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ABSTRACT

Gravitational interaction between particles must break Lorentz Symmetry (LS), as well as per Yarman’s
Approach that forms the basis of YARK (Yarman-Arik-Kholmetskii) theory of gravity. This approach, being
general, just as at the atomistic level, so too in gravitation will LS always break down under Yarman’s
Approach. All the while, General Theory of Relativity (GTR) is known to already break LS; still, its violation in
gravitation according to YARK points to a different mechanism than it does under GTR. Said mechanism can be
right away extended to all other interactional fields. The core finding herein is that the customary Lorentz
transformations, and the proper Minkowskian metric resulting from them, should be replaced by general
equalities involving a novel interactional coupling parameter emerging out of Yarman’s Approach.
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1. INTRODUCTION

“Symmetry” is principally correlated with conservation laws in physics, and especially with
laws such as energy, momentum, angular momentum, and charge conservation. There are of
course other kinds of fundamental symmetries in nature as well. One such symmetry is
“Lorentz Symmetry” (LS). In the recent past, it was suggested that Lorentz Invariance should
anyway be an “approximate symmetry” of nature.1,2,3

Case in point, it is well known that General Theory of Relativity (GTR) breaks LS. It
is simple to understand how this happens. If, for the sake of demonstration, “Captain Kirk” is
parked in gravitation, and “Captain Picard” watches him from some remote distance, with
both being at rest with respect to each other, then, based on GTR, they would both agree that
Captain Kirk’s watch runs slower, and his stick meter (along the direction of the gravity pull)
is contracted; or the same, they would both agree that Captain Picard’s watch runs faster, and
his stick meter (along the same direction, still according to GTR) is elongated.

Whereas, if either were in a state of uniform translational motion in free space with
respect to the other, a faultless symmetry would reign between them. In other words, in such a
state, both would measure the other’s time as dilated, and both would measure the other’s
stick meter as contracted (e.g., along the direction of motion).

In case they came to rest, there would be just one time and one stick meter for both.
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This is yet not the case when Captain Kirk is parked in gravity and Captain Pickard is
parked at a remote distance away from any gravity (or vice versa); or the same, when they are
both embedded in gravity, still at rest, but at different altitudes.

Were they to move, with each being at different altitudes, no LS would hold up; for
such a symmetry is, for one thing, already broken when they were initially at rest at different
altitudes to begin with.

On the other hand, based on YARK, the violation of Lorentz symmetry in gravitation
takes place differently than it does in GTR; for YARK operates straightly through “integral
forms” – i.e. not differential forms – of “time” and “space”, whereas GTR foundationally
starts up with and operates through “differential forms” of “time” and “space” before
eventually landing at their integral forms (though only whenever viable).

As we shall see further below, YARK theory, built on Yarman’s approach, also
betokens the violation of LS in gravitation, and its core principles can right away be extended
to all other fields of interaction.

Let us briefly recall that, Lorentz transformations were mathematically framed by
Poincaré to account for the anomalous result of the Michelson-Morley experiment.4 These
transformations, in modern notation, and with regards to boosting a particle in a given
direction, were in effect furnished by Poincaré in 1905.5 Historically, Poincaré named them
“Lorentz transformations” because of the respect he held for his mentor.

Lorentz Symmetry was then first used in physics by Einstein to construct his special
theory of relativity (STR).6 Einstein worked out the consequences of the LS and he concluded
that length and time must be altered, yet symmetrically, when two observers move relative to
each other. Lorentz transformations thusly describe how measurements of space and time
obtained by two different observers are related to the velocity of the uniform translational
motion of one of them as gauged by the other.

All the same, Lorentz transformations, the way they had originally been forged, do not
tell anything about space and time variations when the observers interact with each other.
Concomitantly, it has been proven that CPT (Charge-Parity-Time) violation implies that the
theory breaks LS.7,8

Recall further that, CPT symmetry is what holds unchanged under the inversion of
charge, parity and time simultaneously.

