Vector particle with electric quadrupole moment in
external Coulomb field
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Abstract. We study the problem of vector particles with electric
quadrupole moment in presence of an external Coulomb field. Starting
with the relativistic Duffin-Kemmer theory, we search for solutions. To
this aim, we diagonalize the operators of energy, square of the total an-
gular momentum and its third projection. After separating the variables,
we derive a system of 10 radial equations. According to the requirement
of diagonalizing the spatial reflection operator, we split the system into
two subsystems of 4 and 6 equations respectively, for states with parities
P = (=1)*! and P = (—1)/. Additional interaction terms enter both
subsystems. The relativistic radial subsystem of 4 equations reduces to
a second order equation which contains two singular points x = 0 and
x = oo of ranks 3 and 2, respectively, and four regular points. The local
Frobenius solutions near the point « = 0 are constructed. It is shown that
there exist 8-term recurrence formulas for the involved power series. The
condition of transcendency of solutions gives a certain quantization rule for
energy levels, which seems to be only partially physically appropriate. The
relativistic radial system of 6 equations for states with parity P = (—1)7,
turns out to be very complicated. In order to simplify the problem, we
perform the transition to the non-relativistic approximation, and conse-
quently derive two associated second order differential equations for two
radial functions. We obtain the 4-th order equations for radial functions,
and construct four different Frobenius type solutions of these equations.
As well, the convergence of the involved power series with 8- and 9-terms
recurrence relations, is studied. The transcendency condition gives the
formula for energies, which does not depend on the quantum number and
on the parameter of quadrupole electric moment, and therefore cannot
describe the physical spectrum correctly. The non-relativistic analysis is
performed for states with the parity P = (—1)7 as well, but the radial
equation for the main function turns out to have more simple structure
of singular points. The transcendency condition leads to a formula for
energies which only partially correlates with the relativistic one. All the
constructed solutions are exact, but they are formal because there exists
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no reliable rule for quantization of energy levels, and the transcendency
condition solves this difficulty only partially.

We additionally apply the geometrical method based on the theory of
KCC-invariants. The first and the second invariants are calculated, and it
is shown that the distinct branches of the solutions converge near the sin-
gular points r = 0,00, —I'/2. This correlates with the expected behavior
of solutions for bound states. Within this framework, the explicit La-
grangians related to the geometrical problem are determined. It is shown
that the Lagrangians have an arbitrariness degree up to certain terms,
which may be considered as a specific gauge freedom.

M.S.C. 2010: 35Q40, 37K20, 53C60.
Key words: vector particle; wave equation; Coulomb field; electric quadrupole mo-
ment; exact solutions; Kosambi-Cartan-Chern-theory.

1 Introduction. The initial relativistic equation

It is known that in the framework of relativistic wave equation theory, one can propose
the so-called non-minimal equations, which describe particles with additional electro-
magnetic characteristics, with spectra of spin and mass states [15]-[18]. Within this
approach, in [13]-[11] the problem of spin 1 particles with additional anomalous mag-
netic and quadrupole electric moments has been investigated. The equations were
studied and solved for particles in external homogenous electric and magnetic fields.
The equation for a vector particle in the external Coulomb field is rather complicated,
even in the case of ordinary particles without additional electromagnetic moments,
and has not been completely solved yet. However, at the non-relativistic limit, the
equation for ordinary vector particles in the Coulomb field can be solved exactly.
In the present work we study the non-relativistic problem of a vector particle with
additional quadrupole moment in the external Coulomb field.

The initial equation has the following form (we shall further use the conventional
tetrad formalism [16])

c |- 1 .a ’ ]
(1.1) {iﬁ {z(e(ﬁc)aﬁ + 30 P yabe(z)) — € Ac| + )\%Fag(m)P] #(x) — M} U=0;

related to quadrupole moment free dimensionless parameter \, P is a projective
operator separating inside the 10-component wave function its tensor component.
We use the notations:

me , € 4o e

0 0
0 Is |’ nt T o M T e

With respect to the spherical tetrad [17], equation (1.1) has the form

(1.2) P= ‘ i

1 1 ]
0+ )i (8% 04 185" + %) + 1800+ LRI - M| #(a) =0,

-
where, depending on the angular variables, the operator ¥g 4 is determined by the
equality

; S +12
(1.3) Spp = i 310, 4 g2 00 T U cosb

sin 0
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The components of the operator of the total angular momentum are given [17] relative

to this basis, by the formulas

. COS @ . .12 . sing . 1o . 12 1,2 251
(14) ji=bh+——ij ", ja=lb+——ij", ja=ls, j =88 -850
sin 6 sin 6
We shall further use the cyclic basis - the Duffin-Kemmer matrices [17]:
00 0 0000000 00000350000
00 0 0+ 0 0000 000O0O000+10 0
00 0 0 0+i0000 000000000 O
00 000 O0+4i000 00000000 0-1
BO=[0-i0 00 0 0000 B3 =10000000000
NIRRT R S R R R A A
0070 8 800
00 0 O O O 00O0O0 00 O0O0OO0O00OO0ODOTO
00 0 O O O 00O0O 00 041000 0 0 O
00 00 —i0+i0 0 0 00001010 0 0
00 00 000 0 +10 0 0000000 —i0
00 00 000 +10 +1 0 0 0 0000+i 0 —i
1 00 00 000 0 +10 1 0 0 0 00000 +i 0
gl = —i0 0 0 000 0 0 O 52 = —-10 0 00000 0 O
= 00 00 0000 0 0] = 00 0 00000 0 O
V2 |£i0 000000 0 0 V2 2100 00000 0 0
0 0-10 0000 0 0 0 0 4+4i 00000 0 O
0-10-1000 0 0 0 0 —i 0 +i000 0 0 0
0 0-10 0000 0 O 0 0—i 00000 O O
The matrix ij'? = (8% — 8?B!) has a diagonal structure:
0 0 0 O
+1 0 O
s |0 t; 0 0
1] , t3=| 0 0 O
0 0 t3 O 0 0 1
0 0 0 ¢t3

We can express the 10 x 10 - matrices in terms of the the cyclic basis, by using the
similarity transformation

Lo e o
(1 5)\chycl = S\PCCL'I"tv S = 00 U 0| U= 0 0 1 R
' 00 0 U +1/V2 i/V2 0
gycl = Sﬂgartsilv Pcycl = Spcart571 = pCart .

We note that the form of the projective operator P does not change. All the fore-
coming formulas will be expressed in terms of the cyclic basis.

