3-диметил- (IV) и транс-2,3-диметил- (V) 2-ацетилоксиранами показало, что во всех случаях с высоким выходом образуются замещенные амиды 2-ацетокси-3,4-эпоксикарбоновых кислот (VI—XVIII) (табл. 1). Качественно реакционная способность ацетилоксиранов (I—V) снижается в ряду:  $I>II>II>V\gg IV$ .


Неочищенные амиды VI—IX, полученные из оксиранов I, II, по данным спектров ПМР представляют собой смеси диастереомеров в отношении примерно от 8:1 до 10:1. Остальные амиды являются смесями стереоизомеров в отношении близком 1:1. Индивидуальные стереоизомеры амидов XI и XVII выделены дробной кристаллизацией.

I, VI, VII  $R = R^1 = R^2 = H$ : II, VIII, IX  $R^1 = R^2 = H$ ,  $R = CH_3$ ; III, X—XII  $R = R^1 = H$ .  $R^2 = CH_3$ ; V, XIII—XV  $R = R^2 = CH_3$ ,  $R^1 = H$ : IV, XVI—XVIII  $R = R^1 = CH_3$ , R = H; VI, VIII, X, XIII, XVI  $R^3 = \tau per - C_4H_9$ ; VII, IX, XI, XIV, XVII  $R^3 = C_6H_{11}$ ; XII, XV, XVIII  $R^3 = Ph$ .

Строение и стереохимия амидов VI и VII, полученных из оксирана I, установлены на основании следующих превращений: амиды VI, VII восстановили алюмогидридом лития при 0° в диоксиамиды, которые без предварительной очистки гидролизовали в присутствии щелочи в натриевую соль 2,3-диокси-2-метилмасляной кислоты. Кислота XIX, выделенная

| Номер<br>оединения | Изомер  | Химические сдвиги ( $\delta$ , м. д.), константы спин-спинового взаимодействия ( $J$ ), Гц |             |                |                 |                    |       |                   |  |  |
|--------------------|---------|--------------------------------------------------------------------------------------------|-------------|----------------|-----------------|--------------------|-------|-------------------|--|--|
|                    |         | R                                                                                          | R1          | R <sup>2</sup> | CH <sub>3</sub> | R <sup>s</sup>     | COCH  | NH                |  |  |
| VI                 | эритро- | 2,64д (4,0)                                                                                | 2,74д(4,0)  | 3,44дд(4,0)    | 1,46c           | 1,26c              | 2,00c | 5,90м             |  |  |
| VII                | эритро- | 2,66(4,0)                                                                                  | 2,76д (4,0) | 3,44дд (4,0)   | 1,48c           | 1,0—1,5м,<br>3,64м | 2,00c | 5,80м             |  |  |
| VIII               | эритро- | 2,80м (4,0)                                                                                | 1,21д (4,0) | 3,08дд (4,0)   | 1,40c           | 1,24c              | 2,01c | 5,70м             |  |  |
| IX                 | эритро- | 2,92дк (2,0; 4,0)                                                                          | 1,33д (4,0) | 3,16д(4,0)     | 1,50c           | 1—1,5м, 3,64м      | 2,01c | 6,00              |  |  |
| X                  | эритро- | 2,36д (4,0)                                                                                | 2,89д (4,0) | 1,28c          | 1,54c           | 1,28c              | 2,01  | 6,12M             |  |  |
| 53.96              | трео-   | 2,38д (4,0)                                                                                | 2,92д(4,0)  | 1,30c          | 1,54c           | 1,28c .            | 2,06  | 6,12 <sub>M</sub> |  |  |
| XI                 | эритро- | 2,30д(4,0)                                                                                 | 2,90д (4,0) | 1,28c          | 1,56c           | 1—2,1м, 3,70м      | 2,00  | 5,80c             |  |  |
| 25 36              | трео-   | 2,38д (4,0)                                                                                | 3,06д (4,0) | 1,32c          | 1,60c           | 1—2,1м, 9,70м      | 2,04  | 5,80N             |  |  |
| XII                | эритро- | 2,64д(4,0)                                                                                 | 2,88д (4,0) | 1,34c          | 1,70c           | 7,25—8,0м          | 2,06  | 5,79              |  |  |
| 1334               | трео-   | 2,60д(4,0)                                                                                 | 2,92 (4,0)  | 1,50c          | 1,82c           | 7,25—8,0м          | 2,24  | 5,79              |  |  |
| XIII               | эритро- | 1,20д(5,0)                                                                                 | 3,15ĸ(5,0)  | 1,27c          | 1,62c           | 1, <b>24</b> c     | 2,01  | 5,68              |  |  |
| 98 9 8             | трео-   | 1,21д(5,0)                                                                                 | 3,19k (5,0) | 1,29c          | 1,69c           | 1,24c              | 2,04  | 5,68              |  |  |
| XIV                | эритро- | 1,20д(5,0)                                                                                 | 3,14k(5,0)  | 1,24c          | 1,50c           | 1-2,1m, 3,70m      | 2,00  | 5,26M             |  |  |
| 4 2 4 8            | трео-   | 1,20д(5,0)                                                                                 | 3,32ĸ(5,0)  | 1,24c          | 1,54c           | 1-2,1m, 3,70m      | 2,04  | 5,26c             |  |  |
| XV                 | эритро- | 1,30д(6,0)                                                                                 | 3,20k (6,0) | 1,42c          | 1,76c           | 7,25—8,0м          | 2,01  | 6,24 N            |  |  |
|                    | трео-   | 1,32д(6,0)                                                                                 | 3,22k(6,0)  | 1,44c          | 1,78            | 7,25—8,0м          | 2,04  | 6,24 м            |  |  |
| XVI                | эритро- | 1,26c                                                                                      | 1,26c       | 3,42c          | 1,67c           | 1,26c              | 2,01  | 5,791             |  |  |
|                    | трео-   | 1,28c                                                                                      | 1,28c       | 3,46c          | 1,68c           | 1,26c              | 2,04  | 5,791             |  |  |
| XVII               | эритро- | 1,24c                                                                                      | 1,24c       | 3,22c          | 1,60c           | 1—2,1м, 3,73м      | 2,01  | 5,79              |  |  |
| 3                  | трео-   | 1,30c                                                                                      | 1,30c       | 3,26c          | 1,62c           | 1—2,1м, 3,73м      | 2,04  | 5,851             |  |  |
| IIIV               | эритро- | 1,28c                                                                                      | 1,28c       | 3,46c          | 1,78c           | 7,25—8,0м          | 2,04  | 5,891             |  |  |
| 100                | трео-   | 1,31c                                                                                      | 1,31c       | 3,48c          | 1,80c           | 7.25—8,0м          | 2,12  | 5,891             |  |  |