One good example of CPT violation is the one we can pick from the lepton sector; it is
defined by the difference between the form factors of the electron and the positron:9,10

(ge+ − ge) / < ge > = (−0.5 ± 2.1) × 10−12 .

Nowadays, new experimental techniques are used to search for clues in the violation
of Lorentz invariance at low energies, and they may well corroborate the expectation that
Lorentz invariance should indeed be violated as such.11,12

Bound muon decay rate retardation is one interesting area to check the violation of
Lorentz invariance in the atomistic world, via Yarman’s Approach. When a muon interacts
with and is caught by a nucleus, the muon’s decay rate gets retarded; in other words its decay
half-life is prolonged in contrast to its unbound siblings.13,14,15,16

This is one example where the electric field of the nucleus appears to affect space and
time in just the same way as gravitation does.17 As we shall soon see below, under the
framework of Yarman’s Approach extended to gravitation in YARK theory, this is indeed
what transpires. The common feature in either the atomistic or the celestial scale, and
effectively, in all interactional cases, is that binding through interaction must, according to
Yarman’s Approach, alter space and time inasmuch as invalidating Lorentz symmetry. The
same occurs in the case of alpha particles richocheting from the “repulsive field” of gold



3

atoms, where the “repulsive energy” is stored inside the alpha particle, again, as per Yarman’s
Approach.18

As Yarman had shown at the outset (see below), what happens throughout binding is
that the “rest mass” (or the same, “rest energy” were the velocity of light taken as unity) of
the bound object is decreased owing to the law of energy conservation embodying the mass
and energy equivalence of the Special Theory of Relativity (STR) as much as the static
binding energy the client object cedes.

When such “rest mass decrease” coming into play is inserted into the quantum
mechanical description of the client object, the related “total energy eigenvalue” is decreased
as much, hence pointing to a “stretching of the period of time” of the internal dynamics the
object at hand delineates, and conjointly to a “stretching of its size” just as much.19,20 Recall
that Yarman’s approach is just as well applicable to a repulsive field (in which case, the rest
mass of the ricocheted alpha particle would conversely increase).

Notice that, none of the available explanations given for bound muon decay rate
retadation in the cited references [13-16] were satisfactory enough to explain the
phenomenon.

Concurrently, Yarman, already having predicted it theoretically, has been the first who
provided a simple explanation through his anticipation that any bound particle must undergo a
“rest mass” (or the same – taking the speed of light in vacuum as unity – a “rest energy”)
decrease commensurate with the “static binding energy” the object transactions. With this in
mind, a number of discrepancies between theory and experiment were easily overcome in
quantum mechanics as such.21,22,23,24,25

This already points to the fact that a free clock (e.g., an unbound muon) and its twin
bound to an electric field (e.g., a bound muon) sitting in an isolated chamber, where an
electric field reigns, ought to run at different paces as per Yarman’s approach. In other words,
the bound clock runs slower while a free clock runs faster.

Suppose we attach observers to these clocks / muons at hand when they are at rest with
respect to each other. It is not that Lorentz Symmetry really breaks thereafter as they are put
in motion; it is essentially that Lorentz Symmetry was never there to begin with.

Thence, the question we pose here is this: “How can we write Lorentz transformations
related to two interacting objects?” We will provide an answer to this question within the
framework of YARK, starting with gravitational interaction first, with yet no loss of
generality.

Before we proceed, it would be useful to present a brief summary of YARK theory.

2. YARK GRAVITATION THEORY: BASIC CONCEPTS
In our previous papers,26,27,28,29,30 we have gone over how YARK theory is based on the
original “Universal Matter Architecture” and the subsequent “Yarman’s Approach”
framework developed by Yarman,31,32,33,34,35,36,37,38 and then advanced together with his
colleagues.39,40,41,42,43,44,45,46,47,48 For the sake of convenience, we reproduce below some
important points of this theory in order to stress its physical meaning.