The system of radial equations for the ordinary vector particle in Coulomb field

is known [6]. To get a similar system for the particle with quadrupole moment, it
suffices to find the explicit form of the additional term in the equation:

j
03 _ 033 3 70
(1.6) —Pj =5 P38 - B°8"),
72 r2
where
00-10000 000 0000000 00O
0000000 000 0000000 000
1000000 000 0000000 00O
0000000 00O 88888880‘88
033 30_| 0000000 —i0 O 5 ;03 —i
53_55—00000000007PJ—ooooooooool
0000000 0044 0000000 0 0+i
00004+i00 000 0000+i0 0 00 O
0000000 00O 0000000 00O
000000-i 000 0000 00—3 000
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2 Separating the variables in the relativistic equation

The most general form of the 10-component wave function with quantum numbers
€, J, m is the following:

L L , . | alr) D
U(x) = {Wo(x), (), E(x), H(x)}, Uo(x) = e fo(r)Do, U(x) = e | fo(r)Do |,
f3(r) D1
2.1)
. | Ev(r)D—y B | Hi(r)D—y
E(z)=e""| Es(r)Dy |, H(z)=e""| Ha(r)Dy |,
E3(r)D Hs3(r)Dyq

where we use the Wigner D-functions [17]: D, = D{m’a(gm 0,0), o=0,—-1,+1

We start with the known system of radial equations for the ordinary vector particle
[6]":

d 2 d 1
—(* + *) Ey — Z(E1 + Eg) =mfy, +i(6 + g)El + ’L(f + *)H1 + iZHQ =mfi,
dr r r r dr r r
d 1
+i(6 + g)fag — ZK(Hl — H3) = mfg, +i(€ + g)fag — Z(f + *)H3 — ZKHQ = ’I’?’Lf3 ;
T r T dr r
d
(2.2) —i(e+ g)CI)l + Z®y = mEy, —i(e+ g)fz — —fo = mkEx,
r r r dr
. « v o d 1 v
—i(e+=)fs+ —fo=mEs, —i(5 +-)fi —i—fo=mH;,
T r dr r T

v d 1 v
+i—(f1 — f3) =mHs, +i(—+ =)fs+i—fo =mH;s.
T dr r T

and accounting for the explicit form of the additional term in the equation?:

00 00 0 0o 0O 0 0 O foDo 0
00 00 0 0 0O 0 0 O fiD—1 0
00 00 0O OO 0 0 O f2Do 0
00 00 0 0o O 0 0 O f3Di1 0
r pi%y— L 00 00 0 0 0 — 0 0 ExD_y | _T'| —iH1D_,
72 “r2{0 0 0O 0O O O O O 0 O FE>Dy o2 0 ’
00 00 0 0 0 0 0 + E3Diy tH3D 1
00 00 4 0 0 0 0 O H,D_, 1E1D_4
00 00 0 0o 0O 0 0 O Hs Do 0
00 00 0 0 — 0 0 O H3D4q —tE3D 4

'We denote here v = /(5 + 1)/+/2.

2Here, the multiplier e~*¢* is omitted.
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we derive the following system

d 2
—(—4+=)Ey— = (B, + E3) =
(dr+r) 2 r( 1+ E3) =m fo,
d 1
+Z(€—|—*)E1 +1 —+7)H1—|—27H2—mf1,
(2.3) dr TV
+Z(€+*)E2—27(H1—H3):mf2,
. « d 1
—|—z(e+;)E3 —Z(%+;)H3—’L*H2:mf3,

r
—i(e+ ) f + 2 fo—igH =m By,
2.4) r r r
( ) « d . « v T
—i(e+—=)fo — - fo=mEy, —i(e+—)fs += fot+tizHs=mE3,
T dr r r T
. 1 v I v
—z(——&—;)fl—z;fg—l—zﬁEl:mHl,+Z;(f1—f3)=mH2,
d 1 v r
+i (7"&‘*) f3+iff2—i—2E3:mH3.
dr r r r

Besides the operators 52, j3, we diagonalize the operator of spatial reflection II. In
terms of the canonic Cartesian matrix basis 8¢, this operator has an ordinary form:

P, PU(F) =U(-7).

—>
I

0

-1

(2.6) .
0

~N O O O

After transiting this to the spherical tetrad and cyclic representation of the matrix
5%, we obtain

1 0 0 0
. 0 I3 0 0|~ 00 -l
(2.7) I = P, 3= 0 -1 0
0 0 I 0 10 o

0 0 0 —Ij

The spectral equation 'y = PV (accounting for the known property PD, =
(—1)YD_,) yields the set of algebraic equations:

(1) fo=Pfo, (-1 fs=Pf, (-1) fo=Pfs, (-1)/f1 = Pfs,
(2.8) (=1)E3 = PEy, (=1)Ey = PE,, (-1)E, = PE3,
(-1Hs = —PH,, (—1)Hy = —PH,, (-1)?H; = —PHj.
This system has two solutions:

(29) P=(-1)"", fo=0, fs=—fi, =0, Es=—F, E;=0, Hy=Hy ;
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(2.10) P=(-1Y, fs=+fi, E3=+E;, Hy=—Hy, Hy=0.

It easy to check that these restrictions are compatible with the above radial equations.
For the parity P = (—1)7*!, we get

fo=0, fs=—f1, f2=0, E3——E1,2=0 Hs; = Hy,
d
0=0, File+)Ey +i(-

+ )H1+Z*H2 mfi,
dr
d 1 v
O = 0, — ( )El — Z(d’l” ;)Hg — Z;HQ = 7mf1;
. e I ) r
—z(e—l——)fl—zr—QHl:mEl, 0=0, i(e+ )fl—i—z H, = —mE,
d r v d

T
i(== )fl +Z*E1 mHy,+2i—fi = mHy, —i(— )fl +Z 5B = mH;;
dr r dr

so we have only four equations:
+i(e+2) By +i (4 + 1) Hi+i%Hy = mfi,
—i(e+2) fi —iLH =mE,
—1 (E ) fl—i—zrgEl mHy,
2i% fi = mH .

(2.11)

We exclude the variables Hq, Hs from the first and second equations:

d 1 d 1 r 202
i+ D mBy+i( o+ )| =i (o fitisBi| - = fi=m,
T dr r dr r2
(2.12) T d T
—1 (6 + g) mf1 — Z*2 |:Z < > f1 +i1— E1:| = 2E1 .
r r dr
The second equation allows to express E7 in terms of fi:

2
(2.13) i (e+%) mhy - = <$ ) fr = (m? %)El;

and consequently the function F; can be excluded. Hence we obtain a 2-nd order
equation for the main function fi:

d?fr 2rm 2rm 6] dfr
dr? mr2+T mr2-T dr
2ea —212+a?+4 2iTe T (I'm+ia) 2072
s + > + + — +
r r mr3 mr m2r6
2m(ier +ia—1) 2m(ier +ia+1)
2.14 —m? + € — =0.
( ) mehet mr2 +T mr2 —T h

This has a singular singular point r = 0 of rank 3, a singular point » = oo of rank

2, and four regular points which are determined by the roots of the equation, (r? —