Устойчивые конформации оксиранов I, II, их протонированных по карбонилу уксусной кислотой форм I  $s-\varepsilon$  и интермедиатов I  $\partial-x$ , II  $\partial-x$ 



| Номер<br>соединения | φ   | Н <sub>f</sub> ,<br>ккал/моль | Мольная<br>доля изомера<br>(25°) | Номер<br>соеди-<br>нения | φ   | $H_f^0$ ,<br>ккал/моль | Мольная<br>доля изомера<br>(25°) |
|---------------------|-----|-------------------------------|----------------------------------|--------------------------|-----|------------------------|----------------------------------|
| I a                 | 270 | _52,75                        | 0,777                            | 16                       | 59  | -52,01                 | 0,223                            |
| II a                | 261 | -57,36                        | 0,857                            | Пб                       | 76  | -56,30                 | 0,143                            |
| Iв                  | 226 | -150,59                       | 0,670                            | Ir                       | 57  | -150,17                | 0,330                            |
| Пв                  | 240 | 154,99                        | 0,762                            | IIr                      | 42  | -154,3                 | 0,238                            |
| I д*                | 86  | -97,76                        | 0,139                            | I e                      | 247 | <b>—98,72</b>          | 0,705                            |
| I ж*                | 313 | -97,80                        | 0,149                            | Iз                       | 36  | -95,90                 | 0,006                            |
| II д**              | 305 | -101,60                       | 0,261                            | II e                     | 88  | -101,70                | 0,310                            |
| II ж**              | 323 | -101,72                       | 0,320                            | IIз                      | 40  | -101,80                | 0,109                            |

\* Процентный состав: 84,4 % — эритро-изомера, 15,4 % — трео-изомера. Соотношение изомеров 5,9 : 1.

\*\* Процентный состав: 57 % — эритро-изомера, 43 % — трео-изомера. Соотношение изомеров 1,3:1.

из ее соли при подкислении, по  $T_{\pi\pi}$  (110°) и спектру ПМР оказалась идентичной эритро-2,3-диокси-2-метилмасляной кислоте [3].