The root postulate of YARK theory states that the overall energy of the object with the
proper mass m initially measured at an infinitely far away distance from all other masses in
the presence of gravity acquires the form [29, 30]

 22 1 mcEγmcE B , (1)

where  is the Lorentz factor associated with the motion of the test object, and EB represents the “static binding
energy” defined as the work one has to carry out in order to bring the object quasi-statically from infinity to the
given location.
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In fact, eq. (1) states that the rest mass m of the object is not a constant, but is rather
altered within the gravitational environment of concern by the value EB/mc2 owing to the law
of energy conservation as assessed by the remote observer. Such a postulate also implies that
the gravitational energy is localized inside interacting particles rather than getting distributed
in the surrounding space.

Further, due to Yarman’s intrinsic quantum mechanical relationships between the
quantities “mass”, “energy”, “frequency”, “time”, and “size”, the variation of the rest mass of
a test particle by the static binding energy (1) affects the time rate for the particle, and
furnishes a corresponding transformation of spatial intervals in the presence of gravity [29,
30, 34, 35].

Hence, the variation of the rest mass of a test particle by the static binding energy
does, in effect, alter – just like in metric theories of gravity – the metric of space-time in
YARK theory. In particular, in the radially-symmetric case, we have [29, 30]

ett 0 , e0rr  , (2)

where t0, r0 stand for the corresponding quantities in the absence of gravity. By the same
token, they are proper quantities measured by the observer attached to the test mass m. Let us
recall here that α = GM/rc2.

Note that the usual squared space-time interval 2
0s in empty space is

2
0

2
0

22
0 rtcs  . (3a)

Based on eq. (2), YARK’s squared space-time interval s2 in the presence of gravity
thusly becomes

22
0

2 ess  . (3b)

We will particularly elaborate on this precious result in order to achieve the goal of the
current paper.

Further differentiation of eq. (3b) defines the post hoc geometry of space-time in
YARK theory.

At the same time, we emphasize that, unlike GTR, YARK’s metric properties of space-time do not play
a decisive role in the determination of the motion of objects in the gravitational environment. This statement can
already be demonstrated by the fact that, for a test particle m moving in a gravitational field created by a
considerably heavy host mass M>>m (i.e., the one-body problem), the motional equation of the test particle can
be derived straightforwardly via the differentiation of eq. (1) – as had been originally done by Yarman in refs.
[29, 30] – independently from the metric properties of space-time. Indeed, due to the energy conservation law for
the isolated system of interacting objects m and M at M>>m, the time derivative of the right hand side of eq. (1)
should be equated to zero, which directly yields the motional equation of the test particle m without necessitating
an ad hoc determination of the metric of space-time. This indicates, in particular, that YARK, unlike GTR, is not
a purely metric theory, but rather subsumes the properties of dynamic and metric theories (see, e.g., [29, 30, 38]).

The derivation of the motional equation of the particle m in the presence of gravity (which can be
straightforwardly extended to the interaction of many bodies) can be based on the minimization of the action as
usual, but only after the YARK outcome of Eq.(1) is known. For those who are accustomed to follow that line of
reasoning, we have produced it in Ref. 28, so much so that we would like to skip it over here.

In any case, as we had previously shown,49 under the framework of YARK theory, the
same conclusion (i.e., the independence of the motional equation of the particle from its rest
mass in the presence of gravity) remains in force in the general case of the many-body
problem, too. This means that the weak equivalence principle (WEP) is perfectly fulfilled in
YARK theory [29, 30, 38, 24]. In addition, it is important to emphasize that YARK theory is
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fully compatible with the foundational premises of STR [29, 30] to the extent that it satisfies
both local Lorentz invariance and local position invariance. Therefore, YARK theory is
wholly compatible with the Einstein equivalence principle (EEP), too.

At the same time, the physical meaning of the EEP in YARK theory – which combines
the properties of dynamic and metric theories – is different as referred to purely metric
theories of gravity such as GTR. In particular, the dynamical side of YARK signifies that, in
the case where the gravitational force experienced by a particle in a chosen frame of
observation is not equal to zero, then, it does not disappear in any other frame, including the
frame of free fall of the particle,50 In the latter case, the gravitational force is “sensed” by the
particle through the variation of its rest mass even if it is exactly counterbalanced by a
fictitious force existing in an accelerated frame of this particle. This means, in essence, that
gravitational energy, contrary to what GTR delineates, can indeed be localized. Therefore, we
see that the EEP does not, in general, make it requisite that only purely metric theories of
gravity should be adopted; compliance to it in YARK theory is, as we have seen, assured by
the existence of such a reference frame wherein, at each four-point, the force of gravity can be
exactly counterbalanced by a fictitious force as experienced by the particle in this frame.