L/m)(r?+T/m)=0.
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Let us consider the states with the other parity:
(215)  P=(-1Y, fs=+fi, Ey=+E1, Hy=—H, Hy=0;

under the corresponding restrictions, the radial system takes the form

d v . « o d 1
(dT )E2—2;E1 mfo, +Z(€+?)E1 +z(£+;)H1:mf1,

d 1
+i(e+9)E2—2¢5H1=mfz, vi(et+ B +i(— ) H =mfi;

r r dr r

. o T . « d
—Z(E‘F;)fl + - fo—Z sHi=m Eq, —Z(€+*)f2 - %fO:m-Ebv

. a F o d r
—Z(E‘F;)fl + - fo—l sHi=m Eq, —Z(% )f1—sz2+z Ey=mH,,

. d r
0=0, ‘H(ﬁ )fl"H*fz—l Ey=-mHy;

and hence we obtain six different equations:

d 2 d 1
-|— E2—2 E1 mfo, +Z<6+E>E1+Z —_— 4+ - H1:mf1,
dr r dr T

r
(2.16)¢i (e + %) By — Qi;Hl —mfs, —i (e n g) f+ Kfo —isH =mE

d d T
—i (€+E> fo——fo=mE,, +i fi -H*fz—l 5 E1=—mH, .
T dr dr

3 States with parity P = (—1)/"!

In egs. (2.14) we introduce the following new (dimensionless) variables x = mr, E =
=, v=ml, in order to obtain a simpler representation

d?fr 2z 2z +§ @
dzx? 2?2+y 2?2 —x dx
2Ba -2 +a®>+4  2ivE +ia) 20742
B2+ =2y . L HE | Ay tie) | vy
X X X X X
2(iEr + i — 1 2(iEr + i+ 1
(3.1) ( 5 )— ( 5 ) fi=0.
e+ e =y

Here we have the singular points
z=0,Rank =3, x=o00,Rank=2, z=—-/v, +/v, —iv/7, +iy/7,Rank =1.

The equation is suitable to be represented in the symbolic form:

2f 22 2 df
- - +
dz? 24y 2?—v dx
L N
2

(3.2) +E—1+—+—+—+—+—+ ]f1=0.

R e A
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We construct its Frobenius type solutions near the point x = 0 in the form fi(z) =
erl,AeB/:ceC/sz(z) .

dj
dx

d*F { 2z 2z +2A—|—6 2B 4C

o +20)

2+ 12—x x 2 3

2AD+6D+a; A?’+5A—2BD +a,
+ + 5

+ [(E2 +D?—1)
€T x

—2AB—-4B—-4CD —4AC+B?-6C 4BC 4C?
n —|—a3+ + +a4+ + + ag

x3 x4 0 26
JF—QAfy—QBx—ZleQD'yx+L’yJr 2A7+23$+4C2D7$+N7] Feo
v (@2 +7) v (2?2 =) '

We further impose the restrictions:

E*+D?*-1=0 = D=-1-E +/1-EF?,

1
4C%+a=0 = C:g\/—a6:6§\/2u2(—72), §==1,

(3.3) ABC=0 — B=0,
3 1ay 3 5 Y +iva
_4AC+ B - A=_Sy20a_ 5 0 vine
C+ 6C+as = 2+4C' 2+2 5027

On physical grounds, the parameter v has to be imaginary, so we should make a
substitution ¢y = . To have regular behavior at x = 0, the parameter C' should be
taken negative. To describe the bound states, we will use following expression for the
parameters:

1 _Ative
(3.4) 2 V)
C=-1y22(—?) <0, D=-V1-E2.

The equation gets simplified:

d27F [ 2 2w +2A+6 2B 4C dF
dx

_ _ ¥ Lop| 2L
dx? 22+ 12 —x x 2 x3+ }

+[2AD+6D+a1 +A2—|—5A—QBD+a2 L “2AB-4B-4CD+as
2

T T x3
—2Afy—282:—40—2D’y:c—&-L'y+ —2Ay+2Bx+4C —2Dvyz+ Ny

N v (22 +7) v (22 =)

} F=0,
and we can construct the solutions for F(z) as power series: F' =Y > d,a™, which
leads to the recurrence formulas:

k=0, 4Cdi+(2AB+4B+4CD —a3) dy=0,

k=1, 2Bdi+8Cdy+(—A>—5A+2BD —ay) dg+(2AB+4B+4CD —a3) dy =0,
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k=2, —2(3+A)d +2B2dy+12Cds
+(—2AD — 6D — a1) do+(—A%> —5A+2BD — as) di+(2AB + 4B + 4CD — a3)d = 0,
k=3 —2v%dy —2Dy%d; — 492 (34 A) dy + 6By?d3 + 16C~%d,
+(8C — Ly + Nv)do +~v* (=2AD — 6D — a;) d;
+7° (—A* —=5A+2BD —a3) dy +7° (2AB+4 B +4CD —a3)ds = 0,
k=4, —64%ds—4Cd; —4Dy*dy — 672 (3 + A)ds + 8B~*dy + 20C~%ds
+(=2AB —4CD +a3)dy + (8C — Ly + Nv)dy +~7* (—2AD — 6 D — a1) dy
+7* (—~A* =5A+2BD —ay) ds ++* (2AB + 4B+ 4CD — a3)dy = 0,
k=5, —12y%dy — 2Bd; — 8Cdy — 6D~%ds — 842 (3 + A) dy + 10B~%ds + 24C~3dg
+(A*+A—2BD+ L+ N +as)dy + (—2AB — 4CD + a3) d1 + (8C — Ly + Nv) d»
+7%(=2AD—6D—ay)d3+v?(— A2 —5A+2BD—ay)dy+v?(2AB+4B+4CD—a3)ds = 0,
k=6, —20v%ds+(2 + 2A) d; —4Bdy—12Cd3—8D~?*dy—1072 (3 + A) ds+12B~2ds+28 Cy*d;
+(2AD+2D+ay) do+ (A>+ A=2BD+ L+ N +az) dy
+(=2AB —4CD + a3) dy + (8C — Ly + N7)d3 +~* (—2AD — 6D — a1) d4
+7* (—~A*—=5A+2BD —as) d5s +7° (2AB+4B+4CD —a3) dg =0,
k=17, 2dy—30y?ds+2Ddy +2 (2+2A)dy—6Bds—16C dy
—10D~%ds — 1242 (3+ A) dg + 14B~? d7 + 32 C~* dg
(2AD+2D+a1) di + (A>+ A—2BD+ L+ N +as) ds
+(—2AB —4CD +a3) d3+ (8C — Ly + Nv) dy ++* (—2AD — 6 D — ay) ds

+7* (—~A*=5A+2BD —as) dg +v* (2AB+4B+4CD —a3) d; = 0.

Thus, we find the following 8-term recurrence relations:

k=6,7,8,9,.. 2D(k—6)+ (2AD+2D +a1)] di—s

+[(k—5)(k—6)+(2+2A4) (k—5)+ (A>+ A—2BD+ L+ N +as)| dy_s
+[-2B(k—4)+ (—2AB —4CD + a3)] dy_4
+[—4C (k —3) + (8C — Ly + N¥)] dj—3+[—2D~* (k — 2) +7* (=2 AD — 6 D — a;)] di—»
+ [ (k=1 (k—2)—2+2(3+A) (k—1)++? (-A* = 5A+2BD — as)] dj_1
+ 2Bk +7*(2AB+4B+4CD —a3)] d +4C~* (k+ 1)d1 = 0.
in brief, these relations can be written as

P_eci—6 + Py—sCi—5 + Py_acr—a + Py_3ci_3
(3.5) +P_ock—o+ Py_1ck—1 + Prer + Pryick+1 = 0.
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By applying the Poincaré-Perrone method, we shall further analyze the conver-
gence radius of the power series. To do this, we divide the last relation by dj_gk?