По результатам, полученным при изучении эффекта Оверхаузера (ЭО) на амидах VIII, IX (рис. 1), относительная конфигурация атомов С—2 и С—3 идентична таковой в соединениях VI и VII.

Амидам XI и XVII на основании сопоставления химических сдвигов сигналов 2-СН₃ и СН₃СО-групп со сдвигами соответствующих метильных групп эритро-изомеров VI, VII и других амидов (табл. 2) приписана трео-конфигурация.

ИК спектры амидов VI—XVIII содержат полосы поглощения, обу-

R3 H CH<sub>3</sub>
H CH<sub>3</sub>
CH<sub>3</sub>
CH<sub>3</sub>
(VIII,IX)

Рис. I. Эксперимент по ЭО

словленные валентными колебаниями связи N—H (3450 см<sup>-1</sup>), карбонилами сложноэфирной и амидной групп (1733, 1672 см<sup>-2</sup>), колебаниями связи С—О (1242 см<sup>-2</sup>) и эпоксидного цикла (850, 910 см<sup>-1</sup>). Спектры ПМР амидов VI—XVIII приведены в табл. 2.

Наблюдаемые в эксперименте соотношения стереоизомеров в эпоксиамидах VI—XV не коррелируют с соотношением устойчивых конформеров, образующихся при вращении ацетильной группы в ацетилоксиранах I a— $\delta$ , II a— $\delta$  (та $\delta$ л. 3) и их прото-

нированных уксусной кислотой форм І s, s, ІІ s, s (см. табл. 3). Устойчивые конформеры ацетилоксиранов І a, b, ІІ a, b найдены методом МПДП [4] и практически соответствуют экспериментальным [5]. Конформации протонированных по карбонилу уксусной кислотой ацетилоксиранов I, II рассчитаны методом АМ1 [6]. Ацетильная группа устойчивых конформеров I a, II a расположена под углом 226—270° по отношению к биссектральной плоскости, проходящей через атом углерода эпоксицикла, связанного с ацетилом, и середину противоположной связи С-О эпоксицикла. Из указанных конформеров при атаке изоцианидом карбонила ацетильной группы с наиболее доступной, противоположной эпоксициклу стороны должны образовываться преимущественно трео-изомеры, что противоречит эксперименту, т. е. наблюдаемое соотношение стереоизомеров не контролируется конформацией ацетильной группы в ацетилоксиранах. По-видимому, соотношение стереоизомеров определяется принципом Кёртина—Гаммета [7], согласно которому предпочтительность образования одного из стереоизомеров контролируется разностью свободных энергий переходных состояний.

Известно несколько моделей переходных состояний (ПС) для реакции Пассерини [8—10]: А, В, Д. В ПС А и В кислород карбонильной компоненты должен находиться в сложноэфирном фрагменте аддукта F,

а в случае  $\Pi C D - B$  амидной группе.

Для выяснения места нахождения карбонильного кислорода в аддукте F из n-бромбензальдегида ( $^{18}$ O),  $\tau per$ -бутилизонитрила и уксусной кислоты получен ацетоксиамид (XIX) (см. табл. 1).

В ИК спектре XIX «ацетатная полоса» (1251 см<sup>-1</sup>) сместилась на 10 см-1 в низкочастотную область по сравнению с немеченым образцом. Полосы поглощения «амид I» и сложноэфирного карбонила полностью совпали (рис. 2). В масс-спектрах меченого и немеченого образцов содержатся соответственно катионы 257 и 255 m/e ([BrC<sub>6</sub>H<sub>4</sub>C $\equiv$ O]<sup>+</sup>).

Согласно этим данным исключается ПС Д. Известно [11], что перкислоты в реакции Пассерини дают а-пероксиэфиры амидов кислот, образование которых не может быть удовлетворительно объяснено с использованием моделей А и В.

Сопоставление зарядового распределения и граничных плотностей (ПС С) на атомах в модельном трет-бутилиминооксиране и уксусной кислоте (AM1) позволяют предположить, что реакция Пассерини протекает через ПС C, которое, по существу, близко к протонированной форме иминооксирана. Расчет  $\Delta H_f^0$  методом AM1 устойчивых конформаций I  $\partial -e$ , II  $\partial -e$  (см. табл. 3), констант конформационного и конфигурационного равновесия (в предположении  $\Delta S = 0$  [12]) показал, что отношение эритро-трео-изомеров для оксирана I (І  $\partial$ —з) должно составлять  $\sim$  6 : 1, а для оксирана II (ІІ  $\partial$ —з) —  $\sim$  1 : 1, что на качественном уровне вполне удовлетворительно соответствует наблюдаемому в эксперименте соотношению эритро-трео-изомеров.