To elucidate what we mean by the localization of gravitational energy, we first compare eq. (17) with
the known expression of GTR for the energy of the test particle in a gravitational field,51 i.e.,

αmcEGTR 212   , (4)

and find that the terms describing the effect of gravity in these equations coincide with each other up to the

accuracy of c-3 (  αmαmme α  121 ). Thus, with respect to many implementations, GTR and
YARK do converge in the limit of a weak gravitational field, and, in particular, both provide successful
explanations for gravitational redshift, gravitational lensing, Shapiro delay and precession of the perihelion of
Mercury (see, e.g., [30-31, 33-34, 52). One should also mention that YARK theory also achieved considerable
successes in the explanation of modern observations where the weak relativistic limit is abandoned (e.g.,
derivation of the alternating sign for the accelerated expansion of the Universe without the need to involve a
notion of “dark energy” [39]; presentation of the Hubble constant in an analytical form [39]; elimination of the
information paradox for black holes of the YARK type [53]; and the abnormal redshift of the star S0-2 as it orbits
the central supermassive blackhole of our Milkyway galaxy54). What is more, YARK theory remains the only
alternative to GTR which provides an adequate account of the GW150914 and GW151226 signals of LIGO
beyond the hypothesis about gravitational waves.55

Besides these, we wish to spotlight two very recent experimental facts – the extra-
energy shift between emission and absorption resonant lines in a rotating system,56,57,58 and
the practically null bending of high-energy -quanta under Earth’s gravity59 – both of which
have found a successful explanation under YARK theory,60 while they still remain as puzzles
within the framework of GTR.61,62

Finally, we stress that YARK theory of gravity is in natural symbiosis with quantum
mechanics63; this fact definitely reflects advantages in combining metric and dynamical
approaches in comparison with the purely metric approach of extended theories of gravity.

3. LORENTZ TRANSFORMATIONS: DERIVATION OF THE YARK
RELATIONSHIP s=s0exp(α) THAT ENTAILS THE INVALIDATION OF
LORENTZ SYMMETRY (LS) IN ALL KINDS OF INTERACTIONS

One well-known example of the violation of Lorentz invariance is the familiar expression for
the total energy of an Hydrogen (H) atom. In this atom of mass mH, according to the simplest
visualization, there is one proton of mass mp, and one electron of mass me which may be
thought to rotate around the proton at a distance r to it. So the total energy of the system can
be written, in the CGS unit system, as

mpc2 + γemec2 − e2/r = mHc2 , (5)
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with γe being the Lorentz coefficient that we associated with the tangential velocity delineated
by the electron around the proton, and c being the velocity of light in vacuum.

This equality, when the atom is delivered a uniform translational motion, indeed
breaks down, since the masses of concern will be multiplied by the Lorentz coefficient γ
corresponding to that motion, whereas the radius r is contracted by the inverse of γ – yet only
along the direction of motion.

The derivation of the violation of LS, as we will soon provide below, is not restricted
to gravitation, and can be applied to any field the object at hand is embedded into. All the
same, it would be helpful to specify the field we are dealing with; accordingly, we shall
hereby pursue calculations in a gravitational field.

As per YARK, at a given location in gravity, lengths and periods of time are altered in
just the same way [cf. eq. (2)]; both are stretched as much as, in effect, the static binding
enery coming into play. This precisely takes place due to the rest mass decrease in gravity
owing to the law of energy conservation embodying the mass and energy equivalence of the
STR as framed by YARK (which is very unfortunately given up in GTR). And when, for the
location of concern, the “rest mass decrease” in, say, an H atom is inputted into its quantum
mechanical description, then its total energy (eigenvalue), as well as the spatial dimensions it
is structured in, are stretched by exactly the same amount.