[2D (k —6) + (2AD +2D +a1)] +

+[(k=5)(k=6)+(2+24) (k=5)+ (A*+ A=2BD+ L+ N +a)] Z::Z

4 [=2B (k- 4) + (—2 AB — 4CD + ay)] L=t i
di—5 dk—¢

die—s di—g di—
+[4C (k= 3) + (8C — Ly + Ny)| —2=2 k=4 Zhod
di—4 dp—5 di_¢

di—z di—3 di—s di
+[-2Dv?* (k—2)+~* (-2AD - 6 D — ay)] d:_z d:_i d:_;‘ d:_z

+ [k =1)(k=2)—2y*(3+ A) (k- 1) ++° (~A*> = 5A+ 2BD — a)]

di—1 dg—2 dp—3 di—4 di—s
dr—2 dp—3dy_4 di_5 dp—g

di dr—1 dg—2 dp—3 dp—4 di_s
+[2By?k+~*(2AB+4B+4CD —a
2B 7 )] dr—1 dp—2 dp—3 dp—q d_5 di_g

dp+1 di dp—1 dg—2 dp—3 drp—4 di_s
+4C% (k+1
7 ) di, di—1 dp—o dp—3 di—4 dp—s dr—g

and tend k — oco. As a result, we get the algebraic equation for R:

:07

1 1
R—~+R°=0 = R=0,+—, +——.
VI VY
The modulus of the parameter R determines the possible convergence radii.
. d— 1
(3.6) R= klggo d:,Z’ Rconv = ’R‘ =Vl +oo.

As a quantization rule we use the restrictions separating the transcendent Frobe-
nius functions (see (3.5))

(3.7) P,¢6=0 = 2D(k—-6)+2AD+2D+a; =0, k>6,
where

S -3 ==, D=—V1-F’, a =2Ea.

Taking into account that the parameter 7 is imaginary one, we make the change
iy ~> 7y, then

17
(3.8) A=_2 120V H0 b 1-E?, a =2Fa,

)
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and the transcendency condition takes the form (let k —6 =n, n=0,1,2,...)

3 Yo — 2
~V1I-E’n+|;+ —F———=|VI-E?-VI1-E?+Ea=0,
! (2 2«/[(1—&—1)72)\/ v “

or
(3.9) aE =+/1- E? 7171/2770‘7_72
' 2/ +1) )
Depending on the sign of parameter v, there arise two different equations:
v>0, aBE=v1-E|(n-1/2- 2T |,
2/1(1+1)
(3.10) v<0, aBE=v1-E2(n—1/2+ 270 .
2/1(1+1)

The structure of these equations is the same, so the energy spectra are similar but
non-identical:

1
aE=+1-FEN = F=-—1—;

/1 4+ 22

(3.11) e

v>0, N=n-1/2—- 27 . <0, N=n-1/2+ 2"

2,/1(1 + 1) 2,10 +1)

4  The case of minimal j =0

We shall further consider the case of minimal value of the total momentum j = 0.
We use the following relevant substitution for the corresponding wave function:

0 0 0
Bo(w) = e fo(r), B(z) = ¢! | fo(r) |, B(x) = e | Balr) |, H(x) =" | Halr)
0 0 0

The corresponding equations emerge from the general ones, using the restrictions
(41) I/:O, f1:f3:0, E’li.Eg:O7 H1:H3:O.
So, we get
d
_(%
. « d
—Z(e—|—;)f2—%f0=mE2, 0=0, 0=0, 0=mHy, 0=0.

2
+ B = mfo, +i(e+%)EQ:mf2, 0=0, 0=0,

In the case of minimal j = 0, the electric quadrupole moment does not manifest itself:

d 2) . «
— | —+ = | E2 = mjo, ile+ —) E2 =mfa,
(4.2) (dr r 2 0 ( r) 2 2

. d
—’L(E-i—%)fg—%fo:mEg, Hy =0.
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After excluding the variables fo, Fo, we obtain a 2-nd order equation for the function

fo(’l“):

2 4 _ _ _ 2 2
df0+<+ mte . —m-e )dfo+<604_|_0!_mz+62>f0207

dr? r mr—er—oa mr4+er+a)) dr r 72

or in terms of the dimensionless variables © = mr, E = €/m,

2fy (4  —1+E 1-E \dfy (2Ba o®
h (2 P LY LR 1) fy=0.
dx? <x a:—Ex—a+x+Em+a> * x +:1:2+ Jo

dxr

This equation has three regular singular points and one singular point of rank 2 at
infinity.

Alternatively, by excluding the variables fy, f2, we get the simpler equation for
the main function Fs:

d*E 2 dE 2 2_9
e e R N [ ) R
dr r dr r r

After transforming the last equation in terms of the variable y = 2v/m?2 — €2r, we get
d*E. dE 1 22
2 2 ( o ca ) Ey=0.

o822
ydy2 + dy il y * m? — €2

Its solutions are constructed in terms of confluent hypergeometric functions, according
to the standard procedure:

2

F dF
S L (2A+2+2By) —
Yz +(2A+2+2By) i

1 A2+ A+a? -2 ca
+ BQ_) T +2AB+QB+}F=0-
K 1)Y Y m? — e+

By imposing on the parameters the evident constraints

1 1 1
A:—§i§\/9—4a2, B:—*

2 )

we simplify the problem, and get the confluent hypergeometric equation

E2 = yAeByF(y) )

d*F dF
+(2A+2y)+(1A+m),0

Y dy? dy vm? — e
with the parameters
a=1+A- % c—92442.
M2 — &2

The quantization condition is chosen as usually:

1 €
\/ 2 = _
a 2(1+ 9 —4a?2) — n,

so we get deriving the formula for energy levels

m 1
4.3 e=———— N=-(1+vV9—-4a?)+n, n=0,1,2,...
(4.3 e V=g Vo)
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5 Nonrelativistic approximation (P = (—1)/*! j > 1)
Let us perform the non-relativistic approximation in the radial the system (2.11):
1 « S d 1 v
P:(—l)J ,Z(€+7)E1—|—Z 7+7 H1—|—27H2:mf1,
r dr r
(5.1)
. « I . d T v
-3 (e—l——) fi —i—Hi=mE, —i|— f —i—z s E1 = mHy,2i—f1 = mHos.
r r dr r

By using the third and fourth equations, we exclude non-dynamical variables H; and
H. 2t

1 r 202
;)fl - TQE1} - shi=mf,
« r d 1 r

- — 5 |:(d’l“ + ;)f1 — T’2E1:| = mE1 .

The big and the small components are introduced by the relations

(5.2) fi1= (Y1 +v1), B = (Y —11),

and then the previous equations take the form?®:

(m+ B+ D)0 — )+ G+ D) |G+ D )+ T =)
—%:2(‘1’1 + 1) =m(¥y + 1),
(m+ E + %)(\Ifl +11) — % [(c(lir 1)(‘111 +) + E(\Pl - 77/11)] =m(¥ —1).