Таким образом, стереохимия аддуктов Пассерини в случае хиральной

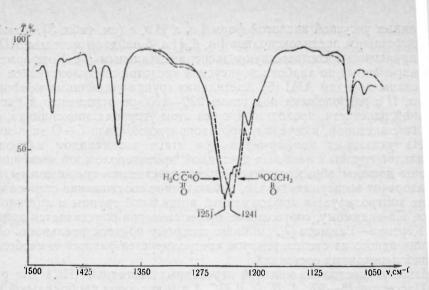



Рис. 2. ИК спектры изотопнозамещенных (<sup>16</sup>O, <sup>18</sup>O) *трет*-бутиламидов 2-ацетокси-*п*-бромфенилуксусных кислот

карбонильной компоненты (ацетилоксиранов) определяется разност

свободных энергий ПС типа С.

Наблюдаемая низкая реакционная способность оксирана IV обусллена, по-видимому, стерическими препятствиями, создаваемыми цисогной по отношению к ацетилу метильной группой при эпоксицикле стадиях трансформации иминооксиранового цикла в ПС C и переацилрования E.

# Экспериментальная часть

ИК спектры 0,1 молярных растворов соединений в СНС1<sub>3</sub> сняты спектрофотометре *IR-75*. Спектры ПМР получены на спектрометр «Tesla» BS-467 и «Varian» HA-100, растворитель СDС1<sub>3</sub>. Эксперимент по ядерному эффекту Оверхаузера проводились по методике, опублик ванной в [13]. Масс-спектры записаны на спектрометре MAT-311, энерги ионизации составляла 15, 30 и 75 eV. Течение реакций и чистота продугтов контролировалась при помощи ТСХ на пластинах «Silufol». Элюегты — смеси гексан-ацетон и эфир-гексан в разных соотношениях.

Квантово-химические расчеты проводились на ЭВМ ЕС-1035, ЕС-106 и ЕС-1037. Структуры молекул оксиранов, их протонированные формь а также модели ПС рассчитывались с полной оптимизацией геометрии Устойчивые конформеры найдены в режиме оптимизации геометрии и из менения торсионных углов О=С—С—С в секторах 0—90, 90—180, 180—

270 и 270-360°.

Ацетилоксираны I—V получены по методикам, опубликованным в [14—17]. трет-Бутил- и фенилизонитрилы получали из соответствующих аминов обработкой щелочной эмульсией 50% гидроксида калия в СНСІ<sub>3</sub> в присутствии бензилтриэтиламмоний хлорида [18]. Циклогексилизонитрил получен обработкой оксихлоридом фосфора циклогексилформамида [19].

Меченый по кислороду ( $^{18}$ О) n-бромбензальдегид получен из n-бромбензальдегида и  $\mathrm{H_2^{18}O}$  (80~% изотопной чистоты) в растворе диоксана по

методике [20].

Амиды 2-ацетокси-3,4-эпоксимасляной и валериановых кислот (VI—XVIII). К раствору 0,05 моля ацетилоксирана (I—V) и 0,1 моля ледяной уксусной кислоты в 50 мл хлористого метилена добавляли 0,05 моля изонитрила. Через 30—300 ч (контроль ТСХ) летучие компоненты реакционной смеси отгоняли при пониженном давлении. Остаток кристаллизовали из смеси гексан-бензол (3:1).

трет-Бутиламид-2-ацетокси-n-бромминдальной кислоты (XX) получали аналогично предыдущей методике из n-бромбензальдегила ( $^{18}\mathrm{O}$  и <sup>16</sup>О), уксусной кислоты и *трет*-бутилизонитрила (см. табл. 1). Спектр ПМР ( $\delta$ , м. д.): 1,23 (с., 9H); 2,05 (с., 3 H); 5,67 (с., 1 H); 5,85 (уш. с., 1 H); 7,17, 7,39 (АВА'В', J=8,4  $\Gamma$ ц, 4 H).