In YARK, size stretching, unlike what the foundations of GTR delineates, is uniform;
that is, in YARK, spatial dimensions stretch the same in all directions.

Before defining the related transformations under gravity, let us state the usual plain
Lorentz transformations:

,)vtγ(xxL 00  (6)

.
c
vxtγt 2L 





  0

0 (7)

Here, x0 and t0 represent the proper space and time coordinates of the moving object,
while xL and tL represent the space and time coordinates of the moving object as assessed by a
fixed local observer in gravity.

The conjoint reverse transformations are:

.
c
vxtγt

,)vtγ(xx

2
L

L

LL







 



0

0

(8, 9)

As is known, the familiar relationship 2
0

2 ssL  , i.e.

2
0

22
0

222 tcxtcx LL  , (10)

is thereby fulfilled.
Note further that these Lorentz transformations provide us with the following usual

differential equations:

,)vdtγ(dxdxL 00  (11)
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.
c

vdxdtγdt 2L 





  0

0 (12)

Their conjoint reverse transformations are:

.
c

vdxdtγdt

,)vdtγ(dxdx

2
L

L

LL







 



0

0

(13, 14)

Here, one lands at the customary equality of squared differentials 2
0

2 dsdsL  , i.e.

2
0

22
0

222 dtcdxdtcdx LL  . (15)

We will soon see that not only is the equality 2
0

2 ssL  [cf. Eq.(10)] broken in
interaction – with yet the possibility remaining to redeem this cast later on in the manner of
YARK; the equality of squared differentials 2

0
2 dsdsL  [cf. Eq.(15)] is also broken in

interaction, with still the possibility remaining to redeem this cast later on in the manner of
YARK, which all the same, totally invalidates the classical metric cast developed and
exercised, in the past century.

Extraordinarily enough, this fact alone dismantles a whole century of mathematical
progress in formulating “curved spacetime” with corresponding metric operations based on
relationships involving the squares of differentials.

Now, we are going to insert the gravitational interaction terms into the aforementioned
Lorentz transformations.

We expect hence, in gravity and in motion, that periods of time, when assessed by the
distant observer, will dilate for two reasons:

1. Quantum mechanical stretching due to the effect of gravity by the factor e−α,

2. Stretching due to uniform translational motion as much as the Lorentz coefficient γ.

Let us once more recall that α = GM/rc2, where M is the mass of the host body, G is
the gravitational constant, r is the distance from the location of concern to the center of M,
and c is the speed of light in vacuum.

As for the lengths – as assessed by the distant observer – within the framework of
YARK, they too are stretched in gravity; and this, in all directions, by the factor eα. But, at the
same time, they must get contracted by e-α along the direction of motion – again when
assessed by the distant observer. So, the factor γ and the factor e−α should, in that case, work
against each other.

Thusly we have:

.
c
vxeteγt

,)vtex(ex

2 




 



0
0

00




(17, 18)
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This, revolutionarily, is the standard writing pinned down of late by the first co-author
where both time and space are stretched in gravity by the same eα factor as seen from the
reference frame of the distant observer.

Indeed, if v were 0, then we would be able to write,

.tet

,xex 0
α

0



(19, 20)

Thence,

 2
0

22
0

2222 tcxetcx α  ; (21)

or the same,

 22222
0

22
0 tcxetcx α  

. (22)

So, we no longer have the proper Minkowskian mold 2222
0

22
0 tcxtcx  [cf. eq. (6)]

that one can anymore define in the absence of gravity.
In what follows, let us prescribe

2
0

22
0

2
0 tcxs  , (23a)

and

2222 tcxs  . (23b)

Therefore, instead of the accustomed 22
0 ss  found throughout the literature, we now

assert our novel “proper Minkowskian-Yarman” to “non-proper Minkowkian-Yarman”
transformation:

222
0

 ess . (23c)

This ultimately means that, as per YARK, gravitational interaction always breaks
Lorentz Symmetry. It is crucial to note that, via the present approach, one could – in
contradistinction to the manner in which it was exercised throughout the past century – obtain
a relationship between s0 and s straightforwardly in an integral form at the outset instead of in
terms of the squares of differentials, whereby an integral result is recovered only after much
extensive labor.