By re-grouping the terms and neglecting the small component in comparison with the
big one, we derive two equations®

1,d  1.[,d ir (G +1)
(E + )\Ijl + (dT + ) |:(d7" )\Ill + \111:| - 7\1/1 = 2m1/)1,
) d 1 i
(B + %)\111 - r:w2 {(dr )‘1’1 + ‘1’1] = —2miy;

after summing these, we find a 2-nd order equation for the big component

Then, making the needed change :I" ~~ I', we obtain

{(d 1 d+1+I‘)+2m(E+a)_j(j+l)_F(d_’_1_’_72)}@1:0.

£+ )(dr r r2 r2idr 7

3We also separate the rest energy by the formal change ¢ = m + E, where E stands for the
non-relativistic energy
4We recall here that 2v2 = j(j + 1).
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The final form of the non-relativistic radial equation is®:

> 2d a,  j(y

5.3 i qoamE+ o) - - A R(r)=0.

63 {ga+ g tamE+?) ")

This equation has two singular points, 7 = 0 and oco; both of them have rank 2.
Therefore, this belongs to the class of double confluent Heun functions. In the vicinity
of the point r = 0, its Frobenius solutions are constructed in the form

d*f (2 +2A 2B ) df

R(r) = e“"rder f(r), ) + " —z Tt 2C

dr

2AC +2C +2ma A2+ A—-2BC —j%—j
+ + 5

r r

—2AB —-2I' B?-T1?
+ - +02+2mE>f:0.

r3 r

With the following evident restrictions on the parameters®:
(54) C=—V-2mE,; B=T, A=-1; B=-T', A=+1

the equation becomes simpler. The negative values of the parameter B correspond
to the bound states. Depending on the sign of I', there exist two different sets of
parameters:

r>o0, A=+4+1,B=-T,C=—-vV-2mE,

5.5
(5:5) <0, A=-1,B=+T,C=—vV—2mE.

The equation for f(r) is formally identical:

d? 2+2A4A 2B\ d 2AC +2C + 2 A2+ A—2BC —j2—3j

CLy (g0, 2124 2B i L L= ) r=o,
dr? r2 ) dr r r2

or shortly

a?

d2f+(a+‘“+‘12)df+<bl+b2>f=0.
T T

The solutions f(r) are constructed as power series: f = Z;O:o c,r®, and we obtain
the recurrence formulae:

k=0, bycg+asec =0,
k=1, bico+ (a1 +b2)cr+2az¢0=0,
k=2, (a+b)cr+(2+2a1+b3)ca+3a2c3=0.

Therefore, the general formula for the 3-term recurrence relations is

k=1,2, 3,4, .., [a(k— 1) —l—bl]ck,l + [k(k— 1) +a1k+b2]ck —‘r(lg(k‘—f— 1)0k+1 =0,

5We denote here ¥y (r) = R(r).
Swe emphasize here that C' must be negative.
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or shortly Py_1cx—1 + Prcr + Pxt1¢k+1 = 0, where
Pk,lza(k—l)-l-bh Pk:k(k—1)+a1k+b2, Pk+1:a2(k+1).

In accordance with the Poincaré-Perrone method, we divide the relation by kZcp_;
and tend k — oo:

1 Ch+1l Ck
—lak—=1)4+b]+ = |k(k—1)+a1 k+b +—a k+ =0.
2 la(k—1) +b] kQ[ ( ) +a 2] o az(k+1) P

As a result, we obtain the algebraic equation which determines the possible conver-
gence radius:

*

5.6 r=20 = Reonv =
>0 g

= 0.

We present now the explicit form of the quantities which enter the recurrence
relations:

P_1=2C(k—1)+2AC+2C +2ma,
P.=k(k—1)+2+2A)k+A>+A—-2BC —j*—j, Py =-2B(k+1),

and consider the transcendency condition for the Heun functions:

mao
5.7 P1=0 = (C=- 7
(5.7) ! [(k—1)+ A+2]
where C = —v/—2mF, and
>0, A=+1,B=-T,C=—V/—2mE; I'<0,A=-1,B=+I,C = —v—2mkE.

Depending on the sign of I', we obtain different spectra:

2

) T —\/—QTYLET' =L = _ o
(5.8) >0, R(r)= rer f(r), Rk
2
5.9 I'<0,R(r :efvfszrrfle¥fr, E=_I
2k2

The solutions of both types, respectively at I' > 0 and I' < 0, can describe bound
states as they tend to zero at r — 0. However, the formulae for energy do not depend
on I'.

6 Nonrelativistic radial equations (case j > 1)

We start from equations (2.16):
d d 1
By —22Bi =mfo, +i(e+ ) Ey+i( o+ ) Hi=mfi,
dr r dr 7
r
(6.1)+i (e + %) By —2i% Hy=mfy, —i (e+ S) hi+ S fo— iz Hi = mEy,

d d
—i<€+g)f2—*f0=mE27 +i | — f1+2*f2—2 5 E1=—mH, .
T dr dr
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Excluding the non-dynamical variables fy, H; (which do not differ in time), from the

equations:

1 d 1 d 1 r
fo=—-= By +2-By|, Hi=-—l|i( 2+~ )fi+izf—izBl.
dr m dr 7 r r
we reduce the remaining equations to the form

+¢(e+ff)E1—i(jr+1> [z(;i )f1+zf2—erl} —mfi,

1 d r
+Z (6+%) E2+2Z;E |:Z < )fl +’L*f2*l E1:| :mfg;

v d v
=i ) h- ;% Kd i 2) Ez”rEl}
‘HTEQ ! {( >f f2 _'LE1:| =mk,

—i(e+2) de [( >E2+2 El]mEg.

The big and the small components are introduced by the formulae
(6.2) fi=(Va+v), iEr=W1—41), fao=Watv), iBz=(Vz2—12).

Then the previous equations take the form?
d 1 d 1
(m+E+%)( wl)_m(dr+r> ['(dr+ )(‘I’1+¢1)
.V r

HiZ( ) = (0 = )| = (4 ),

(m+E+2) +w)—5i £+2 (U — o) + 22 (W — ¢by)

) (Wit o 2 — 2 ~(W1 =t

—:;2% [z (jr + i) (Uy + 1) -H';(‘Ib +¢2) — 7],;2(‘1’1 - 7/’1)] =m(V1 — 1),
1 d 1
(m+E+ %) (W — o) + 20~ — [z (dr + r) (U1 + 1)

—H’%(‘I’g +1b2) — 7%(‘Ifl - 1/)1)} =m(Vg + 12),

(m—l—E-l— %) (\I/2+w2)+idi Kci + 2) (Wy — 1) + 2= ( 1 —wl)} =m (Va2—1)2).

By regrouping the terms, we obtain

o () [ e

"We also separate the rest energy by the substitution e = m + E.
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+i;(‘1’2 + 1) — ;2(‘1’1 - ¢1)] = 2mapy,

1 d 2
(E+ %) (U + 1) — KE {(dr + ) (Wa — o) +2; (T4 —¢1)]
d
- 7% % {Z (dr i) (W1 + 1) +Z*f2 - %(‘1’1 - 1111)] = —2miy,
(B+2) (@a i) 2% { (di 3) (W14 402) + 82 (W + ) — 5 (W fwl)} -
(E+ %) (U +42) + % j [(;ﬂ + 2) (U —thg) +2— ( 1 —wl)} = —2mus.