эритро-2,3-Диокси-2-метилмасляная кислота (XIX). К эфирному раствору 0,0004 моль алюмогидрида лития добавляли эфирный раствор 0,005 моль эпоксиамида (VI или VII) при температуре 0—5°C в течение 2 ч. Реакционную смесь разлагали 1 мл воды, осадок фильтровали и промывали эфиром. Фильтрат упарили. Бесцветное масло растворяли в 50 мл 1 н раствора гидроксида натрия и раствор кипятили с обратным холодильником 4 ч. Реакционную смесь упарили в вакууме. Остаток подкислили 10 %-й соляной кислотой, экстрагировали хлористым метиленом, сушили (Na2SO4). Растворитель отгоняли, остаток кристаллизовали из смеси ацетон-бензол (1:1). Выход 68—72 %,  $T_{n\pi}$  110—111 °C [3]. Спектр ПМР ( $\delta$ , м. д.) в (CD<sub>3</sub>)<sub>2</sub>C=O; 1,07 (д., J=6,0 Гц, 3 H); 1,30 (с., 3 H); 3,77 (к., J=6,0 Гц, 1 H); 5,60 (уш. с., 3 H).

## Список литературы

1. Тищенко И. Г., Бубель О. Н., Пташников Ю. Л. // Докл. АН БССР.

1980. T. 24, № 8. C. 719.

2. Passerini M. // Gazz. chim. ital. 1931. V. 61. P. 964.

3. Robins D. G. Gicrout P. H. // Journ. Am. Chem. Soc. 1970. V. C. № 9. P. 1334.

4. Dewar M. J. S., Thiel W. // Ibid. 1977. V. 99. № 15. P. 4905.

- 5. Арбузов Б. А., Донскова А. И., Вульфсон С. Г., Камалютдинова А. М., Бубель О. Н., Верещагин А. Н. // Изв. АН СССР. Сер. хим. Т. 4. C. 829.

С. 829.
6. Dewar M. J. S., Zoebisch E. G., Healy E. F., Stewart J. P.//
Journ. Am. Chem. Soc. 1985. V. 107. № 13. P. 3902.
7. Seeman J. I. // Chem. Rev. 1983. V. 83. P. 83.
8. Ugi I. // Angew. Chem. 1962. V. 74. № 1. P. 10.
9. Saegusa J., Fujii H. // Tetrahedron. 1968. V. 24. P. 3195.
10. Вакег R. H., Stanonis D. // Journ. Am. Chem. Soc. 1951. V. 73. P. 699.
11. Пташников Ю. Л., Бубель О. Н. // IX Всесоюз. конф. по химии органических и элементоорганических пероксидов: Тез. докл. Горький, 1990. С. 34.
12. Илиел Э., Аллинжер Н., Энжлал С., Моррисон Г. // Конформационный анализ. М., 1969. С. 34.
13. Аптwегр С. L. // Journ. Chem. Educ. 1973. V. 50. P. 639.
14. Тищенко И. Г. Жидкофазное окисление непредельных органических соединений. М., 1961. С. 73.
15. Тищенко И. Г., Ахрем А. А., Назаров И. Н. // ЖОХ. 1959. Т. 29. № 8.

15. Тищенко И. Г., Ахрем А. А., Назаров И. Н. // ЖОХ. 1959. Т. 29. № 8. 809.

16. Пакен А. М. Эпоксидные соединения и эпоксидные смолы. М., 1962. С. 141. 17. Ноиse Н. О., Ro R. S.// Journ. Am. Chem. Soc. 1958. V. 80. № 10. Р. 2488. 18. Вебер В., Гокель Г. Межфазный катализ. М., 1984. С. 72. 19. Organic Chemistry. New York; London, 1971. V. 20. Р. 56.

20. Мэррей А., Уильямс Д. Л. Синтез органических соединений с изотопами галоидов, азота, кислорода, фосфора, серы. М., 1962. С. 94.

УДК 677.862.25

В. М. СИДЕРКО, Т. Д. БИЛЬДЮКЕВИЧ, Ф. Н. КАПУЦКИЙ

## привитые сополимеры целлюлозы С БУТИЛМЕТАКРИЛАТОМ

Одним из методов модификации целлюлозы является привитая сополимеризация ее с различными мономерами [1]. В данной работе изучены физико-химические свойства растворов и пленок из привитых сополимеров целлюлозы с бутилметакрилатом.

Прививку бутилметакрилата к вискозному волокну проводили в водно-органической среде по радикальному механизму. Гомополимер отмы-