What is more, the differential equation that comes out of Eqs. (23a) and (23b) would
too have no correspondence with the original Minkowskian 2

0
22

0
222 dtcdxdtcdx LL 

resulting from “authentic Lorentz transformations”.
To show this we reconsider Eqs. (19) and (20), to write first [32],

01
edx dx





 , (24a)

and concurrently,
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01
edt dt





 . (24b)

Therefore, from Eq.(23c), for a fixed proper observer,
   2 2 2 2 2 2

0 1 1ds e dx c e dt       . (25a)

Or, for a fixed local observer:
 22 2 2 2 2

0 1dt e dx c dt       . (25b)

This allows us, at the same time to write obviously,
 22 2 2

0 1ds e ds   . (25c)

via positing,
2 2 2 2

0 0 0ds dx c dt  , (26a)

and

2 2 2 2ds dx c dt  . (26b)

It is important to notice that YARK is not a purely metric theory, and Eq.(25c) should
be considered along with the YARK root integral equation, i.e. Eq.(1). And, Eq.(25c) does not
in fact bear any role really, other than a role for comparison of YARK with classical metric
theories’ root differential equations, for we do not even have to integrate Eq.(25c), via say,
using it, in an action minimization operation, etc; we already have its integral form, as the set
of quantum mechanical Eqs. (19) and (20), which we had in effect used beforehand, to finally
write Eq.(26a).

It is easy to notice that the foregoing derivation is valid for any interaction, insofar as
yielding

  2222
0

2
0

22
0 1 tcxcmEtcx B  / , (27)

where BE is the binding energy between the client object and the host body.

CONCLUSION

We have shown in the present paper how interaction between particles always breaks down
Lorentz Symmetry (LS) as per Yarman’s Approach, and more generally, in gravitation
according to YARK (Yarman-Arik-Kholmetskii) theory of gravity.

An interesting case, other than an object moving in gravitation, where LS is violated –
but where existing quantum electrodynamical explanations in the literature are not
satisfactory – is that of the bound muon (when it is substituted in place of an electron around
a given atomic nucleus); whose decay rate retardation can be explained under Yarman’s
Approach in a much more suitable and elegant way.

While it is known that General Theory of Relativity (GTR) already breaks LS, we
demonstrate that the violation of LS in gravitation under the framework of YARK takes place
differently than it does in GTR. Fundamentally, and for all kinds of interactions, it is not that
LS breaks when bodies interact; it is that LS was never there to begin with.
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This is so much so that, in the present approach, one readily obtains a simple
relationship between the local Minkowskian squared line element s0

2 and the non-proper
Minkowskian squared line element s2 in a straightforward integral form to land at

2 2 2
0s s e  ; whereas, GTR embarks on a similar enterprise by starting with the squares of the

differentials of the space time quantitites under consideration only to arrive at an integral form
after much cumbersome mathematical labor.

It is worth recalling that the present approach leads to  22 2 2
0 1ds e ds   , with

regards to the squared differentials.
It should be emphasized that YARK is not a purely metric theory, and Eq.(25c) should

be considered along with the YARK root integral equation, i.e. Eq.(1). And, Eq.(25c) does not
in fact bear any role really, other than a role for comparison of YARK with classical metric
theories’ root differential equations.

One can easily see that the derivation 222
0

 ess we framed remains valid for any
kind of interaction, insofar as leading to the general form

  2222
0

2
0

22
0

2
0 1 tcxcmEtcxs B  / , (27)

where BE is the binding energy of the system comprised of a client object and a host body.
The above expression, remaining in full symbiosis with quantum mechanics and being

fundamentally valid for all kinds of interactions, is moreover directly applicable to the many-
body problem – just as well as being extensible to gravitation through YARK theory, and in
an incomparably simpler manner compared to what is available in metric theories of gravity.
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