To derive the needed equations for the big components ¥; and ¥, we sum the equa-
tions in each pair and then neglect the small (compared to the big ones) components.
This results in

1 d 1 d 1 r
2(B+2) it — (k) [(+ o)t \Ifz+z v,
T m \dr r dr r

1 d 2 1 d 1 i
17 +2 v, 427w, 71—— o) it \112+—\I/1 -0,
dr T 72 dr

1 d AN 1 d d
2(E+9)\112—25— LA R SR Ee —+ o422 | =0,
r rm dr r m dr dr

Allowing that I' is imaginary, we make the change I' ~» T, and hence produce the

system
a d 1 d 1 T
m(E+r)\111+<dT+T) [(dr >\111+ Uy + — \p]

d 2 r
v [( )\1/2+2 \111]—[( )\I/1+V\Ifg+2\111]:0,
r dr r2 r r

« v d d d
m(E+;)\1/2—2;KE >\Ifl+ L \Ifl} EKJJF )\I/2+2 %}—0.

We further get®:

2 r r? r
<i+2£+2 E+M_QL_L_7>%_V<%+E)%:07

dr?  r d r2 r3
(6:3) 2 24 2ma w2 +2 2 T
— + - +2mE+ — — Uy — 2 — 4+ = |¥; =0.
(dr +7“d * + 72 ) 2 V(r2+r3) 1=0

This system for two functions permits us to construct the fourth order equations for
the functions ¥;(r) and ¥o(r). It suffices to study only one of them, e.g., for the
function ¥;. We shall use the dimensionless variables:

(6.4) z=rm, I'm=v, e=—;
m

8We recall here that 2v2 = j(j + 1).
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as a result we get

d*¥, {10 4 ] d®V,

dxt r  2x+~]| did
—24+4 22 —412 2 2 48 8 >y
+[de+ ek + 2 - - % - 14 + 2 21
v x x T 2z+7)7  (2z+74)*| dv
64 — 1602 +207%c —8ay —24+8v2+16ay 8—1212
+ 12z + va? + 23
(6.5) +—128—8726+16047+32u2 32 v,
' (22 +7)72 2z +7)2y | do
42 12802 + 8eay® + 64ay — 3272  —24 oy — 4812 + 2072€ + 4a%4? — Sev?4?
+ | +4e” + oo + 22

Say —47%c+16v% —8av?y —8v2 —day—27%c+4vt
+ + ;

~ya3 T

27 (=2+ 202 + ay) +272 —128ay + 6472 — 25602 —32ay + 167%€ — 6412

¥, =0.
b 0 2z +7) 7 (22 +7)* 42 '

Symbolic structure of the equation (6.5) is written as follows (let Uy = ¥)

d* 0 4 ] d?
Y o S N PP T L R v
x  x? ad (

det ! z 2z 4| dz? zt  2x 4y 2z +v)2 | da?
by by b3 by bs d
I A Ly
+[az+ 2 T 8 2m+7+(2x+'y)2 dx

C1 C2 C3 Cq Cs Cg Cr Cs
42 4 24 242 2 0 U =0.
+{6 + x +x2+1’3+x4+x5+x6+2x+7+(2x+’y)2}

We further search for Frobenius-type solutions of the form

(6.6) U(z) = 2B/ f(2),
which yields
dif, [AARI0 40 4 T
dz* x2 2z +7) | dx3
—24C + a1y? — 124~y + 30B7? + 12ABy? N 6A%y + agy + 12C — 12BC + 24 Ay
,YQI ’7372
L3 12AC — 18C N 6C?% + ay N 48C + 24 A~y — 12B~? + asy?
x3 x4 (22 4 v) 2
d2
6B r ey 20 |4
(2z +7)7 | dz

1
+ | == (8eAv* + 241 By* + 244%* — 24A4* — 96C + 96C2 + 12AB%*y* + 2a5 Ay®
Y
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+4a5C* 4 2a6AY* + 8asCy — 24ABY® + 96 ACY + 30B°y* + b1y* — 48 BC+?)

+ (—8eCy* + 2a1 Ay® + 2a2 By — 124%4% + 12477 + 48C — 48C?

7322
+48AB~? + 12A%B~® — 12B%C~® — 2a5C~% — 2a6Cy — 48AC + boy® + 24B072)

1
+a8 (—2a109% + 2a2Ay? + 2a3B? — 24Cy + 24C* — 36 BC?
+24ACy + 4A4%)® + 18A4°y* — 22A° + byy® — 24ABC?)

N —2a9Cy + 2a3 Ay + 2a4 By — 12C% — 24ACy + 12BC?y — 12A2C + 36Cy
1

YT
—2a3C + 2a4A + 12AC% +6C% 20 (aq + 2C?)
+ xd B 6
2a6B~? — dagAy — b2
+8€B+4BS+ ag D7y ae A7y 28a6C+ 57
(22 + )" 2
1
— = (2a5 By* — 48A4%4% 4+ 48 4~% 4+ 192C~ — 192C? — 4a5 A~
MCrEe (2as By 77 asAy” 4 1920y as Ay
d
—8a5C? — 4agAy? — 16a6Cy + 48ABy* — 192 ACy — 12B%y" + byy" + 96 BCH°)] ch
X

+ | oy (284" + 38407 — 964°C° + 96BC" = 3247° — 164%)° — 1924

—8a5C?~?% — 96 BCY> — 2a5A°~4* + 2a5Av* + 24agCH? + 2b,C~* + 8a5C~3 + 4ag Av>
—24ABy*—24B2Cy*—32a6C%y+24 A% By* —4a6 A% > 4+4b5C~v® —8a5 AC*+96 ABC?
+4a5 BC~Y* —24a5 ACY*+8ag BCY3+2a5 ABY’+2a6 ABy* —128C°3 —12AB%~° +48 A%3
—192C~% + 10B34° + b1 B® + a1 B%y5 + 4AB3~5 + by Av® + bs Ayt 4 175 + 86AB'yﬁ)

+ (—144ACH* — 192C%y + 48A2Cy* — 48BC?4* + by B’ + 16A~°® + 843+ — 4B3CH°

Va2

+b1AY® + 96 AC?Y + 2a1 AB~® — 8¢BCH® + 4a50%? + 48 BC~? + as A%y* — a5 Av?
—8agC? — byC~* — 4a5Cy° — agAy® + 12AB~y* 4+ 12B2CH* + 12aC%y — 124%2B~*
+ag A2y —bsC~® + 4a5 AC~® — 48ABCH? — 2a5 BCy* 4 8ag ACH? — 2a6 BCH + 64C°
+24AB%y° — 24A%y® 4+ 4y B*° + 4eA%y° + 64> B*7° — 4eAy® + 96C* + c27°)

1
+—74$3 (T2ACH? + 96C*y — 24A°C~* 4 24BC?y* — 8Ay® — 4A%y® — A8AC?y — 2a5C*~?

—24BC? +2a6C~* +2a5C~3 —22ABy* — 18 B2CH* —4asC?y + 1842 By* — 24, BCH*
+2a9 ABy* =8¢ ACH* —12AB?Cy* —2a5 ACy3 424 ABC? — 204 AC~* — 3203 + 12423
—48C% + c3yt + 443 Byt 4+ by Ayt + a3 Byt — a1 Ayt + 8eCyt 4 ay A%t 4 by Byt — b1074)

1
s (=36 AC* — 48C%y + 12A%Cy* — 12BC?*” + 14A47° + 4A%° + 24 AC?y
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+a5C?%y2 4+ 36 BC® + agC%y — 1242 BC~3 — 241 AC> + 2a3AB~® — 2a, BCH?
—24ABC? +160% — 194243 4+ 24C0~% + c47® + A*y® — ap AY® + 24, C
+asB*y? + a3 A?y® + 4eC?y® — byC® + 6B2C?y3 + b3 Av?)

1
+@ (46ACH? + a1C*? + a3 A?y? + 20202 — az Ay? — b3C* + 24C%y — 8C® — 6A2C?

+6BC?y* — 4A°CH* — 243 BCY* + 2a4AB~® — 12AC%y — 36C7* + ¢57° + 12ABC?* — 2a, ACY?)
+a202’y + a4A2'y + 2a3Cy — as Ay + 4C° + 6A202'y — 4BCB’y — 2a3ACYy — 2a4BCvy — 24027 + cey
vl
C (—agC — 2a4 +4AC? + 2a4A — 202) n Cc? (a4 + 6’2)
7 x8

+ B* + 4€° + 4eB?

+W (=576ACY* — T68C> + 1924°Cy* — 192BC?” + 64A~° + 32A4%7% 4 384AC%y
+16a5C%y2 +192BC~3 +4as A2y* — das Ay* — 48aCy? — 4bsCy* —16a5C~> — 8ag Av>
+48 ABY*+48 B2Cy* +64a6C*y—48A? By* +8ag A% —8b573 +16a5 ACy> —192 ABC~?
—8a5 BCy* 4 48a5AC~y? — 16a6BC~> — 4a5 AB~® — 4ag ABy* 4 256C°3
+24AB%y° — 96A%® + 384C* — 4B + ¢77° + a5 B*7° 4 by By° — 204 47" — 2b5 Av*)

1
" (aﬁBQ”/l + b5 By* + dagA%y? 4+ 16a6C? — 2b5y° — dagAv?

T %
(2z4+7)" v

—16a6Cy — 4bsC~y? + csv* — dagAB~? + 16ag ACy — SaGBCf)} f=0.
We impose restrictions on parameters B and C":
B*+42 +4eB?=0 = B=—-vV—2¢,+V—2¢,
1
et C*(as+C?) =0 = C=0, +v/—as = C1 =0, Cy =47, C3 = —7.

For C' = O = 0, the coefficient of 1/27 vanishes, so we require the coefficient of
1/25 to vanish as well:

asC?y + ag A%y + 2a3Cy — ag Ay + 4C% + 6A%C?y

—4BC?y — 2a3AC~Y — 2a,BC~ — 24C?~ + ¢¢y = 0,

or
A%y —ag Ay + ey =0= VA2 4+ PA+ 2P =0 = A, = -1, 4, = +2.
If C = Cy = +7, then we impose the multiplier of 1/27 to be equal to zero:

—a3C —2a4 +4AC? + 2a4, A —20% = 0,a3 = -2y = 27° + 247° =0 = A3 = —1.
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If C = C3 = —, then we impose the multiplier of 1/27 to be equal to zero:
—a3C — 2ay + 4AC? + 2a4A — 2C% = 0,03 = —2y = —279° + 244> =0 = A, = +1.

Thus, there are four types of the solutions (we use below only negative values for

I, B=—-V=2, C=0, A=-1, U=e¢ fl(aj)

II, B=—-V/—2, C=0, A=+2, U= 3“2(3:);
III, B=—/=2¢, C=+4~, A=-1, U(z)=¢" - +7/$f3(x);
IV, B=—V/—-2, C3=—vy, A=+1, U(z)=¢P" xe_7/1f4(x).

Only three cases may be be suitable for describing the bound states:

(6.8) solutions II and [III at negative 7 ;
(6.9) solution IV at positive -y .

All the constructed solutions are exact, but they are formal, because any reliable
rules for quantization of energy levels are not known. The transcendency condition
is solving only partially this difficulty.

7 The KCC-geometrical approach

In this section we will study the mathematical tasks which arose above, by applying
the special geometric method based on the KCC-invariants [1] — [4]. In this approach,
one considers a system of second order differential equations

(7.1) §'(r) +2Q'(r,z,y) =0,

which corresponds to the the Euler-Lagrange equations of a Lagrangian L. In (7.1),
the symbol z* designates the spatial coordinates, their derivatives in the argument r
are y' = da'/dr = ¢, and the quantities @; are determined from a Lagrangian L, as
follows

o1 0L oL 0%L 1 6°L
2 = LN P, - i = T -
(72) @ 47 ((“)xkayly ox! + aylar) ’ Jii = 3 Oytoyd

The first and second invariants, %(r, z,y) and P@» are defined by

Ei - ayj y] - 2QZ

Py =252 +2Q° 5 gy — S S — 5%

(7.3)

ByJ 81/ ~ Dyidzxs Y Oys OyI Oyior:

The second invariant Pij relates to the Jacobi stability of the differential system.
There is an analogy between the equations of geodesic deviation expressed in terms
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of the Riemannian curvature and and the equations provided by the second KCC-
invariant:
%: i_@dixlgj:,[{zjgj D¢ — pigi
Ds? kil ds ds 7m0 Dr2 A
It is known that a pencil of geodesic curves emanating from a given point ry converges
(or diverges) if the real parts of all eigenvalues of the invariant P? ; are negative (or
positive), respectively.

We start from the system of two second-order differential equations for the two
radial functions of the spin 1 particle with electric quadrupole moment in the external
Coulomb field, namely (6.3). This can be written as:

(7.4)

& 2d a+Er 22 2 TI? % +T
(7.5) (dT2 * rdr +zm r r2 r3 7,4) 1(r) —v 3 2()
' @ 2d a+Br 22 2 o +T
(d’r2+7’d7’+2m , _712—712> \112(7")_21/ r3 \111(7")20

We shall use the following notations z* = W;(r), y* = (d/dr)¥;(r) = ¥;(r). Then,
by comparing the equations (7.5) and (7.1), one finds the quantities Q':

am TI? T V2>\IJ1_V(F+2T)

. 1.
Q%ﬂwm:@m+——— SVt

(7.6)
. am 1?1 '+ 2r 1.
Q*(r, W, ;) = (Em +——-=- 2) U,y — u¥xp1 + — 0.
r r r r r
By direct calculation, according the formula (7.3), the first and second KCC-
invariants are explicitly given by:

2am T2 o' 22 T 2 U
51\111(2Em+4+3+2>+yq,2<+) L
r r r r r

r
7 am v*+1 r 2 U
e? =20y (—Em— — + bl =+ =) - =2
r r2 r3 2 r
r2 _ or 2 2ma v(2r+T)
(7.8) pi | T s T o F2EmA s
J _21/(2:;—}-1") 2Fm + 20;m _ 2(VT2+1)

The eigenvalues A1, Ay of the second invariant are provided by the formulas
(7.9)

20[77’1 F2 F 21/2 + 1 \/(FQ — 2’[’2 —+ 2FT’)2 + 8V27’2(F —+ 27’)2
- == + :
r 2t 3 r2 2r4
The typical behavior of eigenvalues for different values of j, is presented in figure 1.
Let us study the behavior of the eigenvalues A’ near the singular points r = 0,
r=o00,r =—I/2. It can be shown that
1 2 2 I’ 1 a2
r—=0, A= —— <0, A" = —— <0 r—oo, A, A = 2Em < 0;
r r

Al,g =2Em+

r . dma 8% 8 9 dma 8v?
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Ar Az ISEA
0.0001 0.0001
.y .y
200 0 200
=-0.0001 =-0.0001
-0.0002 -0.0002
-0.0003 -0.0003
=0.0004 =0.0004
-0.0005 -0.0005
(c)
A‘- 2
0.0001
.y
200 0
-0.0001
=0.0002
=0.0003
=-0.0004
-0.0005

Figure 1: The dependencies of eigenvalues A; (red) and A; (blue) on radial coordinate
(x = mr) at different j: (a) j =1, (b) j =2, (c) j = 3. We used following values for
the parameters: I'm = 1, E/m = —0.000009.

Since the real parts of all the eigenvalues of the 2-nd KCC-invariant are negative, the
different branches of the solution converge near the singular points r = 0, 00, —I'/2.
This correlates with the behavior of solutions near the singular points for bound
quantum mechanical states (for discrete spectra).

The third KCC-invariant

. 1(oP] op
(710 =3 (ayk - 6yj>

determines (in Finslerian KCC applications) the torsion of the Berwald connection.
The fourth KCC-invariant is an extension of the Riemann—Christoffel tensor

i aRé'k

Finally, the fifth KCC-invariant extends the Duglas tensor.

; 83Qi
(712 " Py oy oy

Since the vector field Q' (7.6) is linear in the coordinates ! = ®° and y* = ¥,
the first (7.7) and second invariants (7.8) are functions of the radial coordinate r and
do not depend on z* and %°, while the third, fourth and fifth invariants identically
vanish.

The next step is to construct a Lagrangian function L for the phase space U, W,
such that the formulas for coefficients Q¢ (7.6) hold true, and the dynamics of the
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system is defined by the equations (7.5). We will search for a function L of the form
(713) L= 9ij (r)yiyj + bj(r,x)yj .

Let us assume that the tensor g;; is diagonal, gi2 = g21 = 0. In this case, by
substituting (7.13) into (7.2), we derive

1 by ob;  0Oby
1 — 26 L et e 2
Q= g (i + G+ (5553 ) 7).

2_ 1 ] Oy b1\ o
Q = 1om (2922y + 5 + a2 )Y )

By equating the terms from (7.6) with the corresponding terms from (7.14), we obtain
the system of equations with respect to g;;(r) and b;(r, x):

oby  Oby 0 g 1 g2 1

(7.14)

0x2 ozt 7 2914

r’ 2go0 1’
1 0by ' (T2 =2r% (mr(a+ Er)—v?) +20r) vz (T +2r)
4g, Or 2r4 2r3 ’
1 9by,  a® (—Emr? +0v? —amr+1) vz (T +2r)
4go Or r2 r3 ’

Its solution is given by the formulas

g1 =201, goa = C117,
2 .
b, = B, (xl,xQ) —2C4 {3Emr‘3x1 — amr?z!

1‘\21

+Inr(Tvz? 4+ 2Tz') + 2ur(vat + wg)} ,

1 1
by = Bg(xl, xz)—401 {—3Emr3x2 — 50&m7“2$2 +Tvatlnr +r (21/3:1 +0222 + xz)} ,

where Cj is an arbitrary constant. The two functions By (z!, 22) and Ba(x!,2?) obey
the following restriction
OBy (x',2%)  0Ba(at,2?)
0x? a ox!
In accordance with the known theorem, from (7.15) we conclude that this 2-
dimensional vector field (B, By) is the gradient of a scalar function

(7.15) =0.

0 0
(7.16)  Bi(a',2%) = 57 p(@!,a?),  Ba(a!,2?) = 55¢(al,2%), Bi=grade.

There exist some freedom in choosing the Lagrangian (the constant C; may be
taken equal to 1) :

2 r2
L =2r%(y")? + r2(y*)? + 4a'y’ <3Em7"3 +amr? + — —2Tlnr — 2V27">
r
2
—l—gchyQ (mr(3a+2Er) —6 (v¥ + 1)) — 4v (2®y' + 2'y?) (Tlnr + 2r)

199 20y
(717) +y a 1 + 8 27 SD: QD(ZCI,ZQ).
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8 Conclusions

In the present work, the quantum-mechanical problem of the spin 1 particle with
additional quadrupole moment in the external Coulomb field, has been studied. The
separation of variables in the generalized Duffin-Kemmer equation has been performed
through the diagonalization of the energy operator, operators of the square and the
third projection of the total momentum. The equation system for the ten radial
functions has been derived. By the diagonalization of the spatial reflection operator,
the system is separated into two subsystems of four and six equations, for the parities
P = (=1)7*! and P = (—1)7, respectively. The additional terms provided by the
electric quadrupole moment are present in both subsystems.

The system of four relativistic radial equations leads to a second-order differential
equations for the main function. This equation has two singular singular points of
rank 3 and 2, and four regular points with simple indexes. The Frobenius solutions
have been constructed as power series, 8-term recurrence relations have been found,
and the power convergence has been studied. The transcendence condition for the
solutions gives the formula for energy levels, which is suitable from physical point of
view.

The relativistic system of six equations turns out to be very complicated. To
simplify it, the non-relativistic approximation has been performed. In this case, the
radial system is reduced to two linked differential equations of second order for two
functions. By using the exclusion method, we get two single-type equations of fourth
order for these functions. The Frobenius solutions of these equations has been con-
structed, and the convergence of the corresponding 8- and 9-term power series has
been studied. Among all the solutions we have picked out those solutions which could
describe the bound states of the particle.

All the determined Frobenius-type solutions of the 2-d order and 4-th order equa-
tions are exact, but no energy quantization rules are unknown at this moment.

We have also used a geometrical KCC-based method to study the problem of spin
1 particle with anomalous magnetic moment in the external Coulomb field. The first
and the second invariants were calculated. It was shown that the different branches
of the solution converge near the singular points r = 0, 0o, —I'/2. This correlates with
the behavior of solutions near these points for quantum mechanical bound states. The
Lagrangians corresponding to the geometrical problem has been found, and these are
demonstrated to have an arbitrariness up to a special term, which may be regarded
as a specific gauge freedom.
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